RELATIONS BETWEEN WEAK AND UNIFORM CONVERGENCE
OF MEASURES WITH APPLICATIONS

By R. Ranca Rao
Indian Statistical Institute, Calcutia

Summary. In this paper the relation between weak convergence of a sequence
of measures and uniform convergence over certain classes of continuity sets (or
uniform convergence of the integrals over certain classes of continuous functions)
is studied. These results are applied to obtain laws of large numbers for random
functions and generalizations of the Glivenko-Cantelli lemma.

1. Introduction. A well known theorem of Pélya states that if F.(z) is a
sequence of distribution functions on the real line converging weakly to a con-
tinuous distribution function F(z) then

limn_>oo Sup~m<z<eo lFﬂ(x) - F(x)l = O’

This is one of the simplest results where weak convergence is shown to imply
uniform convergence over a certain class of sets. Similar assertions of the uni-
form convergence of the integrals [ f(z) dF, occur in probability theory in
various disguised forms (see for instance Wald [23], Theorem 2.14, p. 49).
However the study of the relationship between weak convergence and uniform
convergence does not appear to have received much attention. More precisely,
let X be a separable metric space and u,, (n = 1,2, ---) a sequence of measures
converging weakly to a measure . This is equivalent to each one of the follow-
ing statements:
1. For each bounded continuous function f on X,

(L1) litten [ (2 dtn = [ $(2) dt

2. For each continuity set A of u
(1.2) lim.e pn(A4) = u(4).

The questions studied in this paper are the uniformity of the convergences (1.1)
and (1.2) and their applications.

The motivation for considering these problems is provided by their applica-
tions. This consists in interpreting several results in probability theory as
merely assertions of uniformity of the convergences (1.1) or (1.2). For instance
let & , &, - - - be a sequence of independent and identically distributed random
variables taking values in a separable Banach space . If we suppose that
E|l&|| < o, then the strong law of large numbers of Mourier [14] asserts that,
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with probability one,
(13) limn-»eo ”Sn - EEI” = O,

where S, = (& 4 -+ + £)n " Clearly this is an assertion of the uniformity
of the convergence (1.1) over the class of all linear functionals on X with norm
<1, where g, , u represent the sample and true distributions. The connecting
link here is a theorem of Varadarajan [21] stating that Plu, = u] = 1. Exactly
similar remarks apply to the convergence of sample distribution functions or
the various generalizations of the Glivenko-Cantelli lemma given by Wolfowitz
[24], Fortet and Mourier [9] and others.

The paper consists of seven sections. The general case of measures on an ar-
bitrary separable metric space is considered in Section 3. It is shown here that
the convergence (1.1) is uniform over a class @ satisfying the two conditions:
(1) @ is uniformly bounded, and (2) @ is equicontinuous (Theorem 3.1). This
theorem in its essentials is known. In Section 4 we consider distributions on
Euclidean spaces. The main theorem of this section is the following: If € is a
continuity class for u, then u, = g, if and only if the convergence (1.2) is uni-
form over the class € (Theorem 4.2). Here @ is the class of all convex subsets of
the k-dimensional Euclidean space. A similar result is proved in Section 5 for a
sequence of measures converging to the Brownian motion process (Theorem
5.1).

The applications of the main theorems to the convergence problems of a
sequence of random measures are given in Section 6. If u(4, @), u(4, w) is a
sequence of random measures possessing a certain ‘“‘ergodic” property (cf.
Definition 6.2), then under certain conditions on the class of functions @ we
have (a) Py, — 0] = 1, and (b) Epit* — 0, as n — o, where

[ 1@z, ) — [ 5@z, )

Nn = SUPfeq

(Theorem 6.2). As an immediate consequence we obtain the laws of large num-
bers of random variables taking values in a separable Banach space. The last
section is devoted to the generalizations of the Glivenko-Cantelli lemma to
random vectors. The results of this section constitute a considerable improve-
ment of the earlier results of Wolfowitz [24], Fortet and Mourier [9], and Tucker

[19].
" Some of the results of this paper have appeared earlier as an abstract [16].

2. Preliminaries. Let X be a separable metric space and ® the class of all
Borel subsets of X. By a measure we mean a finite, non-negative, countably
additive set function on ®. The term distribution will be used to denote a meas-
ure u for which u(X) = 1. 9 denotes the collection of all measures on ®. If
A & ® and u £ 9, then u, denotes the restriction of x to the set 4, i.e., ua(E) =
u(A N E) for each E. A measure p is said to be continuous (or nonatomic) if
the u-measure of each single point set is zero. A set A ¢ ® issaid to be a continu-
ity set for u if A has u-null boundary. If £(z) is a measurable map into another



WEAK AND UNIFORM CONVERGENCE MEASURES 661

metric space Y, then each measure u on X induces a measure u£~" on the Borel
subsets of Y, where ut (E) = uplt '(B)].

Let C(X) denote the collection of all continuous maps of X into the k-dimen-
sional Eueclidean space B . The following convergence notion in C»(X), com-
monly known as uniform convergence on compacta (u.c.c. in short) , will be used
in the sequel. A sequence £,(x) of continuous maps of X into R; converges uni-
formly on compacta to £(z), if

SUPz:x Ifn(x) - E(x)l -0
as n — oo, for each compact subset K of X. (Here [2|, where
2= (21, ,z) € By,

denotes the quantity (st + -+ +21) *). Characterization of compact subsets of
C(X) is well known and is given by the Ascoli theorem: A family @ < Cy(X)
is conditionally compact (i.e., its closure is compact), if and only if the fol-
lowing two conditions are satisfied.

(i) for each z, sup [|f(z)|,f e @] < .

(ii) @ is equicontinuous at each x ¢ X, i.e., for each ¢ > 0 there exists a neigh-
bourhood N of z such that [f(y) — f(z)] < ¢, for all y e N and all f ¢ G.

An immediate consequence of the Ascoli theorem is that compact subsets of
Cr(X) are also sequentially compact when X is a separable metric space. For a
detailed discussion of the above topology we refer to Kelley ([10], Chapter 7).

A sequence of measures u, € M (n = 1,2, ---) is said to converge weakly
to p & M (u, = pin symbols) if for each bounded continuous functionf(z) on X,
{fdu, — [ fdu. A detailed study of this convergence has been carried out by
Alexandrov in [1], Chapter 4. The following characterization of weak conver-
gence is well known.

TueoreM 2.1. The following statements are equivalent: (1) pn = n, (2)
limy,ae #.(A) = u(A) for each continuity set A of u, and (3) for each bounded
and uniformly continuous function g(x) on X, lim,. [ g du, = [ g du.

For the proof of this theorem we refer to [1], [2] and [15]. Other works on
weak convergence bearing on the problems considered here are [12], [22], [27]
and [28].

3. The main theorems. The results of this section are basic to the rest of the
paper. In what follows X always denotes a separable metric space. Before pro-
ceeding to the main problems we begin with some lemmas.

Lumma 3.1. Let u be a measure on X and @ be an equicontinuous family of func-
tions on X. Then for each ¢ > O there exists a sequence of sets A; (= 1,2, -+ +)
such that (1) U A; = X, (2) A; N Ay = ¢, for 5 = 5, (3) for each j, A;
1s a continuity set for u, and (4) forany z,y € Ajand anyf ¢ @, [f(z) — f(y)]| < e

Proor. Let d(z, y) be the metric on X. Since @ is equicontinuous, for each
2 ¢ X there exists a § = §(x) such that if N, = [y:d(y, ) < §], then

(3.1) [f(w) — f(@)] < %e
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for any f ¢ @ and any y € N, . It is clear that we may suppose without loss of
generality that N, is a continuity set for u. The class of sets {N,, z ¢ X} con-
stitutes an open covering of X. Since X is separable there exists a sequence
of points z; (j = 1, 2, ---) such that X = Ui N,,. Let 4; = N,
As = N,, N N, and so on. If we observe that the class of continuity sets of a.
measure form a field of sets, then it is not difficult to verify that the sequence
{A;} has all the required properties. This proves the lemma.

The following lemma, is well known.

Lemma 3.2, Let F(zy, 22, -+ - , 1) be a distribution function (d.f) on Ry such
that each marginal d.f. 7s continuous. Then a sequence of df’s F,(z1, - -+, )
converges weakly to F(x,, --+ , 2x) when and only when

(32) ) ]jmn»oo Sup, IFn(xly ;xk) - F(x17 7xk)l = 07

where the supremum 1is taken over all the vectors x = (xy, -+, ) € R .
TueOREM 3.1." Let @ be a class of continuous functions on X possessing the
following properties: (1) @ is uniformly bounded, i.e., there exists a constant M
such that |f(x)| < M for all f ¢ @, and z £ X. (2) @ is equicontsnuous.
If o, ueM(n=1,2,--.), then u, = p if and only if, for each family @
satisfying (1) and (2) above, we have

[ 7w — [ au

Proor. Let A; (j = 1,2, ---) be a sequence of sets with the properties stated
in Lemma 3.1. Let z; ¢ A; be any fixed sequence of points. For any measure A
on X, let \* be the discrete measure confined to the set {x;:j = 1,2, ---}
in such a way that the mass at z; is equal to AM(4;). Then clearly

‘ffd)\—/fdh* égﬁjfdh— s

(3.3) limy.0 SUDfeq = 0.

<3 [ 1) - i@ i s ax)

=1

by the property (4) (of Lemma 3.1) of the sequence {A;}. Thus for any meas-

ure A on X
fra-[sor

Since A; is a continuity set for u, u,(4;) — u(4;) for each j. Also
pa(X) — u(X).

[raut - [ san

1 Results closely related to this theorem have been obtained recently by Bartoszynski
[28] (cf., in particular, Theorems 1 and 2).

= an(X).

(34) SUDyeq

Consequently

(3.5) ]-imn—wo Supfea

=M limn.,w_z; lua(A4;) — u(4;)] = 0.
=
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From (3.4) and (3.5) it follows that

ffd#n - ffdu' < 2en(X).

This completes the proof of the theorem.

REemARK. It should be noted that in a sense Theorem 3.1 describes the most
general class @ for which weak convergence implies the convergence (3.3).
Suppose that @ is a family of continuous functions such that (3.3) holds when-
ever u, = u. Then it is not difficult to show that (1) @ is equicontinuous at each
point z £ X and (2) the family @ is uniformly bounded. The first property is
obvious if we take u, and u to be degenerate measures in (3.3). If @& is not uni-
formly bounded then there exists a sequence f, ¢ @ and points z, ¢ X such that
fa(zn) > n. Clearly the sequence {z,} can have no limit point. It is therefore
easy to construct u,, u such that w, = u but [ f, du, —  and [ fa(2) du —
c < oo,

TrEOREM 3.2. Let @ be a Sfamaly of continuous functions on X satisfying the
Jollowing conditions: (i) there exists a continuous function g(z) on X such that
[f(x)| < g(z) forall fe @ and z ¢ X. (ii) @ 4s equicontinuous.

Now suppose that ., , u is a sequence of measures on X such that (2) = uand
(b) [gdu.— [gdu (< ). Then we have

[ 1 dun - ffdu( =0,

Proor. Let £ = [z: g(z) > 0]. Let s, v be measures on E defined by
vi(A) = fagdu.and v(A) = [, g du. Since Eis open in X the conditions (a) and
(b) of the theorem imply that », = ». Further the family G, = [f/g; fe @] on
E is uniformly bounded and equicontinuous. Thus (3.6) is an immediate conse-
quence of (3.3). This completes the proof.

TrEOREM 3.3. Let pn , u & M and p, = . If £,(z) is a sequence of continuous
maps of X into a metric space Y, converging uniformly on compacta to £(zx), then
pnkn' = uf

Proor. Let g(y) be any bounded uniformly continuous function on Y; then
it is plain that g(£,) = g[£.(x)] converges uniformly on compacta to g(£). There-
fore by Theorem 3.1.

lim, o SUDP/eq

(36) lim, , o SUDyeq

Further
(38) limo [ 9(62) du = [ g(&) da.

Thus it follows from (3.7) and (3.8) that for each bounded uniformly continuous
function g(y) on Y

limee [ g(20) din = [ (&) di

By Theorem 2.1 this implies that u,£;' = ut ", This completes the proof.
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REeMARK. The above theorem has been obtained earlier by Prohorov (cf. [15],
p. 186) when the metric space X is complete.

TeEOREM 3.4. Let pe 9 and @ a family of continuous mappings of X inio K
satisfying the following conditions: (i) @ is (u.c.c) compact and, (i) uf " has con-
tinuous marginal distributions for each f ¢ @. If p. = u, then

(3.9) lim,. SUp4 lﬂ-n(A) - :u(A)l =0,

where the supremum n (3.9) s taken over all sets A of the form A = [x:fi(x) < a;
forj=1,2,---,k where f(x) = (fi(z), -+, fu(2)) e @ and (ar, -+, ax) s
an arbitrary vector of Ry .

Proor. For any two measures » and A on R let p(», \) = sup [»(E) — NE)|,
where the supremum is taken over all sets § C Ry, of the form = [z: 2; £ a; for
j =1,2,---,k]. Then obviously p(», ) is a distance function.

Clearly the assertion (3.9) is equivalent to the following:

lim s SUDys:q P(Mﬂf_lr ”f—l) = 0.

Now suppose that Theorem 3.4 is not true. Then there exists a § > 0 and a
sequence of functions f, ¢ @ such that for all n

(3.10) p(unfns ufz) 2 8> 0.

Since X is a separable metric space, a compact family @ is also sequentially
compact. Thus we may suppose without loss of generality (restricting ourselves
to a subsequence if necessary) that f, converges uniformly on compacta to a
f & @. Theorem 3.3 then implies that (1) w.f»"=> uf ™, and (2) ufs' = uf~. Hence
by Lemma 3.2 we have

iMoo p(uafa'y 0f ™) =0,  liMpow p(uf7', wf) = 0.

Since p(-,-) is a distance function it follows from the triangle inequality that
that liMase o(unfns #f=) = 0, contradicting the assumption (3.10). This com-
pletes the proof.

REMARKS.

1. Let-X be any completely regular Hausdorff space and consider measures
defined on Baire subsets of X. If X is assumed to be a Lindelof space, then the
proof of Theorem 3.1 is valid without any essential change. Thus Theorems 3.1-
3.4 hold for such spaces’.

2. Let I(X) = [ffeC(X) and ||f]| £ 1]. Then the content of Theorem 3.1
is that the following two statements are equivalent (when X is a separable
metric space).’

(1) B =

2 Tt was pointed out by the referee that Theorem 3.1 is valid for all completely regular
Hausdorff spaces with a countable dense subset. In a private communication R. N. Dudley
of Princeton University informs the author that he has obtained the same result.

3Tt was remarked by the referee (and also by R. N. Dudley) that the statement
“({) => (ii) for all completely regular Hausdorff spaces’ is compatible with all the axioms
of set theory.
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(i) pa(f) — w(f) uniformly for f& @ where @ is an equicontinuous family
cI(X). *

It follows from the work of LeCam [12] and Prohorov [15] that when X is a
complete separable metric space (i) actually implies the stronger statement:

(iii) The family [u,(f)] is equicontinuous at the origin of I(X) (Here I(X)
is endowed with the u.c.c. topology), or equivalently,

(iv) For each ¢ > 0, there is a compact set K, such that us(X — K.) < ¢
for all n.

As is well known (i) does not in general imply (iii) or (iv). However under
very general conditions (which subsumes the case of separable metric spaces)
(i) actually implies

(v) For every ¢ > 0 and for every separable metric topology weaker than the
topology of X there is a totally bounded closed set S, such that p, (X — S.) = ¢
for all n (cf. LeCam [12], p. 223). ‘

In fact (i) and (v) together always imply (ii). Thus for instance for separable
metric spaces, Theorem 3.1 could also be deduced from (v). However the proof
given in this paper is more direct. '

4. Applications to measures on a Euclidean space. Let R; be k-dimensional
Euclidean space. In this section we discuss uniform convergence of measures
over certain classes of sets special to these spaces. The following notation will be
employed in the sequel. A subset of the form [x:/(x) < p] where I(z) is a linear
function on R; and p a real number is called a half space. 3C,, denotes the col-
lection of all sets which are intersections of at most m half-spaces, i.e., all sets A
of the form

A = [z:h(z) <pr, -, L(x) < pd

with » < m, where li(z), - - - , I.(z) are arbitrary linear functions and p,, - - - , p»
are arbitrary real numbers.

THEOREM 4.1. Let u be a measure on Ry .such that ul~ is continuous for every
linear function 1(z) on Ry . Then u, = u if and only ¢f, for each integer m,

(4.1) lim, .o, SUPAcse,, [Un(A) — n(4)] = 0.

Proor. Consider the class @, of all linear maps of norm one of B;, into R, .
Then @, is clearly (u.c.c) compact. Since ul™' is continuous for each linear
function I(z), it follows that for each L & G, uL ™" has continuous marginal
distributions. The assertion (4.1) is then an easy consequence of Theorem 3.4.

THEOREM 4.2. Suppose v is a measure on Ry such that every convex subset of
R, has p-null boundary (i.e., each convex set is a continuily set for u). Then
1 = tf and only if
(4.2) sup [un(C) — u(C)|, Ce€] >0,

where © denotes the class of all measurable convex® sets. In particular (4.2) is
valid if the measure u is absolutely continuous with respect to Lebesque measure.

4 A convex set need not be measurable. For instance, let C be the unit sphere and let 4
be a non-measurable subset of the boundary of C. Then, C U A4 is convex but non-measur-
able. In the sequel by a convex set we always mean a measurable convex set.
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Before we can prove this theorem it is necessary to consider the properties of
certain functions associated with convex sets. The proof of the theorem will be
given in Section 4.2. We first develop some lemmas on convex sets.

4.1. Some lemmas on convex sets. The content of most of the lemmas given here
is well known and they are collected here for ease of reference. For proofs the
reader may refer to [8], or [7] Chapter 5, p. 411.

Let C be a convex set with non-empty interior. Let a be an interior point of C.
Then the gauge function (also known as the support function [7}, or the distance
function [8]), F(x) of C' with respect to a is defined as follows.

F(z) = inf AN > 0,a + 27z — a) €C].

It is clear that if F(x) is the gauge function (g.f.) of C, then C° = interior of
C = [z:F(z) < 1] and C = the closure of ¢ = [z:F(z) =< 1] and the boundary
of C = [z:F(x) = 1]. The following properties of a gauge function are well
known and are easily deduced from its definition.

(a) If F(2) is the g.f. of C with respect to the origin, then, (i) F(z) = 0, and
F(z) = 0if and only if x = 0. (ii) F(cx) = c¢F(z), for all ¢ > 0, and (iii)
F(x 4+ y) £ F(z) + F(y), for each pair x, y. Conversely any function F(x)
with the above properties is a gauge function of the convex set [x:F(z) < 1].

(B) Suppose F(x) is the gf. of ¢ with respect to the origin and that
[z:[z] < r] € C. Then for each z, F(x) < |z|/r. (Here |z| denotes the norm in
Ry).

For any convex set C, the inradius of C, denoted by r(C), is defined to be

r(C) = sup [r:8(a, r) C C, for some a & C,

where S(a, r) denotes the sphere [z:lr — a| = r]. Then it follows from the
definition that r(C) = 0, if and only if ' has an empty interior, and that
r(C) < ,if C'is bounded. Also it is obvious that #(€) = r(C). The introduction
of the inradius is necessary to choose a suitable gauge function to represent a
convex set C. This choice is made clear by the following lemma.

LemMA 4.1. Let C be o bounded convex set with non-empty interior. Then there

18 @ gauge function assoctated with C for which

|F(z) — F(y)| = |v — yl/r(C),

Jorallz,y e Ry .

Proor. From the definition of r(C) it follows that we can choose a sequence
z» € C and a sequence r, such that S(z,, r.) < C and r, T7(C). Since C is
bounded, let z be one of the limit points of {z,}. Then it is easy to verify that 2
belongs to the interior of C and r(C) = sup [r:8(z, r} < C]. Let F(x) be the
g.f. of C with respect to z. Transferring the origin to z if necessary, we can assume
without loss of generality that z = 0. Then by the sub-additive property of a
g.f. we have at once

F(z) — F(y) < Fz — 3), F(y) — F(z) < F(y — o).
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Consequently [F(z) — F(y)| £ max [F(z — y), F(y — z)]. Now property (8)
of a g.f., and the fact that S(z, r) € C for all r < r(C), at once implies the
assertion of the lemma.

Lemma 4.2. Let C, be a sequence of convex sets CS = [z:|z| £ m]. If F.(x) s
a g.f. of C, and F.(x) converges uniformly on compacta to F, then F(x) itself is a
g.f. of a convex set C C S.

Proor. Suppose F, is the g.f. of C,, with respect to z, . Since z, £ S, they have
a limit point z £ S. Restricting ourselves to a subsequence if necessary, we may
suppose without loss of generality that z, — z. Then clearly F.(z + z,) —
F(x + 2).8ince F,(z + z,) 1sthe g.f. of C — 2, with respect to the origin it follows
from (a) that F(z 4 2) is the gf. of the set = [x:F(z 4 2) < 1]. Let C =
[z:F () < 1]. Then clearly F isa g.. of C and C C lim inf, €, < S. This proves
the lemma.

Another well known theorem on convex sets which we will be using in the
sequel is a theorem of Blaschke ([8], p. 64). For any set A let S(4, p) denote
the union of all spheres of radius p with centers in A. For any two bounded
closed convex sets A, B let

(4.3) d(A, B) = inf[0:8(4, p) D B, S(B, p) D A].

It is easily verified that d(A, B) has all the properties of a distance.
Brasceke’s THeorEM. The class of all closed convex sets contained in the
sphere = [z:|z| £ m] is a compact metric space under the distance d(4, B).
4.2. Proof of Theorem 4.2. First of all it is clear that (4.2) trivially implies
that 4. = u. To prove the converse implication let us first observe that
ux[S(0, m)] — u[S(0, m)] for each m. Consequently it is sufficient to show that
for each m, as n — o

sup [[u.(C) — u(C)|, C convex and <S8(0,m)] — 0.

Note that we may confine our attention to closed convex sets. Let €, be the
collection of all closed convex sets for which r(C) Z «. Consider the family
¥, of functions F satisfying the conditions:

(1) Fisa gf. of some convex set contained in S(0, m)

(2) for each pair z, y

[F(z) — F(y)| £ [z — yl/e

Then it follows from Lemma 4.2 that &, is (u.c.c) compact. Also it is easy to
see that uF ™" is continuous for each f £ , . In view of Lemma 4.1. it follows that
for each convex set C ¢ @, , there is an F ¢ §, such that C = [x:F(z) < 1]. It
therefore follows from Theorem 3.4 that

(4.4) limy»e SUPcee, [1n(C) — u(C)| = 0,

for each a > 0.
Now suppose that the theorem is not true. Then there exists a sequence C, of
closed convex sets, CS(0, m) for all n, and a positive e such that

(4.5) [2(Cr) — u(Cr)| > ¢ > 0, for all n.
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We proceed to show that this leads to a contradiction. From (4.4) it follows that
r (Cn) — 0. Further we may suppose on the strength of Blaschke’s Theorem (re-
stricting ourselves to a subsequence if necessary) that there is a closed convex set
C c 8 (0, m), such that d(C,, C) — 0, where the distance d(-,-) is defined by
(4.3). From the definition of this distance it follows that C < S(C,, 2¢,), where
& = d(Cr, C). Consequently r(C) £ 7(C,) + 2¢, >0asn — »;ie., r(C) =
0 or C has empty interior. Hence there is a hyperplane H = [z:l(z) = p] such
that ¢ C H. Since u(H) = 0 choose n so small, that u(4) < /4 where

A=[zp—9=21l(z) £p+ 1.
Again from the definition of the distance d(-,-) we deduce that for large n
C,c 8(C, 9 C A.

Hence lim supn.e #2(Cn) = lim p,(A) = p(A) = ¢/4. Further u(C,) < u(4) =
¢/4. Thus we finally obtain ‘

lim SUPz-»>w0 'ﬂn(Cn) - ”(Cn), = 6/2’

contradicting (4.5). The proof of the theorem is thus complete.

Remark. We give an example below to show that uniformity of convergence
in (4.1) cannot be extended to the bigger class 3¢, = U,3C. . Let us first ob-
serve that every closed convex set is the monotone limit of sets in 3¢, and conse-
quently uniformity of convergence over 3¢, will imply that the same uniformity
also extends to the classof all convex sets. Let u, (n = 0, 1, - - ) be the Lebesgue
measure of arcs concentrated on the circle S, = [(z, y) 2 + y° = 7). Letr, | 7.
Then it is easily verified that u, = u and the p-measure of every hyperplane is
zero. Let C = [(z, y):2® + y* £ rl]. Then C is closed and convex, u,(C) = 0

for all n = 1 but uy(C) = 1. This example also makes it clear the necessity (in
Theorem 4.2) of the assumption that the class @ is a continuity class.

B. Application to the convergence of stochastic processes. It is well known
that a stochastic process can be thought of as a distribution in a function space.
In many cases this function space can be made into a separable metric space.
Thus for instance we may consider distribution in C[0, 1]—the space of continuous
functions on the closed interval [0, 1], with the distance

l= — yll = SUPogesi [z(t) — y(B)].

Some of the other function spaces that have been studied are L.[0, 1], the space
of square integrable functions on [0, 1], and D[0, 1], the space of all func-
tions on [0, 1] discontinuities only of the first kind®. It is clear that the re-
sults of Section 3 apply to all these spaces. The theorem below is a simple illus-
tration in the case of the space C[0, 1].

5 Several interesting tbpologies have been introduced in the space D0, 1] by Skorohod
(cf. [25]). These topologies convert D[0, 1] into a separable metric space which is topo-
logically complete (cf. [25], [26]).
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Foreachm > 0 and 4,0 < & < 1, let @; . denote the class of functions
a(t) € C[0, 8] which are of the form

(5.1) a(t) = fot a'(t) dt where foa o/ (£)] dt < m.

Let ®;, denote the class of all subsets E C C[0, 1] which are of the form
(52) E=1[z@)b+6(t) Sz(t) S+ au(t) for 0t =8
' and by + B(t) < 2(1) < a4+ au(t) for 6=t < 1],

where (i) a1, Bi1€ Qs,m; (ii) a2, BeeC[5, 1] with [laz|| < m, [|B:] < m, and
(iii) a; , a2, by and b, are arbitrary real numbers.

Let W denote the distribution in C[0, 1] corresponding to the Brownian
motion process (with ¢® = 1). Then we have the following:

THEOREM 5.1. Let P, , P be a ssquence of distributions in C[0, 1]. Suppose that
P K W, ie., P is absolutely continuous with respect to W. Then P, = P, if and
only if for each & and m,

(5.3) lim,,, sup [|P.(4) — P(A)|, A € ®s,] = O.

Proor. Necessity. Let £(z, o) and m(z, @) be the functionals on €[0, 8] de-
fined as follows:

(54) &(z, @) = supogegs [2(8) — a(P)], n(z, a) = infog.gs [2(8) — a(?)]

and let &(z, a) and 72(z, o) be defined similarly on C[s, 1]. Let & denote the
collection of all maps of C[0, 1] into the four dimensional Euclidean space of the
form T'(z) = {&(z, o), m(2, B), &(z, as), no(x, B2)} where oy, B1 € @s,m and
oy, Bz & C[3, 1] with norm =m. Now observe that the set E defined by - (5.2)
can be written in the form

E=[zt(z,a1) Sa,m(z,8) b, £z, a) £a and p(z,6) = b

Thus the necessity of (5.3) will follow from Theorem 3.4 if we show that F, the
(u.c.c) closure of &, satisfies conditions (i) and (ii) of Theorem 3.4.

Now it is obvious that Gs,» is a compact subset of C[0, §]. Also it is easily
verified that the functions & and ». satisfy the inequality |f(z) — f(¥)| < |lz — y]|
for each z, y £ C[6, 1] where f = & or 5, . Thus the family § is conditionally
compact in the u.c.c. topology. Its (u.c.c) closure F is therefore compact. Thus
it is sufficient to prove that for each 7' ¢, PT ™ has continuous marginal dis-
tributions. Since by assumption P < W, it is sufficient to prove the property
for W.

Now it is clear that W[&(z, o) = a] = Wu[t(z, 0) = a], where W, is the
translation of W by «, i.e., Wo(4) = W(A + o). It is known that W, < W if
a satisfies (5.1) (cf. Cameron and Martin [4], and also Skorohod [18], p. 426).
Also &(z, 0) has an absolutely continuous distribution under W (cf. Doob [6],
p. 392). Thus W[t (2, @) = a] = O for « satisfying (5.1). A similar argument
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applies to the function m:(z, 8). This takes care of the first two co-ordinates of
all maps T ¢ F. As for the function £(z, ) it is clear that

£(z, @) = supsgegt [(2(8) — 2(8)) — a(f)] + z(3)
£ + z(8) say.

Since £ and z(8) are independent, it follows that £(z, «) and its limits have
absolutely continuous distributions under W. Snmlar arguments apply to
ns(z, @) or its limits. Thus for each T ¢ &, WT™ has continuous marginal dis-
tributions. This proves the necessity.

Sufficiency. Let x; denote the map of C[0, 1] into C[s, 1] defined as follows:
m(x) = z(t), for 8 £ ¢ = 1. If 8 denotes the class of all sets £  C[3, 1] of
the form

= [z(t):a(t) = x(t) < B@) for 6=t =1]
where « and B are arbitrary elements of C[3, 1], then (5.3) implies that
(5.5) P.ri'(A) — Pri'(A)

for each A ¢ 8; . Since §; is closed under mtersectlons and contams a basis of
the topology of C[8, 1] it follows from (5.5) that Paait = Prit, for each 5> 0.
Let 8; | 0, then thereexists a compact set K; C C[8;, 1] such that P (Kj) =
1 — &7 for all n. Let K = Nms;(K;). Then P,(K) =2 1 — ¢, for all n.
Since P[x(O) =0] = 1and

P,[supo<i<s [2(8)| < a] = Plsupesi<s [2(8)] < a,

for each & and g, it is easy to deduce that there is a set £ C C[0, 1], of functions
equicontinuous at ¢ = 0 such that P,(F) = 1 — efor all n. If K, = K N E,
then P.(K,) = 1 — 2¢ for all n and K, is compact. Thus the sequence {P,} is
weakly compact. Any limit of {P,} obviously coincides with P. This completes
the proof.

6. Application to the convergence of sample distribution functions. Let
(2, S, P) be a probability space. A mapping £(w) of Q into a complete separable
metric space X is said to be an X-valued random variable (or a random element
in X),if £(®) < S where & is the o-field of Borel subsets of X. If &, &, - - -
is a sequence of random elements in X then the sample distribution (s.d. in
short) based on a sample of size n is the probability measure with masses (1/n)
at the points &, -+, & . This s.d. will be denoted by u, or u,(A4, w) where
A e ® and » ¢ Q. In this section we utilize the results of Section 3 to discuss
the convergence of u,’s. We also deduce here the results of Mourier, and Fortet
and Mourier on the law of large numbers (LLN) for random elements in a sepa-
rable Banach space. The method presented here is essentially different from
theirs and seems to be of some interest.

Since in problems of the type we are considering here, the nature of the de-
pendence in the sequence {£,} plays its role only through the validity of the
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ergodic theorem for the sequence of real valued random variables {f(£,)}, where
f(x) is a function on X, it is advantageous to consider the problem in a general
setting. For this purpose we introduce the notion of a random measure.

DEeriNtTION 6.1. A random measure on X is a function A(A4, w) defined for
each A ¢ ® and w & Q possessing the following properties: (i) for each fixed w,
w, AM(4, w) is a countably additive measure on ® and (ii) for each fixed 4 ¢ ®,
A4, o) is a measurable function in w. It is clear from the definition that if
f(z) is a measurable function X such that [x f(x)A(dz, w) < o almost every-
where, then [xf(z)A(dz, w) is a real valued random variable. In the sequel
we will write f fd\ in place of [x f(x2)A(dz, w) when there is no danger of con-
fusion. We denote the mean or expected value of real valued random variable
£ by EE.

A trivial example of a random measure is the sample d.f. u,(A, w) associated
with a sequence {£,} of random elments in X. A non-trivial example is provided
by the conditional probability distributions. This is made clear by the following
well known lemma (cf. [11]).

LEmMA 6.1. Let £(w) be a random element in X (a complete separable metric
space) and § a sub-o-field of S. Then there exists a random measure N(A, w) on X,
such that for every function f(z) on X with E|f(£)| < «, the following relation
holds almost everywhere.

(6.1) Bl 19 = [ f@n s, »)

where E[f(£) | §] denotes the conditional expectation of the random variable f(§)

with respect to F.

Let &, &, -+ - be a strictly stationary sequence of random elements in X.
It is well known that we may suppose without loss of generality that the sequence
{£.} is generated from & through a measure preserving transformation T, i.e.,
& = £(T"w). Let 3 denote the invariant o-field of measurable sets A such that
A = TA. Then by Lemma 6.1 there exists a random measure u(A4, ») such
that, if E|f(&)] < o, then

(62) Bif(e) [8] = [ f@hu(de, o)

almost everywhere. Now the classical theorem of Birkhoff (cf. Loéve [13],
p. 421) states that if E|f(&)| < «, then

hm,,,mf(gl) + n +f(£n) — limn_,w ff(x)ﬂn(dxy w)
(6.3) "

= Bl 9] = [ f(2u (a2, 0)

almost surely. Since the validity of the ergodic theorem is an essential require-
ment in all our results we introduce for the sake of brevity the following defini-
tion.
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DrerFINtTION 6.2. An arbitrary sequence of random measures {MA.(4, w),
MA,w);n=1,2,---} on X is said to possess the ergodic property if for each
real valued function g(z) on X, for which Ef |g(z)|A(dz, w) <

limap. fg(x) dAn = fg(x) dx

almost everywhere.
The following result is due essentially to Varadarajan ([21], p. 25).
THEOREM 6.1. Let {\, , A\;n = 1,2, - - -} be a sequence of random measures on X
possessing the ergodic property. Then

(6.4) Ph.,=17 = 1.

The above theorem is an immediate consequence of the ergodic property and
the following observation due to Varadarajan (cf. [21], p. 24): in a separable
metric space there is a fixed sequence of bounded continuous functions f; , fo, - - -
such that if [f;dv, — [fidv for each 7, then », = ».

THEOREM 6.2. Let {\, , \;n = 1,2, - - -} be a sequence of random measures on X
possessing the ergodic property. Let Q be a family of continuous functions on X
satisfying the following two conditions: (i) there exists a continuous function
g(z) on X such that |f(z)| < g(z) for each f & @ and z ¢ X; Ef g(z)M(dz, w)
< oo; and (i) @ 7s equicontinuous. Then Py, — 0] = 1, where

ffd)\,,—ffdk‘.

Proor. Since the sequence {\,, A} possesses the ergodic property, it follows
from Theorem 6.2 that with probability one

(6.5) Nn = SUPjeq

(6.6) An=>\ and [gd)\n -> f gdh.

Theorem 6.2 is then an immediate consequence of (6.6) and Theorem 3.2.

The following lemma facilitates the passage from almost sure convergence of
Theorem 6.2 to convergence in the mean of order a.

Lemma 6.2. Let @ be a class of measurable functions on X, and g(x) a measur-
able function on X such that (i) |f(x)| = g(x) for each f e @ and x € X; and
(i) Ef [g(z)]""*\(dz, w) < = for some a = 0. Suppose that {\, , N} possesses
the ergodic property and
(6.7) lim,.e Py, > € =0,

for each € > 0, where n, is defined by (6.5). Then limy.. Bnn'™ = 0.

ProoF. Let k, , h be real valued random variables defined as follows:
b= [@an, b= [l a,

for n =1, 2, .-+ . It is clear that h, and h possess the following properties:



WEAK AND UNIFORM CONVERGENCE MEASURES 673

(8) ko =0, h = 0; (b) limye Bhy = Eh; and (c) Plh, — k] = 1. Hence it
follows from a theorem of Scheffé ([17], p. 435) that

(6.8) lim, . E|h, — h| = 0.
From the property (i) of the family @ it is easily deduced that

69)  nx" = Zm[(/ g dkn>l+a + ( [ dx>l+a] < 2"(h, + R)

where in the last step we have utilized Holder’s inequality. Let B, = [w:1. = ¢].
Then clearly
(6.10) Ens™ < €7 + 7% dP.

Eq

From (6.7)—(6.10) it is easy to deduce that Eqit* — 0, as n — . This com-

pletes the proof.

An immediate consequence of Lemma 6.2 and Theorem 6.2 is the following

TuEOREM 6.3. With the same notation as in Theorem 6.2, we suppose ih addition
that Ef [g(z)]""*d\ < », for some a = 0. Then lim,.. Enyt® = 0 where n,
18 defined by (6.5). ,

It is clear that the above results are valid in particular if we take N, = pu,
and A = u where p, is the sequence of s.d’s and u is defined by (6.2). The er-
godic theorem, viz., (6.3), implies that the sequence {u, , u} possess the ergodic
property. Thus we have

TurorEM 6.4. Let G be an equicontinuous class of continuous functions and
g(x) a continuous function on X satisfying conditions (i) and (iil) of Theorem
6.2. Suppose Elg(&)['t* < » for some a = 0, then

(a) P[limn-»oo N = 0] = 1;
(b) limp.. Byit® = 0,

where

fn = SUDyea f(fl) + +f(£n) - ff(:c)p(dx,w)

n

The above theorem is an extension of the results of Fortet and Mourier
([9]). These authors consider only classes § of functions f such that

If(z) — f(y)| < Md(z, y)

where d(z, y) is the metric in X, where it is supposed that Ed(zo, &) < «
for some zo ¢ X. They deduce this result from the results of Mourier ([14]) on
the law of large numbers for random elements in a separable Banach space.
Since we have given an independent proof of Theorem 6.4, we can now proceed
to deduce the strong law of large numbers for such general random elements.
Let X = & be a separable Banach space. If £ is a random element with values
in & then the expected value of £ is defined to be its Pettis integral, i.e., an ele-
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ment Ef ¢ & such that (z*, Bt) = E(2* £) for each z* ¢ £*—the adjoint of
. The Petiis integral of £ is known to exist if £||£|] < . In an analogous man-
ner conditional expectation can also be defined. It can also be shown (Chatterji
[5]) that if E|j¢|] < o, then there exists a random element to be denoted by
E(£|3) such that, for each z* & o*,

(6.11) (&, B@&p) = [ (2, 0)u(ds, 0) = Bl £l

almost surely. Here the random measure u( A4, w) is defined by the relation (6.2).
Since & is assumed to be separable we may even suppose that (6.11) holds
with probability one, simultaneously for all z* ¢ o*.

Let S, = (& + &+ < + &)n" where &, -+, &, is a strictly
stationary sequence for which E||&]] < . It is clear that

8 — E(& | 3)|| = supjory <1 |(2%, 8u — E(&]9))]
[ 2 dtun — w)|.

= SUP [z <1

As a consequence of Theorem 6.4 we have
TuEOREM 6.5. With the notations of the above paragraph we have

limn»w ”Sn - E(El , 5) ” =0

almost surely. If it is supposed in addition that E|&|""® < o, for some a = 0,
then
limasw E|[S, — E(& | 3] = 0.

Remarxk. This theorem has been essentially obtained by Mourier earlier
({14]). However the statement here is more precise and identifies the limit
random element as E(& | 3). It should be noted that the method employed by
Mourier is entirely different from ours.

7. Generalization of the Glivenko-Cantelli lemma. The classical theorem of
Glivenko-Cantelli ([13], p. 20) states that if &, &, --- is a sequence of inde-
pendent real valued random variables with common distribution x, and u,’s
denote their s.d’s, then

(7.1) PlSUP_wo<scwo [Fu(z) — F(z)| > 0] = 1

where F,(z) = p,(— o, ) and F(z) = u(— », z). This result was general-
ized to the case of k-dimensional random vectors by Wolfowitz [24] and also by
Fortet and Mourier [9]. It was proved in [24] that with probability one

(72) sup [[I‘n(A) - I”'(A)[: Aex]—0

where 3¢ denotes the collection of all half-spaces. Recently Tucker [19] ex-
tended (7.1) to a strictly stationary sequence of random variables. In this sec-
tion we apply the general theorems of Sections 3 and 4 to obtain results which
constitute a considerable improvement over these results.
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TrrOREM 7.1. Let &, &, - - - be a sequence of independent random vectors in
Ry with a common distribution u. Let u, be their s.d. Suppose that each convex set
is a continuity set for the non-atomic component of u, then

(7.3) Plsup |4 (C) — p(C)] - 0] =1,

where the supremum in 7.3 1s taken over the class @ of all convex sets.

Proor. Let A denote the set of atoms of u, i.e., A = [z: p-measure of the
single point {} > 0] = {z;: ¢ = 1, 2, - - -} say. Then it is not difficult to de-
duce from the strong law of large numbers that with probability one

(7.4) g lun(zs) — w(z:)| — 0

as n — o, (Here u(x;) denotes the mass at x;). If we introduce A\, = (pa)n,
A = (u)v where N = R, — A, then it is clear that (7.3) is true or false ac-
cording as

(7.5) Plsupcee M (C) — A(C)| = 0] = 1.

If we now suppose that each C ¢ @ is a continuity set for A then the assertion
(7.5) is an immediate consequence of Theorem 4.2 and Theorem 6.1. This
completes the proof.

THEOREM 7.2. Let &, &, - - - be a strictly stationary sequence of random vectors
in Ry and let p, denote their s.d. Then with probability one, for each integer m,

(7.6) lim, .o sup [[un(4) — P(f1e A[3)]; 4 € 3] = O,

where 3 is the invariant o-field associated with the sequence {£,}. In particular when
the t,’s are independent, (7.6) s valid with P(s,e A|3) = P(Le A).

The proof of this theorem will be given in Section 7.2. In the following section
we develop the tools necessary for this purpose.

7.1. We first derive a decomposition theorem for measures on R, generalizing
the usual decomposition into atomic and non-atomic parts. For this purpose we
introduce the following

DEFINITION. A measure N on R; is said to be r-dimensional (0 < r < k) if
(1) there exists an r-dimensional subspace or a translate of such a subspace, say
E, such that M(R, — E) = 0 and (ii) A\(4) = 0 for every set A which is a
translate of a subspace of dimension less than r.

It is clear from the definition that in the case ¥ = 1 a measure u is 0-dimen-
sional if it is degenerate and 1-dimensional if it is non-atomic. Similar remarks
apply to the case &k > 1.

LemMa 7.1. Let 0 £ r < &k — 1. Let . be the collection of all sets A which are
translates of r-dimensional subspaces of Ry . Then for any two sets A, B £ U.(1 <
r<k—1), either (i) A =B, or (i) AN B=g¢, or (ili) A N Be, for
some s < r.

The proof is straight forward and will be omitted.

LemMA 7.2. Let N be any measure and {A .} be a family of sets such that \(A, N
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Ag) = 0 for a # . Then N(A+) = 0 for all but a countable number of sets A, .
This result is well known and its proof is omitted.
Lemma 7.3. Let N be an arbitrary measure on R, . Then there exist measures

A\ r=0,1,---,k—1,i=0,1,---,and r = k, © = 0) all mutually or-
thogonal such that _
G a= 20050 ZhenY + MY

(ii) for 0 = r =2k, M2 s an r-dimensional measure for all <.

Proor. Since the class U, consists of all single point sets it follows from Lemma
7.2 that A can be written in the form A = D,20A§? + »; where AS? are the
atoms of A and the »;-measure of each set A ¢ Uy is zero. Now consider the meas-
ure »; and the class U; . For any two distinct sets 4, B ¢ U1, by Lemma 7.1
ANB=¢ or AN Be?Vy and consequently »(4 N B) = 0 always. By
Lemma 7.2 there exists a countable number of sets Vi e Uu(é =0, 1, ---)
such that »(A4) = 0if A £ V;, and A # A; for some ¢. Define ALY to be the
restriction of »; to Vy;. Then it is clear that » can be written as

v, = g)\iﬁ “+ v, .
It is obvious from the construction that all the measures u; and {A{®} are all
mutually orthogonal. Thus A may be written as

A= gxé“+ §A£”+v2

where »(A) = 0 for 4 £ U; and AS?, ALY are respectively zero and one-dimen-
sional measures. It is then clear that the same argument can be repeated with
», and the class U, and so on.
Thus we obtain
k—1 oo

(7.7) A= ; ZO A 4oy

where A{? are all mutually orthogonal and AL is an r-dimensional measure. Also

from (7.7), »n(A) = 0 for each A & Us—s . Thus », is a k-dimensional measure

and the lemma follows from (7.7) with », = A. This completes the proof.
LemMMA 7.4. Let E be a translate of an r-dimensional subspace, and v an r-dimen-

sional measure concentrated in E, i.e., v(Rx — E) = 0. If v, s a sequence of

measures for which (a) v, =>», and (b) v,(E) — v(E) as n—> o, then

(7.8) limpoo SUP4ce, |7a(A4) — »(4)] = 0.
Proor. Let V be an r-dimensional subspace and z a point of R such that
E = V 4+ z. Consider the measures A, and A defined by
M(A) = v (A + 2); AMA) = v(4A + 2).

Clearly A, = \. Since (V) — A(V) it follows that the measures (\.)v and
Ay restricted to V and considered as measures on V are such that (A,) vy = Av.
Since » is r-dimensional it follows that »(H + 2) = A(H) = 0 for every hyper-
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plane of the vector space V. Thus Theorem 4.1 applies to the sequence (A.)v
and My and yields

limye SUPAs, M(A N V) —=NA N V)] =0

for each m, where &, is the class of all sets A C R; such that A N V is the
intersection of at most m half-spaces of the vector space V. It is easily verified
that 3C,, C Fmia . Consequently

(7.9) lim, e SUPAege, [A(4d N V) — A4 N V)| = 0.
Since MRy, — E) = v(B;, — E) = 0, we have N\, (R, — V) = 0. In view of
this and the fact that 3, is invariant under translations, it now follows from

(7.9) that (7.8) holds. This completes the proof.
Let » be any arbitrary measure on R and let

(7.10) vy = Z i w9 4

r=0 i=11

be the decomposition asserted by Lemma (7.3). Since all the measures v(”

are all mutually orthogonal, there exist mutually disjoint sets 4 (r = 0, 1, s
k—1,47=1,---, and »r =k, ¢ = 0) such that
(7.11) »(B) = »(B N AY)

for each Borel set B.

Lemma 7.5. Let v, be a sequence of measures weakly converging to v such that,
in the notation of the above paragraph,

(1) a(AP) 5 w(AP), for all v and 1,

(ii) v = " for all r and 3, where vY) is defined by the relation »$3(B)
= (B N AL for each Borel set B. Then, for each m, (7.8) holds.

Proor. Since »\? is r-dimensional there exists a set £ which is a translate of
an r-dimensional subspace and such that »”(R, — E{?) = 0. We may also
suppose that 4 < E{”. Thus the conditions (i) and (ii) of the theorem imply

that »5? = »{” and »$)(BL?) — v ?(EL?). Therefore, by Lemma 7.4, we have
(7.12) limy a0 SUDacse,, |77 (A) — 9.7 (4)] = 0,

for 0 £ r £k — 1 and all 7. From Theorem 4.1 it follows that

(7.13) 1M e SUD sy, [7ek (A) — mO(A)| = 0.

Now define Ey = [UA®, 0<r=<k—1, 1 4= NJUA. It then
follows from assumption (i) of the theorem that v,(Ex) — vi(Ex) as n — o
for each N. Or equivalently,

(7.14) limiye v (Be — Ex) = v(Bi — Ex).
Finally it is easily seen that for any set 4
k1 N
lra(4) — »(4)] = Z Zl 2 (4) — »P(4)]
(7.15) r=0 i=1

+ 2 (4) — w2 (A)] + va(Be — Ex) + (B — E).
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Take the supremum in (7.15) over the class 3C, and then let n — . It then
follows from (7.12) and (7.13) that

(7.16) liMy s SUDscge,n [7a(A) — #(A)| < 20(Ry — Ey),

for each N. The assertion of the theorem then follows from (7.16) and (7.14).
The proof is thus complete.

7.2. Proof of Theorem 7.2. Let A denote the probability distribution of & ,
ie. M(4) = P(&¢ A). By Lemma 7.3, there exist mutually orthogonal meas-
ures AL? such that

k—1 oo

(7.17) A= 20 oA 4o,

r=0 7=1
Let A:” be mutually disjoint Borel sets such that the measures A{? are defined
by

(7.18) By = ME N AY).

Let u(A, ») and pi”?(A4, ») be the random measures defined by the relations
(7.19) (A, w) = Plre AP5]  w?(A4,0) = Plte 4 N A7),

where 3 is the invariant o-field associated with a stationary sequence. It follows
easily from (7.17), (7.18) and (7.19) that

(7.20) w(A, w) = Z iui“ui o) + 4 (4, o)

r=0 {=1

almost surely. It is not difficult to see from (7.18) and (7.19) that the measure
u'? is the restriction of u to the set A(” i.e., with probability one,

(7.21) w(B, w) = u(BE N AP, w)

simultaneously for all Borel sets £ and all r and <.
Now consider the sequence of sample distribution functions u,(4, ). Let
the measures u.. be defined as follows. For each Borel set E,

unt (B) = ua(E N AP, 0)
for all r and <. With this definition, Theorem 6.1 implies that

(1) tn = p,
(7.22) s (1) (9 .
(ii)  par =", forallr and <,

with probability one. From Birkhoff’s individual ergodic theorem it follows that
with probability one
(7.23) 1My pa( 487, 0) = p(A?, w),

for all r and ¢. Thus (7.22) and (7.23) and Lemma 7.5 together imply (7.6)
holds with probability one. This completes the proof.
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ReEMarks. We give an example to show that, in general, Theorem 7.2 cannot
be improved to assert uniform convergence over the class U3¢, . Let S denote
the surface of the unit sphere in R; and let S, be the interior of the unit sphere.
Let &, &, - - - be a sequence of independent random vectors with a non-atomic
distribution x concentrated in S. If u, denotes their s.d’s, then with probability
-one

(7.24) limn—»w SUP4ere,, l”’n(A) - ”'(A)I =0

for each integer m, by Theorem 7.2. Now suppose A is any Borel subset of S.
It is easy to see that S, U A is convex. Consequently

SUPsce [pn(4) — u(A)| = sUpas |un(A4) — u(4)]

where F is the class of all Borel subsets of S. Since u, and g are concentrated in
S and u, is atomic, while u is not, it follows that

SUp4es |ua(4) — p(4)] = L

"Thus the convergence (7.24) is not in general uniform with respect to m.
In the above example, suppose in addition that u is concentrated in

ScClxiax;=205=1,---,kl.

‘Then an argument similar to the one employed in the preceding paragraph
:shows that sup.g |u.(4) — u(A4)| = 1, where ¥ is the class of all sets 4 with
the following property: « ¢ A and y is such that y; < z;forallj =1, ---, k,
implies that y also ¢ A. This contradicts a conjecture of Blum ([3]) stating that
with probability one

limn—»o SupAEﬁ l”’n<A) - I‘L(A)! = 0
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