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RELATIONS BETWEEN SEVERAL PARALLEL COMPUTATIONAL MODELS∗

STEFAN D. BRUDA†AND YUANQIAO ZHANG†

Abstract. We investigate the relative computational power of parallel models with shared memory. Based on feasibility
considerations present in the literature, we split these models into “lightweight” and “heavyweight,” and then find that the
heavyweight class is strictly more powerful than the lightweight class, as expected. On the other hand, we contradict the long held
belief that the heavyweight models (namely, the Combining CRCW PRAM and the BSR) form a hierarchy, showing that they are
identical in computational power with each other. We thus introduce the BSR into the family of practically meaningful massively
parallel models. We also investigate the power of concurrent-write on models with reconfigurable buses, finding that it does not
add computational power over exclusive-write under certain reasonable assumptions. Overall, the Combining CRCW PRAM and
the CREW models with directed reconfigurable buses are found to be the simplest of the heavyweight models, which now also
include the BSR and all the models with directed reconfigurable buses. These results also have significant implications in the area
of real-time computations.
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1. Introduction. The concurrent-read concurrent-write parallel random access machine (CRCW PRAM)
is the most convenient model of parallel computation and so it is used extensively in analyzing parallel solutions
to various problems. Lower bounds on the PRAM are in particular very strong. The Priority CRCW PRAM
is sometimes considered [19] to be at the upper level of feasible parallel models. The broadcast with selective
reduction (BSR) on the other hand is at present the most powerful model of parallel computation, with the
Combining CRCW PRAM falling somewhere in between. By logical extension of the Priority CRCW PRAM
being at the upper end of the feasibility chain [19], the Combining CRCW PRAM and the BSR should not be
considered feasible; however, efficient implementations have been proposed for both [3].

It is widely believed (though to our knowledge not proven) that Priority CRCW PRAM is strictly less
powerful that the Combining CRCW PRAM, which is in turn strictly less powerful than the BSR. In all, one
can identify two “categories” of models of parallel computation: we thus call the Priority CRCW PRAM and the
models below it in terms of computational power lightweight models, with the heavyweight models represented
by the Combining CRCW PRAM and the BSR.

The first purpose of this paper is then to analyze the relation between these two categories in terms of
computational power, as well as the relations between the models within the heavyweight class. Although
not necessarily explicit, we always have in mind real-time computations, so we are using a strong notion
of relationship: we say that model A is (not necessarily strictly) more powerful than model B only if t(n)
computational steps of model B using polynomial resources can be simulated in O(t(n)) steps of model A
using polynomial resources. We often accomplish this by showing how one model is capable of simulating one
computational step of the second model in constant time (and the other way around whenever we want to prove
an equality).

As expected, we find that the class of heavyweight models is strictly more powerful than the class of
lightweight models. Surprisingly, we also find that all the heavyweight models are however equivalent with each
other, despite the perceived high computational power (and low feasibility) of the BSR.

We also enhance the usability of models with reconfigurable buses. Such models (namely the reconfigurable
multiple bus machine or RMBM for short, and the reconfigurable network or RN) have been studied in the past
[5, 21], being recognized as realistic models for VLSI design and other parallel machines [6, 15]. While the more
complex variants of the PRAM embrace the combining of values written into memory, such a combination is
justly disregarded (in as much as little to no work exists on the matter) on such distributed resources as buses.
That such complex combinations are not necessary (and that Collision is sufficient for any computation) is
known [7]. We further find that under a reasonable assumption not even Collision is necessary, that concurrent-
write does not add anything over exclusive-write.
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Our results are rather significant, as we essentially free the analysis of parallel algorithms and problems
from a number of restrictions. On shared memory models, whether using the powerful Broadcast instruction of
the BSR diminishes the practicality of the analysis (specifically, we are not aware of any real shared memory
machine that implements Broadcast, yet as a consequence of our result such an instruction can be used with no
consequences in the design of algorithms for such machines) becomes immaterial. On reconfigurable buses, we
allow the use of any form of concurrent-write without penalty, given that any concurrent-write can be simulated
in constant time by an exclusive-write machine. At the same time, we also offer a strict delimitation between
the two classes of heavyweight and lightweight models of parallel computation.

Furthermore, these results become particularly significant in conjunction with previous work on real-time
parallel computations [8] and the characterization of models with reconfigurable buses [9]. We show in effect
that the Combining CRCW PRAM is as powerful as reconfigurable buses (thus being useful for the design and
analysis of VLSI circuits). We also show that the Combining CRCW PRAM and the exclusive-write on directed
reconfigurable buses are the simplest models that can solve exactly all the problems solvable under no matter
how tight real-time constraints. In effect, we “simplify” the domain of real time, thus strengthening previous
results on real-time computations.

We proceed as follows: The next section presents the necessary preliminaries. The shared memory hierarchy
is the subject of Section 3, followed by the discussion on exclusive-write being universal on reconfigurable buses,
that can be found in Section 4. The global hierarchy of lightweight and heavyweight models (with shared memory
or reconfigurable buses) is summarized in Section 5. Real-time considerations are addressed in Section 6. We
conclude in Section 7. Results proved elsewhere are henceforth introduced as Propositions, whereas results
proved in this work are introduced as Theorems. Intermediate results are all Lemmata.

2. Preliminaries. PARITYn denote the following problem: given n integer data x1, x2, . . . , xn, compute
the function PARITYn(x1, x2, . . . , xn) = (

∑n

i=1
xi) mod 2.

2.1. The PRAM and the BSR. Shared memory models of parallel computation are represented by the
parallel random access machine (or PRAM for short) and by its extension, the broadcast with selective reduction
(or BSR).

A PRAM [2, 19] consists in a number of processors that share a common random-access memory. The pro-
cessors execute the instructions of a parallel algorithm synchronously. The shared memory stores intermediate
data and results, and also serves as communication medium for the processors. The model is further specified
by defining the memory access mode; we thus obtain exclusive-read exclusive-write (EREW), concurrent-read
exclusive-write (CREW) and concurrent-read concurrent-write (CRCW) PRAM. While reading concurrently
from the shared memory is defined straightforwardly, writing concurrently into the shared memory requires the
introduction of a conflict resolution rule (for the case in which two or more processors write into the same mem-
ory location). Four such conflict resolution rules are in use: Common (the processors writing simultaneously in
the same memory location must write the same value or else the algorithm fails), Collision (multiple processors
writing into the same memory location garble the result so that a special “collision” marker ends up written
at that location instead of any processor-provided data), Priority (processors are statically numbered and the
memory location receives the value written by the lowest numbered processor), and Combining (where a binary,
associative reduction operation is performed on all the values sent by all the processors to the same memory
location and the result is stored in that memory location).

Given the obviously increased computational power as well as the straightforward implementation of
concurrent-read machines, we will not consider exclusive-read variants. For similar reasons, exclusive-write
machines will receive a spotty consideration if any.

The BSR model [2, 4] is an extension of the Combining CRCW PRAM. All the read and write operations
of the Combining CRCW PRAM can also be performed by the BSR. In addition, all the BSR processor can
write simultaneously into all the memory locations (the Broadcast instruction). Every Broadcast instruction
consists in three steps: In the broadcasting step, all the n participating processors produce a datum di and a
tag gi, 1 ≤ i ≤ n, destined to all the m memory locations. In the selection step each of the m memory locations
uses a limit lj, 1 ≤ j ≤ m and a selection rule ∼∈ {<,≤, =,≥, >, 6=} to test the received data; the datum di

is selected for the next step if and only if gi ∼ lj. Finally, the reduction step combines all the data di destined
for memory location j, 1 ≤ j ≤ m and selected in the previous step using a binary, associative operator R, and
then writes the result into memory location j. The Broadcast instruction is performed simultaneously for all
the processors and all the memory locations.
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Typically, the reduction operator R of the BSR as well as the Combining operator of the Combining CRCW
PRAM can be any of the following operations: Σ (sum), Π (product),

∧
(logical conjunction)

∨
(logical

disjunction),
⊕

(logical exclusive disjunction), max (maximum), and min (minimum).

We denote by X CRCW PRAM(p(n), t(n)) the class of problems of size n that are solvable in time t(n) on
a CRCW PRAM that uses p(n) processors and X as collision resolution rule, X ∈ {Common, Collision, Priority,
Combining}. Similarly, we denote by BSR(p(n), t(n)) the class of problems of size n that are solvable in time
t(n) on a BSR that uses p(n) processors.

The notion of uniform families of PRAM or BSR machines exists [18]. However, we do not need such a
notion in this paper. Still, we assume as customary that one location in the shared memory has O(log n) size for
an input of size n, and that the number of memory locations are upper bounded by a polynomial in the number
of processors used. Again as usual, we assume that every BSR or PRAM processor has a constant number of
internal registers, each of size O(log n). Finally, we assume that every PRAM processor knows its number as well
as the total number of processors in the system. The following result regarding the PRAM will be used later:

Proposition 2.1. [12] PARITYn 6∈ Priority CRCW PRAM(poly(n), O(1)).

2.2. The RMBM and the RN. An RMBM [21, 22] consists of a set of p processors and b buses. For
each processor i and bus j there exists a switch controlled by processor i. Using these switches, a processor has
access to the buses by being able to read or write from/to any bus. A processor may be able to segment a bus,
obtaining thus two independent, shorter buses, and it is allowed to fuse any number of buses together by using
a fuse line perpendicular to and intersecting all the buses. DRMBM, the directed variant of RMBM, is identical
to the undirected model, except for the definition of fuse lines: Each processor features two fuse lines (down
and up). Each of these fuse lines can be electrically connected to any bus. Assume that buses i1, i2, . . . , ik are
all connected to the down [up] fuse line of some processor. Then, a signal placed on bus ij is transmitted in
one time unit to all the buses il such that il ≥ ij [il ≤ ij ]. If some RMBM [DRMBM] is not allowed to segment
buses, then this restricted variant is denoted by F-RMBM [F-DRMBM] (for “fusing” RMBM).

For CRCW RMBM, the most realistic conflict resolution rule is Collision, where two values simultaneously
written on a bus result in the placement of a special, “collision” value on that bus. We do not need to consider
other conflict resolution rules such as Common, Priority, and even Combining, since all of these rules are in
fact equivalent to the seemingly less powerful Collision rule (or even exclusive-write, see Theorem 4.2).

An RMBM (DRMBM, F-DRMBM, etc.) family R = (Rn)n≥1 is a set containing one RMBM (DRMBM,
etc.) construction with p(n) processors and b(n) buses for each n > 0. A family R solves a problem π if Rn

solves all inputs of π of size n. We say that some RMBM family R is uniform if there exists an NL Turing
machine M that, given n, produces the description of Rn using O(log(p(n)b(n))) work tape cells. We henceforth
drop the “uniform” qualifier, with the understanding that any RMBM family described here is uniform. If some
family R = (Rn) solves a problem π, and each Rn, n > 0, uses p(n) processors, b(n) buses, X as write conflict
resolution rule (X ∈ {CREW, Common CRCW, Collision CRCW, Priority CRCW, Combining CRCW}), and
runs in t(n) time, then we say that π ∈ X RMBM(p(n), b(n), t(n)) (or π ∈ X F-DRMBM(p(n), b(n), t(n)), etc.),
and that R has size complexity p(n)b(n) and time complexity t(n). Whenever we state a property that holds
for any conflict resolution rule we drop X (thus writing π ∈ RMBM(p(n), b(n), t(n)), etc.).

It should be noted that a directed RMBM can simulate an undirected RMBM by simply keeping all the up
and down fuse lines synchronized with each other.

An RN [5, 22] is a network of processors forming a connected graph whose vertices are the processors and
whose edges represent fixed connections. Each edge incident to a processor corresponds to a (bidirectional) port
of the processor. A processor can partition its ports such that all the ports in the same block of the partition are
electrically connected (fused) together. The edges that are thus connected together form a bus. CREW, Common
CRCW, Collision CRCW, etc. are defined as for the the RMBM model. The edges are directed in a directed
RN (DRN). The concept of (uniform) RN family is identical to the RMBM concept. For some write conflict
resolution rule X (X ∈ {CREW, Common CRCW, Collision CRCW, Priority CRCW, Combining CRCW}),
X RN(p(n), t(n)) [X DRN(p(n), t(n))] is the set of problems solvable by RN [DRN] uniform families with p(n)
processors (p(n) is also called the size complexity) and t(n) running time using the conflict resolution rule X .
We drop X when the property refers to any conflict resolution rule.

As in the RMBM case, we note that for any undirected RN there exists a directed RN with the same size
complexity and the same running time that simulates it (the directed RN provides a couple of edges of opposite
directionality for every edge in the undirected RN).
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3. The Shared Memory Hierarchy. Recall that we called Priority CRCW PRAM and all the models of
less computational power lightweight, while the Combining CRCW PRAM and the BSR were called heavyweight.
We show now that this terminology is introduced for good reason. Specifically, we show that all the heavyweight
models have the same computational power, and that they are strictly more powerful than the lightweight
models. The first result of this paper is thus stated as follows:

Theorem 3.1. For X ∈ {Collision, Common} and for any n ∈ N,

X CRCW PRAM(poly(n), O(t(n))) ⊆

Priority CRCW PRAM(poly(n), O(t(n))) (

Combining CRCW PRAM(poly(n), O(t(n)))=

BSR(poly(n), O(t(n))).

Proof. Theorem 3.1 is a direct consequence of Lemmata 3.2 to 3.5 below. Specifically, the inclusions shown
in the theorem are proven in the mentioned lemmata one by one.

We complete all the proofs below by showing how the model on the right hand side of the inclusion simulates
in constant time one computational step of the model on the left hand side. Once this is shown, the inclusion
that needs to be proved becomes immediate.

We note that some of the hierarchy analyzed here has also been investigated earlier [14]. In particular,
Lemma 3.2 has been established in a stronger version [14] (namely, that the two models are equivalent). For
completeness however we include here our proof of this result.

Lemma 3.2.

∀n ∈ N : Collision CRCW PRAM(poly(n), O(t(n))) ⊆ Priority CRCWPRAM(poly(n), O(t(n)))

Proof. A Collision CRCW PRAM with k processors pi, 1 ≤ i ≤ k and m memory locations uj, 1 ≤ j ≤ m is

readily simulated by a Priority CRCW PRAM with 2k+m processors denoted by p↓i (1 ≤ i ≤ k), p↑i (1 ≤ i ≤ k),

and pm
j (1 ≤ j ≤ m). (Note however that the processor group pm

j and the processor group p↓i plus p↑i take turns
in the simulation, so the actual number of processors required is max(2k, m); however, the explicit differentiation
eases the presentation.)

In addition to the original memory locations uj, we use two more “banks” of the same size u↓
j and u↑

j ,
1 ≤ j ≤ m. A Collision CRCW PRAM step (read, compute, write) is then simulated as follows:

1. For every 1 ≤ i ≤ k, both the processors p↓i and p↑k+1−i perform the same read, compute, and write

cycle as the original pi, with the following addition: Whenever processor p↓i writes into memory location

uj , it also writes its number j into memory location u↓
j ; similarly, whenever processor p↑k+1−i writes

into memory location uj , it also writes its number k + 1 − i into memory location u↑
j .

2. Every processor pm
i writes the collision value into memory location uj if and only if u↓

j 6= u↑
j .

That the above simulation takes constant time is immediate. Note further that after Step 1 of the simulation the
location u↓

j [u↑
j ] contains the index of the lowest [highest] ranked processor that modified the memory location

uj (indeed, we operate on a Priority CRCW model, so only the lowest numbered processor succeeds in writing
into a given memory location; we then chose the processors numbers in appropriate manner for the desired
property to happen). Then, whenever u↓

j 6= u↑
j , more than one processor wrote into the given memory location.

A collision occurred, so Step 2 places a collision marker accordingly. The simulation is complete.
Lemma 3.3.

∀n ∈ N : Common CRCW PRAM(poly(n), O(t(n))) ⊆ Priority CRCWPRAM(poly(n), O(t(n)))

Proof. We simulate now a computational step of a Common CRCW PRAM with k processors and m
memory locations in constant time using a Priority CRCW PRAM. The simulation will use the same number
k of processors (we denote them by pi, 1 ≤ i ≤ k) and the same memory space (denoted by uj, ≤ j ≤ m). The
simulation proceeds as follows:
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1. All the processors pi carry on the computational step prescribed by the Common CRCW PRAM
algorithm, including the operation of writing into the shared memory (recall however that we are now
using the Priority conflict resolution rule).

2. Each processor pi that wrote a value vi into memory location uj in Step 1 also remembers vi by storing
it into an otherwise unused internal register ρ.

3. Every pi that wrote a value into location uj in Step 1 read the content of uj and compares it with the
content of its register ρ.
(a) If the contents of uj and ρ are the same then either (a) pi is the sole processor which wrote into

uj, (b) pi is the highest priority processor which wrote into uj, or (c) pi and the highest priority
processor agree on the value written into uj . None of these cases violate the Common resolution
rule, so pi does not do anything.

(b) If on the other hand uj and ρ contain different values, then the value written into uj by pi disagrees
with the value written in the same location by some other processor, which in turn violates the
Common resolution rule. So pi aborts the algorithm and reports the failure.

Note that in effect we chose one of the processors writing concurrently into a memory location as representative
for all the others (given that we have a Priority machine at our disposal, that representative turned out to be the
processor with the highest priority; however the way we chose a representative is immaterial). Every processor
which wants to write a value in some memory location compares now its value with the value already written
by its representative; if the value is different, then the Common conflict resolution rule is violated; otherwise
all is good and the overall algorithm continues with the next step.

The above proof uses the usual definition of Common, as presented in Section 2. Still, we note that
sometimes this definition is termed “Fail-safe Common,” case in which the “Fail Common” or “Tolerant”
variant is also defined [2, 13]. In such a variant, any computational step that violates the Common resolution
rule is discarded completely (that is, for all the processors in the system) and the algorithm continues with
the next step (instead of aborting the computation). A proof for this modified variant of Common is readily
possible. Indeed, all we need is “backup” copies of the memory locations used by the algorithm, plus one
memory location used to signal any violation to everybody. The processors now use the backup memory to
perform all the simulation described above, except that they set the violation flag instead of aborting the
algorithm whenever a violation of the Common resolution rule occurs (since is is just a flag, using Priority as
conflict resolution rule will do just as well as almost any other rule). At the end of the computational step,
all the processors inspect the flag and write again the values they wanted to write in the first place (this time
in the main memory, not the backup) only if the flag is not set; otherwise they all proceed to the next step
immediately, thus leaving the main working memory unchanged.

Lemma 3.4.

∀n ∈ N : Priority CRCW PRAM(poly(n), O(t(n))) ( CombiningCRCW PRAM(poly(n), O(t(n)))

Proof. A Priority CRCW PRAM with k processors pi, 1 ≤ i ≤ k and m memory locations uj , 1 ≤ j ≤ m is
readily simulated by a Combining CRCW PRAM with the same number of processors (denoted by p′i) and 2m
memory locations (denoted by ui and u′

i):
1. Each processor p′i performs the same read and compute operations as pi. Instead of writing (to memory

location uj), p′i however performs a “dry run” by writing its number into memory location u′
j using a

Combining CRCW write with min as combining operation.
2. Each processor p′i performs now the real write operation: It writes into the memory location uj in

which it wanted to write to begin with, but does so only if its number matches the value stored in u′
j.

The min as combining operation performed over the locations u′
j in the previous step ensures that a

matching occurs only for the lowest numbered processor, as desired.
That Combining CRCW PRAM(poly(n), O(t(n))) 6= Priority CRCW PRAM(poly(n), O(t(n))) is an immediate
extension of Proposition 2.1. Indeed, by Proposition 2.1 PARITYn is not solvable in constant time on a Priority
CRCW PRAM with polynomial number of processors. On the other hand, PARITYn is trivially solvable in
constant time using a Combining CRCW PRAM with n processors: Every processor pi of such a machine,
1 ≤ i ≤ n holds one input datum xi and writes it into some designated memory location µ by performing a
Combining CRCW using Σ as combining operation; then p1 performs a modulo operation on µ and thus µ
contains the output of PARITYn for the given instance, as desired.
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Lemma 3.5. ∀n ∈ N : Combining CRCW PRAM(poly(n), t(n)) = BSR(poly(n), O(t(n))).

Proof. That Combining CRCW PRAM(poly(n), t(n)) ⊆ BSR(poly(n), O(t(n))) is immediate from the
definition of the BSR. Surprisingly enough, the reverse inclusion is also true. We show now this reverse
inclusion. Specifically, we show how one BSR computational step is simulated by a Combining CRCW PRAM
in constant time.

Consider a BSR with k processors and m memory locations. Every BSR processor pi is simulated by a set
of m PRAM processors rij , 1 ≤ j ≤ m. The PRAM memory is doubled, every BSR memory location uj will be
simulated by two PRAM memory locations ud

j and ul
j , 1 ≤ j ≤ m. Finally, the PRAM uses extra processors pu

j ,
1 ≤ j ≤ m (once more processors pu

j and rij actually take turns in the simulation so we differentiate them for con-
venience only; the actual number of processors used is in fact smaller as these two groups can overlap with each
other). The PRAM simulation of a BSR Broadcast step (read, compute, Broadcast) then proceeds as follows:

• Read and Compute: For 1 ≤ i ≤ n, all the processors rij , 1 ≤ j ≤ m perform the reading and the
computation prescribed for pi. Every time some processor wants to read the value of uj it will read the
value of ud

j instead. Processors rij will then all hold the values of the datum di and the tag gi originally
computed by pi.
Note that there are n groups of processors; all the m processors in the same group perform the same
computation. This may appear wasteful but is intentional and will be used to simulate the Broadcast
instruction.

• Selection limits: Every processor pu
j computes the limit lj associated with uj in the selection phase of

the BSR step, and stores it in the memory location ul
j.

• Broadcast instruction: rij will be responsible for the data written by the BSR processor pi into memory
location rj :

1. rij reads lj from memory location ul
j so that it holds di, gi, and lj ;

2. rij then computes the selection criterion gi ∼ lj as prescribed by the BSR algorithm;
3. rij writes dj into memory location ud

j if and only if gi ∼ lj = True, using a Combining CRCW
write with the combining operator prescribed by the BSR algorithm.

Note that for some fixed i all the processors rij , 1 ≤ j ≤ m contain identical data, so pi’s replacement
covers all the memory locations, thus realizing the desired broadcast.

In effect, we use one PRAM processor for every pair processor–memory location in the BSR algorithm. This
allows for an immediate simulation of the broadcast phase of a Broadcast instruction: Instead of broadcasting,
every PRAM processor is now responsible for writing to one memory location only; but then since we have as
many processors as memory locations, we nonetheless write to all the memory locations at once, as desired.
The correctness of the rest of the simulation is immediate, and so is the overall constant running time.

4. On the Power of Concurrent-Write on Reconfigurable Buses. It has been shown [7] that
Collision is universal on reconfigurable buses, meaning that all the other conflict resolution rules can be simu-
lated by Collision with constant overhead. Under certain assumptions, this result can be strengthened. Indeed,
one can conceivably identify two variants of concurrent-write on reconfigurable buses:

Definition 4.1. Concurrent-write (or CW for short) on reconfigurable buses is defined as follows:

Strong CW Any two signals arriving simultaneously at the same bus are considered concurrent-write.
Weak CW Two signals from two different processors arriving simultaneously at the same bus are considered

concurrent-write. However, a signal that is split and arrives two times at some bus is not considered
concurrent-write.

Strong CW is implied in the earlier work that established the universality of Collision [7]. Weak CW,
however appears just as realistic, for indeed a bunch of fused buses form an electrical, longer bus; then it makes
no sense to consider a signal that travels on two different paths, for the signal is simply placed on the bus and
propagates along it according to the physical laws of electricity.

As it turns out, the definition of CW makes a significant difference in terms of universality of Collision:
under weak CW, Collision is unnecessary on reconfigurable buses; instead, exclusive-write is all we need. This
is all put together as follows:

Theorem 4.2.

1. Under strong CW, Collision is universal on reconfigurable buses (directed or undirected), meaning that
Collision can simulate all the other conflict resolution rules with constant time overhead and with poly-
nomial resources.
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2. Under weak CW, exclusive-write is universal on reconfigurable buses (directed or undirected), meaning
that exclusive-write can simulate all the forms of concurrent-write with constant time overhead and with
polynomial resources.

Proof. The strong CW case has been established for the directed case earlier [7, 8]. The undirected case is
easily derived from the proofs supporting the directed case (sketched below): one only need to replace the graph
accessibility problem with its undirected variant and nondeterministic logarithmic space with deterministic
logarithmic space as done (in different contexts) earlier [5, 6].

The weak CW case has been established for undirected buses elsewhere [6]. For the directed case, we can
easily modify the strong CW proof [7] as follows:

The simulation of all the conflict resolution rules is accomplished via a nondeterministic logarithmic space-
bounded Turing machine. This machine computes first the content of all the buses, unfused. Successive
computations of the graph accessibility problem (which is complete for nondeterministic logarithmic space [20])
then determine which buses are fused. Once the fused buses are determined, the final content of the fused buses
is computed. This Turing machine is in turn simulated by a DRMBM which constructs the graph of possible
configurations of the machine and then solves the graph accessibility problem to determine the outcome of the
computation of the machine. The construction of the graph does not involve any concurrent-write. Overall,
the only computation involving concurrent-write is the computation of the graph accessibility problem; all the
other computations do not involve concurrent-write at all.

The graph accessibility problem is solved by a DRMBM that works as follows [8]: Finding whether vertex t
is accessible from vertex s in a directed graph with n vertices given as an incidence matrix I can be computed in
constant time by a DRMBM with (n2−n)/2 processors and n buses. Denote each processor by pij , 1 ≤ i < j ≤ n,
and let pij know the value of both Iij and Iji. Then, each pij , 1 ≤ i < j ≤ n directionally fuses buses i and j
if and only if Iij = True; simultaneously, pij fuses buses j and i if and only if Iji = True. It is easily proven
that, for any s, t, 1 ≤ s, t ≤ n, a signal placed on bus s reaches bus t if and only if vertex t is accessible from
vertex s; the content of the emitted signal is immaterial. Indeed, note that the electrical connections between
buses actually form the original graph. Bus t will then receive the signal placed on bus s if and only if there
exists a path that connects the two vertices. If there are multiple such paths, then the signal will arrive on
bus t multiple times; however, there is only one signal in the whole system, so under weak CW there is simply
no possibility for a collision to happen! Under the weak CW model the graph accessibility problem is thus
computed by an exclusive-write machine. As already mentioned, none of the other computations that simulate
all the conflict resolution rules on a DRMBM involve any concurrent-write, so we conclude that exclusive-write
is universal and so we complete the proof for DRMBM.

The simulation of a DRN by a Turing machine is similar to the simulation of a DRMBM, except for some
supplementary issues related to initial data distribution. These issues however do not change the fact that
concurrent-write occurs only in the computation of the graph accessibility problem, which proceeds in the same
manner as in the DRMBM case [7].

5. Relations Between Several Parallel Computational Models. The results established in Section 3
can be combined with earlier results that establish the BSR as being as powerful as the models with directed
reconfigurable buses [9]. They can be further combined with the universality of Collision or exclusive-write, as
discussed in Section 4. We can then put everything together as follows:

Corollary 5.1. For any n ∈ N and for any X ∈ {Collision, Common},

X CRCW PRAM(poly(n), O(t(n))) ⊆ Priority CRCW PRAM(poly(n), O(t(n))) (

Combining CRCW PRAM(poly(n), O(t(n))) = BSR(poly(n), O(t(n))) =

DRMBM(poly(n), poly(n), O(t(n))) = DRN(poly(n), O(t(n))) =

Y DRMBM(poly(n), poly(n), O(t(n))) = Y DRN(poly(n), O(t(n)))

where Y = CREW under the weak CW assumption and Y = Combining CRCW under the strong CW assump-
tion.

Proof. The first three relations are established in Theorem 3.1. The next two relations are established
elsewhere [9]. The last two relations are given by Theorem 4.2.

6. Real-Time Implications. The class of problems in NL (problems solvable in nondeterministic logarith-
mic space) with the addition of (any kind of) real-time constraints is denoted by NL/rt [8]. Let rt-PROCM (f)
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denote the class of those problems solvable in real time by the parallel model of computation M that uses f(n)
processors (and f(n) buses if applicable) for any input of size n. The following strongly supported conjecture
is then established.

Proposition 6.1. [8] rt-PROCDRMBM(poly(n)) = NL/rt.

We can further define [9] the following classes of models of parallel computation:M<GAP contains exactly all the models that cannot compute the graph accessibility problem (GAP) in constant
time, and cannot compute in constant time any problem outside NL.M≡GAP contains exactly all the models that can compute GAP in constant time, but cannot compute in
constant time any problem outside NL.M>GAP contains exactly all the models that can compute GAP in constant time and can compute in constant
time at least one problem not in NL; to our knowledge, no model has been shown (or is even believed)
to belong to this class.

Proposition 6.1 is then extended as follows:

Proposition 6.2. [9] For any models of computation M1, M2, and M3 such that M1 ∈ M<GAP , M2 ∈M≡GAP , and M3 ∈M<GAP , it holds that

rt-PROCM1(poly(n)) ⊆ NL/rt

rt-PROCM2(poly(n)) = NL/rt

rt-PROCM3(poly(n)) ⊃ NL/rt

The class M≡GAP is established by Proposition 6.2 as the class of complete models for real time. Indeed,
exactly all the models in this class can solve all the real-time problems in the presence of no matter how tight
timing constraints. This class has been previously populated with the BSR, the DRMBM, and the DRN.

Now Theorem 3.1 adds toM≡GAP the Combining CRCW PRAM. In effect, we are simplifying the real-time
domain, showing that the power of reconfiguration as well as the power of the Broadcast instructions are not
only not needed to solve real-time problems, but they are also unnecessary. The PRAM thus becomes the most
convenient tool for characterizing computations from a real-time perspective, being the simplest of the complete
models for real time.

The real-time domain is also simplified with respect to reconfigurable buses, at least under the weak CW
model. Indeed, Theorem 4.2 adds the CREW variant of directed reconfigurable buses to M≡GAP . Therefore,
for directed reconfigurable buses running in real time concurrent-write is not necessary, as exclusive-write is
universal.

Our previous characterization of real-time computations (Proposition 6.1) is strengthened by Proposition 6.2
only to the degree that the classM≡GAP is populated; in this paper we therefore further strengthened this result
(by adding simpler models to this class).

7. Conclusions. It has been widely believed that the all-powerful Combining conflict resolution rule does
add computational power to the PRAM model, and that the BSR’s Broadcast instruction adds further power.
We are to our knowledge the first to establish formally a hierarchy of the PRAM variants that both confirms
and contradicts the mentioned belief. Indeed, we showed that Combining does add computational power over
“lesser” rules. However, we also showed that surprisingly enough the Broadcast instruction does not add
computational power over Combining. In fact we established an intriguing collapse of the hierarchy of parallel
models at the top of the food chain, where the Combining CRCW PRAM and the BSR turn out to have identical
computational power.

This result offers substantial and unexpected aid to the analysis of real-life shared memory massively par-
allel machines. Indeed, the power of BSR’s Broadcast instruction has attracted attention in various areas of
parallel algorithms; algorithms with running time as fast as constant have been developed for various problems,
most notably in the areas of geometric and graph computations [16, 17]. Of course, constant time algorithms
for such practically meaningful problems are very attractive, and so is the power of the BSR. Nevertheless, the
model tends to be frowned upon given its apparent implementation complexity, even if very efficient (optimal)
implementations have been proposed [3]. We now showed that whether the BSR is feasible or not is irrelevant,
as a Combining PRAM with the same performance and with all the attractive properties of the BSR is auto-
matically available—in essence, one can freely choose between these two models, depending on no matter what
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issues (ranging from practical feasibility to convenience to mere taste) with the formally supported knowledge
that the results are portable to the other model.

We are not aware of any massively parallel machine that implements the BSR’s Broadcast instruction, but
many such machines implement the PRAM model [1, 10, 11, 23]. Our result shows that such an instruction—
and thus the full power of the BSR model—can be used in algorithm design and analysis while keeping the
analysis or the design practically pertinent.

We also note that most of our proofs are constructive, so we also set the basis for automatic conversion
back and forth between models. True, we did not have efficiency in mind so our constructions are likely not
to be optimal; historically however suboptimal algorithms have always been optimized sooner or later, so we
believe that our—however sub-optimal—implicit conversion algorithms are nonetheless an additional significant
contribution (beside establishing the actual equivalence).

This all being said, we note that simulating the Broadcast instruction on a Combining CRCW PRAM implies
a (polynomial) blow-up in the number of processors used. This does not change complexity-theoretical results,
but does have practical implications. Unfortunately, we believe that such a tight simulation (with constant time
slowdown) of the Broadcast instruction is not possible without a blow-up in the number of processors.

As a second significant result we found that exclusive-write can simulate all the forms of concurrent-
write on reconfigurable buses under the reasonable weak CW assumption. Concurrent-write has always been
regarded as problematic on distributed resources such as buses. We also believe that weak CW is a realistic
assumption, given the physical (electrical) realization of reconfigurable buses. VLSI design uses reconfigurable
buses extensively. The universality of Collision or exclusive-write (depending on whether we choose the strong or
weak CW rule) is significant for VLSI design, as Collision and especially exclusive-write are easily implemented
in silicon. More work is necessary for the refinement of the process (of converting a general machine into an
exclusive-write machine) before they become useful in practice, but the most important step (or showing that
they are possible) is done here.

Beside the significance of our results by themselves (of bringing the BSR into the area of feasible models of
parallel computation for massively parallel systems and of showing that exclusive-write is universal on recon-
figurable buses), these results become particularly significant in conjunction with previous work on real-time
parallel computations [8] and the rest of the characterization of models with reconfigurable buses [9].

Indeed, we showed previously [9] that models with reconfigurable buses have the same computational power
as the BSR. Theorem 3.1 then extends this equivalency to the Combining CRCW PRAM. One consequence
is that the Combining CRCW PRAM turns out to be just as powerful as reconfiguration. Reconfiguration is
however one of the realistic models for VLSI design [15, 22]. We then expect that bringing the Combining CRCW
PRAM to the table has the potential of inspiring new design and analysis techniques for VLSI algorithms. That
is, our results are not significant only to the area of massively parallel systems, but also to the area of VLSI
circuits.

As a consequence of Theorem 3.1, the Combining CRCW PRAM also joins the family of models that can
solve all the problems known to be solvable under no matter how tight real-time constraints, and so does the
exclusive-write models with directed reconfigurable buses. This strengthens out previous results on real-time
computations by establishing the PRAM and the exclusive-write DRMBM or DRN as the simplest complete
models of computation for real time.
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