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Abstract

The Sarkisov program studies birational maps between varieties that are end products
of the Minimal Model Program (MMP) on nonsingular uniruled varieties. If X and
Y are terminal Q-factorial projective varieties endowed with a structure of Mori fibre
space, a birational map f :X 99K Y is the composition of a finite number of elementary
Sarkisov links. This decomposition is in general not unique: two such define a relation in
the Sarkisov program. I define elementary relations, and show they generate relations in
the Sarkisov program. Roughly speaking, elementary relations are the relations
among the end products of suitable relative MMPs of Z over W with ρ(Z/W ) = 3.

1. Introduction

Let Z be a nonsingular projective variety. Conjecturally, the Minimal Model Program (MMP)
terminates for Z, and there is a finite sequence of elementary birational operations directed by KZ

ϕ : Z =X0 99KX1 99K · · · 99KXn =X,

where X is terminal and Q-factorial, and one of the following holds.

(i) X is a minimal model : KX is numerically effective (nef); or

(ii) X is a Mori fibre space: X is endowed with a fibration morphism p :X → S such that
ρ(X/S) = 1, and −KX is p-ample.

The map ϕ is the result of a KZ-MMP, and X is a distinguished representative in the birational
equivalence class of Z. However, neither ϕ nor X is unique. Since the birational classification of
varieties is one of the primary goals of the MMP, it is natural to study birational maps between
distinguished representatives that are results of the KZ-MMP. The type of X (minimal model
or Mori fibre space) depends on whether Z is uniruled or not, so that one only needs to consider
birational maps between minimal models or between Mori fibre spaces. The Sarkisov program
studies birational Mori fibre spaces. In fact, if f :X/S 99K Y/T is a birational map between
Mori fibre spaces and (ϕX , ϕY ) : Z → X × Y is a resolution of f , then both Z → X and Z → Y
are the results of KZ-MMPs, so that the Sarkisov program studies birational maps between
distinguished models produced by the MMP on nonsingular uniruled varieties.

More generally, one can investigate the structure of birational maps between distinguished
representatives produced by the MMP on a nonsingular variety Z (or by the log-MMP on a
Kawamata log terminal (klt) pair (Z,∆)). If ϕX : Z 99KX and ϕY : Z 99K Y are the results of
KZ-MMPs, ϕX and ϕY can be decomposed into finitely many elementary steps of the MMP, the
contractions of extremal rays. It follows that X 99K Y is a composition of maps ϕk :Xk 99KXk+1

Received 23 July 2012, accepted in final form 26 February 2013, published online 28 August 2013.
2010 Mathematics Subject Classification 14E30 (primary), 14E05 (secondary).
Keywords: Sarkisov program, Minimal Model Program.

The author is supported by the Engineering and Physical Sciences Research Council [grant number
EP/H028811/1].
This journal is c© Foundation Compositio Mathematica 2013.

https://doi.org/10.1112/S0010437X13007306 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X13007306


A.-S. Kaloghiros

for k = 0, . . . , N − 1, where X0 ≃ X, XN ≃ Y and for each k, ϕk or ϕ−1
k is the contraction of an

extremal ray. A drawback of this tautological decomposition is that the intermediate varieties Xk

are not in general distinguished representatives. The following two theorems give a decomposition
where each intermediate step is a birational map between minimal models or between Mori fibre
spaces.

Theorem 1.1 [Kaw08]. A birational map f :X 99K Y between minimal models is the
composition of a finite number of flops.

Theorem 1.2 [Cor95, HM13]. A birational map f :X/S 99K Y/T between Mori fibre spaces is
the composition of a finite number of elementary Sarkisov links.

While flops are elementary steps of the MMP itself, Sarkisov links are ‘composite’ operations.
An elementary Sarkisov link Li,j :Xi/Si 99KXj/Sj is the birational map between the two Mori
fibre spaces produced by the KZ-MMP over W , where Z is terminal, and Z −→ W is a fibration
with uniruled positive dimensional fibers and ρ(Z/W ) = 2 (see Definition 2.14). Corti proved
Theorem 1.2 directly in [Cor95] for 3-folds, by the process of untwisting birational maps between
Mori fibre spaces, which I now explain in a few words. Any birational map f :X 99K Y is the
map Φ|L| determined by a suitable linear system L = f−1

∗ LY , where LY is very ample on Y . In
this formulation, f is an isomorphism precisely when L is basepoint free. In general, if U/R is a
Mori fibre space, any R-divisor (respectively ample divisor) on U can be written −λKU +DR,
for λ ∈ R (respectively λ > 0) and DR the pullback of a divisor (respectively of a sufficiently
ample divisor) on R. Corti uses the form of divisors on X and Y to identify a Sarkisov link
L1,2 :X =X1 99KX2 that partially resolves the highest multiplicity locus of Bs L. Replacing X
by X2, f by f ◦ L−1

1,2 and L by its image on X2 is called untwisting f . After a finite number
of untwistings, the image of L is basepoint free, so that f has a decomposition into elementary
links. The proof in arbitrary dimension uses different ideas: both Theorems 1.1 and 1.2 follow
from the study of the geography of ample models of effective adjoint divisors KZ + Θ, as Θ varies
in a suitable region of the space of R-divisors DivR(Z) as in [KKL13, SC11].

This paper studies relations in the Sarkisov program. Given a birational map f :X 99K Y
between Mori fibre spaces, the decomposition of f into elementary Sarkisov links in Theorem 1.2
is not unique. A relation in the Sarkisov program is a (nontrivial) decomposition of an
automorphism of a Mori fibre space X/S into Sarkisov links; equivalently it is a composition
of Sarkisov links of the form f1 ◦ f−1

2 , where f1 and f2 are distinct decompositions into links of
the same birational map X/S 99K Y/T . Relations arise naturally among Sarkisov links between
Mori fibre spaces produced by the MMP on suitable varieties Z with ρ(Z) > 3.

As an example, let S be the del Pezzo surface obtained by blowing up two points P1 and P2

on P2. Let E1, E2 be the (−1)-curves on S and L the proper transform of the line through P1

and P2. Then, Eff(S), the pseudoeffective cone of S, is the cone over a polytope P as in Figure 1.
There is a fan of Eff S = ∪Ci, where Ci are rational polyhedral cones, that determines a geography
of ample models. Mori fibre spaces produced by KS-MMPs are in one-to-one correspondence with
those facets of the Ci that consist of nonbig divisors. In Figure 1, these are the facets of the Ci
supported on the sides of the triangle, e.g. [L+ E1, L] represents P1

a × P1
b → P1

a (the indices
a, b distinguish between the two fibrations S → P1), [L+ E2, L] represents P1

a × P1
b → P1

b and
[E1, L+ E1] represents F1a → P1

a (see Example 3.12 for details). In [HM13], the authors show that
if two of these line segments have nonempty intersection (here at the points L, L+ E1, L+ E2, E1

and E2), there is an elementary Sarkisov link between the corresponding Mori fibre spaces.
Further, a decomposition into elementary links of any birational map f :X/S 99K Y/T can be
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Relations in the Sarkisov program

Figure 1. Geography of ample models of S = Bl{P1,P2}P2.

obtained by tracing a path on ∂P from a point in the interior of the line segment corresponding
to X/S to a point in the interior of the line segment corresponding to Y/T . In the same
way, a relation in the Sarkisov program dominated by S (among the end products of the
MMP on S) is represented by a loop on ∂P, i.e. by an element of the fundamental group
π1(P) = π1(∂ Eff(S) r {0}). Here, π1(P) = Z · γ, where γ represents the following relation.

S

��

S

��

S

��

S

��

P1
a × P1

b

��

F1b

��

F1b, F1a

��

F1a

��

P1
a × P1

b

��

P1
a × P1

b

��

P1
b

��

P1
b

��

P2

��

P1
a

��

P1
a

��

P1
b

��

{P} {P} {P} {P} {P} {P}

(1)

I call a relation elementary if there is a variety W and morphisms Xi → Si −→ W that
commute with the links Li,i+1 with ρ(Xi/W ) 6 3 for all i (see § 4 for a precise definition). If
Z is a common resolution of all Sarkisov links Li,i+1, an elementary relation corresponds to a
simplicial loop on the boundary of the pseudoeffective cone of Z and can be thought of as
a relative Picard rank 3 MMP. It is naturally dual to the boundary of a suitable two-dimensional
polytope as in Figure 1.

I show that relations in the Sarkisov program correspond to simplicial loops on suitable
polyhedral complexes supported on the locus of strictly pseudoeffective (effective nonbig) divisors
of nonsingular uniruled varieties. The following theorem (Theorem 4.11) is then a straightforward
application of van Kampen’s theorem.

Theorem 1.3. A relation in the Sarkisov program is the composition of a finite number of
elementary relations.

There are four types of elementary Sarkisov links that correspond to possible configurations
in the two-ray game, or, loosely speaking, to configurations of extremal rays on a (weak)
Fano variety Z of Picard rank 2. There is no such result when ρ(Z) = 3, and an explicit
classification of elementary relations is therefore not a reasonable goal. However, one can define
two types (A and B) of elementary relations consisting of an arbitrary number of elementary links
(see Definition 4.6). For example, (1) is of type A. In Example 4.9, I determine all elementary
relations that arise among the Mori fibre spaces that are end products of the MMP on Fano
3-folds Z with ρ(Z) = 3, and show that both types of relations occur. In fact, both types of
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relation are realised among the end products of the MMP on Picard rank 3 toric Fano 3-folds,
or in the Cremona group of P3.

Outline

I sketch the main idea underlying the results in [HM13] and in this paper. For now, I do
not distinguish between divisors and their numerical equivalence classes. Let f :X 99K Y be
a birational map, and assume that ϕX : Z −→ X and ϕY : Z −→ Y are results of the MMP on a
nonsingular uniruled variety Z. Denote by pX :X → S and pY : Y → T the Mori fibrations on
X and Y . If D is an effective Q-divisor on Z, Z 99K ZD ≃ ProjR(Z, D) (when it makes
sense) is the ample model of D; the precise definition is recalled in § 2. Define klt pairs
(Z,ΘX), (Z,ΘY ), where ΘX ,ΘY are ample divisors such that ϕX (respectively ϕY ) is the ample
model ofKZ + (1 + ε)ΘX (respectivelyKZ + (1 + ε)ΘY ) for 0< ε ≪ 1 and pX ◦ ϕX (respectively
pY ◦ ϕY ) that of KZ + ΘX (respectively KZ + ΘY ). Then, for suitable ΘX and ΘY , there is a
rational polyhedral cone C ⊂ EffR(Z), such that the following holds. Every divisor D ∈ C is
effective, KZ + ΘX and KZ + ΘY lie on ∂+C = C ∩ (EffR(Z) r BigR(Z)), while KZ + (1 + ε)ΘX

and KZ + (1 + ε)ΘY lie in the interior of C. Section 2 recalls general results on cones such as C.
In particular, there is a decomposition of C =

∐
Ai into relatively open rational polyhedral cones

that determine a geography of ample models. Namely, all Q-divisors D ∈ Ai have the same ample
model and birational maps between these ample models are determined by incidence relations
between the closed cones Ai. The Sarkisov program studies incidence relations between cones
Ai that intersect the locus of nonbig divisors ∂+C.

One can associate to a relation in the Sarkisov program a cone C ⊂ DivR(Z), where Z is a
common resolution of all the links in the relation, and a polyhedral complex B+(CR) that reflects
the geography of ample models on C; this is done in § 3. There is a simplicial complex NR,
the nerve of B+(CR), that encodes the Sarkisov program dominated by Z. Explicitly, there is a
one-to-one correspondence between vertices of NR and Mori fibre spaces Xi/Si, and between
edges of NR and elementary Sarkisov links between the Xi/Si dominated by Z. Given a
face A ⊆ ∂+C in the decomposition, one can construct a residual cone resiA C of dimension
d= dim C − dim A. There is an induced geography of ample models on resiA C, and an induced
complex resiA NR. If ϕ : Z −→ W is the ample model of divisors D ∈ A, the geography encodes
the birational geometry of Z over W , and resiA NR the Sarkisov program among results of the
MMP over W .

In § 4, I show that relations in the Sarkisov program correspond to edge-loops on NR,
i.e. elements of π1(NR), or, equivalently, of π1(∂

+C \{0}). Theorem 1.3 is proved by constructing
a cover of NR by residual complexes resiA NR.

2. Preliminary results

I consider varieties defined over C, and denote by R+ and Q+ the sets of nonnegative real and
nonnegative rational numbers.

2.1 Convex geometry and polyhedral complexes

The topological closure of S ⊂ RN is denoted by S, and the boundary of a closed C ⊂ RN by ∂C.

A convex polyhedron in RN is defined by a finite number of (strict or not) linear inequalities
in RN . A rational polytope in RN is a compact set which is the convex hull of finitely many
rational points in RN . A rational polyhedral cone in RN is a convex cone spanned by finitely
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many rational vectors. The dimension of a cone in RN is the dimension of the minimal R-vector
space containing it.

I recall some standard properties of convex sets which will be used repeatedly (see [Grü67] for
references). Let K ⊂ RN be a closed convex set. There is a unique subspace L ⊂ RN of maximal
dimension such that K contains a translate of L. If L∗ ⊂ RN is a subspace complementary to L,
then K = L+ (L∗ ∩ K) and L∗ ∩ K contains no line.

If K ⊂ RN is a closed convex subset that contains no line, there is a hyperplane H such that
H ∩ K is compact and has dimension dimK − 1. In particular, if K ⊂ RN is a closed cone with
apex x0, K = Conex0

(H ∩ K).

Definition 2.1. A polyhedral complex C in RN is a small category whose objects are convex
polyhedra in RN , whose morphisms are isometric morphisms and that satisfies the following.

(i) If c1 ∈ Ob C and c2 is a face of c1, then c2 ∈ Ob C, and the inclusion i : c2 −→ c1 is a morphism
of C.

(ii) If c1, c2 ∈ Ob C, there is at most one morphism f ∈ Mor C such that f(c1) ⊂ c2.

The faces of C are the elements of Ob C. A face c of C is a facet if f(c) = c′ for all {f : c −→
c′ } ∈ Mor C. The complex C is pure of dimension n if all its facets have dimension n. The
underlying space of C is the topological space |C | =

∐
c∈Ob C c/ ∼ where c ∼ f(c) for all f ∈ Mor C

and c ∈ Ob C.

Definition 2.2. Let C be a pure polyhedral complex of dimension n. The Nerve of C is the
simplicial complex Ner(C) defined by the following conditions.

(i) Vertices of Ner C are dual to facets of C; if c is a facet of C, c∗ denotes the corresponding
vertex of Ner C.

(ii) Vertices c∗
0, . . . , c

∗
k span a k-simplex if there is a face c of C of dimension n − k and a

collection of morphisms {fi : c −→ ci} ∈ Mor C. The k-simplex σ = [c∗
0, . . . , c

∗
k] is dual to c.

Remark 2.3. For k < n, a k-dimensional face c of C needs not have a dual k-simplex; when it
does, there may be several dual simplices. When n= 1, C is simplicial and dual to Ner C.

Definition 2.4. Let K be a simplicial complex and K(m) its m-skeleton.

An edge path in K is a finite sequence (v0, v1, . . . , vn) of vertices of K such that {vi, vi+1}
spans a simplex for each i. An edge loop is an edge path with v0 = vn; the product of (v0, . . . , vn)
and (vn, . . . , vm) is (v0, . . . , vm).

Edge paths are equivalent if they are related by a finite sequence of elementary equivalences
given by (. . . , vi, vi+1, vi+2, . . .) ∼ (. . . , vi, vi+2, . . .) when {vi, vi+1, vi+2} spans a simplex of K.

The edge path group E(K, v) is the group of equivalence classes of edge loops based at v; if
|K| is a geometric realisation of K, E(K, v) ≃ π1(|K|, v).

Lemma 2.5. If C is a finite pure polyhedral complex of dimension n, |C | and | Ner C | are
homotopy equivalent.

Proof. This is [KK11, Lemma 10]. ✷

2.2 Models of effective divisors and the classical MMP

Let Z be a normal projective variety and R ∈ {Z,Q, R}. The group of R-Cartier R-divisors is
denoted by DivR(Z), and ∼R and ≡ denote R-linear and numerical equivalence of R-divisors. If
Z −→ X is a morphism to a normal projective variety, numerical equivalence overX is denoted by
≡X . Let Pic(Z)R = DivR(Z)/ ∼R and N1(Z)R = DivR(Z)/ ≡. Denote by ρ(Z) = dimN1(Z)Q
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the Picard rank of Z. If D ∈ DivR(Z), then [D] ∈ N1(Z)R is the image of D under the natural
map DivR(Z) → N1(Z)R.

The ample, big, nef, effective, and pseudoeffective cones in N1(Z)R are denoted by Amp(X),
Big(Z), Nef(Z), Eff(Z), and Eff(Z). IfD ∈ Eff(Z), B(D) is the stable base locus ofD (see [Laz04]
for definitions).

A pair (Z,∆) consists of a normal projective variety Z and an effective R-divisor ∆ on Z
such that KZ + ∆ is R-Cartier; KZ + ∆ is an adjoint divisor. I say that (Z,∆) is Q-factorial
if Z is; I often assume that KZ + ∆ is Q-Cartier. The pair (Z,∆) has klt (respectively log
canonical) singularities if, for every log resolution f :W −→ Z, the coefficients of the divisor
KW − f∗(KZ + ∆) are all greater than −1 (respectively greater than or equal to −1). A klt pair
(Z,∆) is terminal if, in addition, all f -exceptional divisors appear in KW − f∗(KZ + ∆) with
positive coefficients.

I recall the definitions of models of divisors introduced in [BCHM10], and show that the
results of the classical (log)-MMP are models of suitable effective divisors.

Definition 2.6. Let Z be a normal projective variety and D ∈ DivQ(Z). Let f : Z 99KX be a
birational contraction such that D′ = f∗D is Q-Cartier.

(i) The map f is D-nonpositive if, for a resolution (p, q) :W → Z × X,

p∗D = q∗D′ + E,

where E > 0 is q-exceptional. When SuppE contains the strict transform of all f -exceptional
divisors, f is D-negative.

(ii) When D is effective, f is a semiample model of D if f is D-nonpositive, X is normal and
projective and D′ is semiample. If ϕ :X → S is the semiample fibration defined by D′, the
ample model of D is ϕ ◦ f : Z 99KX → S.

Lemma 2.7. Let Z be a Q-factorial projective variety and D1 and D2 be numerically equivalent
big Q-divisors. Assume that R(Z, D1) and R(Z, D2) are finitely generated and denote by ϕi the
map Z 99K ProjR(Z, Di).

There is an isomorphism η : ProjR(Z, D1) → ProjR(Z, D2) such that ϕ2 = η ◦ ϕ1 and the
stable base loci of D1, D2 satisfy B(D1) = B(D2).

Proof. This is [KKL13, Lemma 3.11]. ✷

Definition 2.8. Let (Z,∆) be a Q-factorial klt pair with KZ + ∆ ∈ DivQ(Z). A birational
contraction ϕ : Z 99KX is the result of a (KZ + ∆)-MMP if X is projective, Q-factorial and
if the following hold.

(i) If KZ + ∆ is pseudoeffective, ϕ is a semiample model of KZ + ∆.

(ii) Otherwise, ϕ is a semiample model of KZ + Θ for some klt pair (Z,Θ) such that Θ − ∆ is
nef and [KZ + Θ] ∈ ∂ EffQ(Z). The contraction ϕ : Z 99KX is called an MMP with scaling
by R+(Θ − ∆).

The MMP terminates for (Z,∆) if a contraction ϕ : Z 99KX that is the result of a (KZ + ∆)-
MMP exists. The classical MMP refers to the KZ-MMP, where Z is terminal.

Remark 2.9. [BCHM10] shows that the MMP terminates for (Z,∆) klt when ∆ and KZ + ∆
are not both strictly pseudoeffective (i.e. not big).

The goal of the following lemma is to verify that Definition 2.8(ii) is consistent with the
classical formulation of the MMP.
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Lemma 2.10. Let (Z,∆) be a Q-factorial klt pair and assume that KZ + ∆ is not
pseudoeffective. Then, any result ϕ : Z 99KX of a (KZ + ∆)-MMP is (KZ + ∆)-nonpositive.

Let Θ be a Q-divisor with Θ − ∆ nef, [KZ + Θ] ∈ ∂ EffQ(Z), and such that ϕ is a semiample
model of KZ + Θ. If f :X → S is the Iitaka fibration associated to ϕ∗(KZ + Θ), then −ϕ∗(KZ +
∆) is f -nef.

Remark 2.11. If Z has terminal singularities, and if ϕ : Z 99KX is the result of a KZ-MMP, then
X is terminal because ϕ is KZ-nonpositive.

Proof. Let ϕ : Z 99KX be the result of a (KZ + ∆)-MMP that is a semiample model for KZ + Θ,
where Θ is as in Definition 2.8. Let (p, q) :W −→ Z × X be a resolution of ϕ. Then, ϕ∗Θ and
ϕ∗∆ are R-Cartier because X is Q-factorial, and, by definition of ϕ,

p∗(KZ + Θ) = q∗(KX + ϕ∗Θ) + E,

where E > 0 is q-exceptional. Since ϕ is a contraction, p-exceptional divisors are q-exceptional,
and there is a q-exceptional divisor E′ such that

p∗(Θ − ∆) − q∗(ϕ∗(Θ − ∆)) = E′.

Since Θ − ∆ is nef, the negativity lemma [Kol92, Lemma 2.19] shows that E′ 6 0, and

p∗(KZ + ∆) = q∗(KX + ϕ∗∆) + E − E′,

so that ϕ is also (KZ + ∆)-nonpositive.

Let C ⊂ X be an irreducible effective curve contracted by f , i.e. with (KX + ϕ∗Θ) · C = 0.
Such curves cover X because KX + ϕ∗Θ is not big, and we may assume that C 6⊆ q(Exc q).
Then, (KX + ϕ∗∆) · C = ϕ∗(∆ − Θ) · C. Let C̃ ⊂ W be an effective curve that maps one-to-one
to C. By the projection formula, ϕ∗(∆ − Θ) · C = q∗(ϕ∗(∆ − Θ)) · C̃. Since q∗(ϕ∗(∆ − Θ)) =
−(p∗(Θ − ∆) + (Eq − Ep)) and (Eq − Ep) · C̃ > 0 by construction of C, we have (KX + ϕ∗∆) ·

C̃ 6 0. This shows that −ϕ∗(KZ + ∆) is f -nef. ✷

The following structures arise in the MMP of uniruled varieties.

Definition 2.12. A log-Mori fibre space is a projective Q-factorial klt pair (X,∆) equipped with
a morphism f :X → S such that dim S < dimX, ρ(X) = ρ(S) + 1 and −(KX + ∆) is f -ample.

When ∆ = 0 and X is terminal, X/S is a Mori fibre space (Mfs).

By [BCHM10], if (Z,∆) is a klt pair with [KZ + ∆] 6∈ Eff(Z), there is a contraction ϕ : Z 99K

X that is the result of a (KZ + ∆)-MMP such that the fibration f :X → S has ρ(X/S) = 1.
Then, (X, ϕ∗∆) is a log-Mori fibre space, because by Lemma 2.10, −(KX + ϕ∗∆) is f -nef, and
−(KX + ϕ∗∆) 6≡f 0, so that −(KX + ϕ∗∆) is f -ample.

The Sarkisov program studies birational maps between (log-)Mori fibre spaces (X,∆X)/S
and (Y,∆Y )/T . There is a nonsingular uniruled variety Z (respectively a klt pair (Z,∆) with
KZ + ∆ nonpseudoeffective) such that Z 99KX/S and Z 99K Y/T are results of KZ-MMPs
(respectively (KZ + ∆)-MMPs). The simplest examples of birational maps between Mori fibre
spaces arise in the two-ray game.

Example 2.13. Let X/S be a Mori fibre space and Z → X a divisorial contraction such that
−KZ is nef and big over S. By the cone theorem, there is another Mori fibre space Y/T
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that is the result of a KZ-MMP over S. Explicitly, Z 99K Y is either an isomorphism in
codimension 1 followed by a divisorial contraction and S ≃ T , or Z 99K Y is an isomorphism
in codimension 1 and T → S is a morphism with ρ(T ) = ρ(S) + 1.

Definition 2.14 [Cor95]. An elementary Sarkisov link between log-Mori fibre spaces
(X,∆X)/S and (Y,∆Y )/T is a diagram

X̃ //_______

f

��

Ỹ

g

��

X

ϕ

��

Y

ψ
��

S

p
  @@

@@
@@

@@
T

q
��~~

~~
~~

~

R

(2)

where X̃
Φ

99K Ỹ is an isomorphism in codimension 1, (g ◦ Φ ◦ f−1)∗∆X = ∆Y , ρ(X̃/R) =
ρ(Ỹ /R) = 2, and f, g, p and q are either isomorphisms or (K + ∆)-nonpositive morphisms
of relative Picard rank 1. One of f and p and one of g and q are isomorphisms. The link is of
type I (respectively III) when p and g (respectively f and q) are isomorphisms and of type II
(respectively IV) when p and q (respectively f and g) are isomorphisms.

A Sarkisov link is thus always induced by a two-ray configuration as in Example 2.13: it is
the birational map between two Mori fibre spaces that are end products of the KX̃ -MMP over

W = S, T or R with ρ(X̃/W ) = 2 and dimW < dim X̃.

2.3 Geographies of models on good regions

By the preceding section, the Sarkisov program is the study of birational maps between end
products of the MMP on smooth uniruled varieties, or, equivalently, between models of strictly
pseudoeffective adjoint divisors KZ + ∆, where Z is smooth and ∆ nef. In this subsection, I
recall the construction of some good regions of DivR(Z), for Z nonsingular, where every effective
divisor D admits a Q-factorial semiample model ϕD : Z 99KXD, and ϕD can be decomposed
into elementary maps analogous to Mori’s contractions of extremal rays. The birational maps
between models XD as D varies in the region can then be studied easily.

Set up 2.15. Let ∆1, . . . ,∆r be big Q-divisors on a projective Q-factorial variety Z, and assume
that (Z,∆i) is klt for all i. The adjoint ring R =R(Z;KZ + ∆1, . . . , KZ + ∆r) is

R =
⊕

(n1,...,nr)∈Nr

H0(Z, n1(KZ + ∆1) + · · · + nr(KZ + ∆r)),

where, for each D ∈ DivR(Z), H0(Z, D) = {f ∈ k(Z) | div f +D > 0}. By [BCHM10, Corollary
1.1.5], the support of R

CR = {D ∈
∑

R+(KZ + ∆i) | H0(Z, D) 6= {0}} ⊆ DivR(Z)

is a rational polyhedral cone (see [KKL13, Theorem 3.2]).

As is shown in [KKL13], the convex geometry of CR determines a geography of ample models
of divisors K + ∆ as they vary in CR. Since CR is spanned by klt adjoint divisors, an additional
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condition on the dimension of CR ensures that these ample models are Q-factorial, so that they
are the results of (KZ + ∆)-MMPs for KZ + ∆ ∈ CR. The results relevant to this paper are
recalled in the following theorem and proposition.

Theorem 2.16. Let Z, ∆1, . . . ,∆r and R be as in Setup 2.15. Assume that there is a big
divisor D ∈ CR. Then, there is a finite decomposition

CR =
∐

Ai

with the following properties.

(i) Each Ai is a rational polyhedral cone.

(ii) There is a rational map ϕi :X 99KXi, with Xi is normal and projective, such that ϕi is the
ample model of all D ∈ Ai ∩ DivQ(Z).

(iii) If Aj ⊆ Ai, there is a morphism ϕij :Xi → Xj with ϕi ≃ ϕij ◦ ϕj .

(iv) If Ai contains a big divisor, ϕi is a semiample model of all D ∈ Ai ∩ DivQ(Z) and Xi has
rational singularities.

Proof. See [KKL13, Theorems 4.2, 4.5]. ✷

Remark 2.17. I recall the properties of the decomposition of CR used in what follows. Since R is
finitely generated, [Ein+06, Theorem 4.1] implies the following.

(i) The cone CR is closed and rational polyhedral.

(ii) There is a positive integer d and a resolution f : Z̃ −→ Z such that Mob f∗(dD) is basepoint
free for every D ∈ CR ∩ DivZ(Z), and Mob f∗(kdD) = k Mob f∗(dD) for every k ∈ N.

(iii) There is a finite rational polyhedral subdivision CR =
⋃

Ci into cones with disjoint interiors
such that the restriction of D 7→ Fix |f∗dD| to each Ci is linear.

The cones Ai in Theorem 2.16 are the relative interiors of all cones that are intersections
of the Ci and their proper faces. For each i, ϕi is induced by the Iitaka fibration ψi : Z̃ →
ProjR(Z̃,Mob f∗dD) for any D ∈ Ai ∩ DivZ(Z).

Proposition 2.18. Let Z and R be as in Theorem 2.16, and denote by π : DivR(Z) −→ N1(Z)R

the natural map.

(i) Let L ⊆ DivR(Z) be the maximal subspace with A+ L ⊆ CR for some Q-divisor A, and let
L∗ ⊆ DivR(Z) be a complementary subspace. Denote by p : DivR(Z) → L∗ the projection. There
is a finitely generated ring R

′ with support CR
′ = p(CR). The cone CR

′ contains no line and π
restricts to an isomorphism on CR

′ . If D ∈ CR is a big Q-divisor, D and p(D) have the same
ample model.

(ii) Let CR =
∐

Ai be the coarsest decomposition of Theorem 2.16. Then, Ai = L+ A′
i, where

A ′
i = p(Ai). The decomposition CR

′ =
∐

A′
i satisfies Theorem 2.16(i)–(iv).

Assume that dim CR
′ = ρ(Z). Up to refining {Ai; i ∈ I}, we may assume that for all i, j ∈ I, every

π(Ai) is contained in one of the subspaces bounded by H, where H ⊂ N1(Z)R is any supporting
hyperplane of π(Aj).

(iii) If dim A ′
i = ρ(Z), ϕi is the result of a (KZ + ∆)-MMP for all (Z,∆) klt with

KZ + ∆ ∈ Ai.

(iv) If CR
′ contains an ample divisor, ϕi is the composition of a finite number of elementary

contractions, where an elementary contraction is an isomorphism in codimension 1 or a morphism
that contracts a single divisor.
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Proof. Let L ⊂ DivR(Z) be such that A+ L ⊆ CR for some Q-divisor A. IfD ∈ L ∩ DivQ(Z), then
D ≡ 0, because both A+ nD and A − nD are effective for all n ≫ 0. By the results on convex
sets recalled above, L∗ ∩ CR = p(CR) is a cone that contains no line, and hence the cone over
a rational polytope P. The vertices of P are of the form εi(KZ + ∆′

i) ∈ CR where εi ∈ Q+ and
∆′
i is a big Q-divisor. Then, p(CR) = CR

′ , where R
′ =R(Z;KZ + ∆′

1, . . . , KZ + ∆′
m) is finitely

generated.

If D ∈ CR ∩ DivQ(Z), since p(D) ∈ CR ∩ DivQ(Z) as well, both R(Z, D) and R(Z, p(D)) are
finitely generated. When D is big, by Lemma 2.7, the ample models of D and p(D) coincide up
to isomorphism because D ≡ p(D).

Let f : Z̃ → Z be a resolution as in Remark 2.17. Again by Lemma 2.7, if D ∈ CR is a
big Q-divisor, B(D) = B(p(D)), and Fix |f∗dD| = Fix |f∗(dpD)|. The coarsest decomposition
of CR of [Ein+06, Theorem 4.1] depends only on regions of linearity of D 7→ Fix |f∗dD| on
{D ∈ CR | D is big}, so that Ci = L+ p(Ci), and Ai = L+ A ′

i. The last two assertions are part
of [KKL13, Theorems 4.4 and 5.4]. ✷

Notation 2.19. Assume that CR is a rational polyhedral cone that contains no line. There is a
hyperplane H such that CR is the cone over PR =H ∩ CR. The rational polytope PR is a base
of CR; any two bases of CR are related by a smooth affine transformation. When CR is as in
Theorem 2.16, any D ∈ PR is a positive rational multiple of a klt adjoint divisor and

PR =
∐

(Ai ∩ H) =
∐

Qi

where Qi is the relative interior of a rational polytope. This decomposition has the properties
listed in Theorem 2.16 and Proposition 2.18.

Definition–Lemma 2.20. Let Z,R and {Ai; i ∈ I} of CR be as in Proposition 2.18. Assume
that CR = CR

′ contains no line.

Denote by CR the polyhedral complex with Ob CR = {Ai; i ∈ I} and morphisms the inclusions
of faces. The complex Ner(CR) is connected and has the following properties.

(i) There is a one-to-one correspondence between vertices Ai
∗

of Ner CR and the results
ϕi : Z 99KXi of (KZ + ∆)-MMPs that are ample models of KZ + ∆ ∈ CR.

(ii) Vertices Ai
∗
, Aj

∗
of Ner CR form an edge precisely when ϕj ◦ ϕ−1

i or ϕi ◦ ϕ−1
j is an

elementary contraction.

(iii) There is a one-to-one correspondence between edge-paths on NR from vi to vj and
decompositions of Xi 99KXj into elementary contractions and inverses of elementary
contractions dominated by Z.

Proof. This is a straightforward reformulation of Proposition 2.18. ✷

Remark 2.21. Let CR =
⋃

16j6N Cj be the decomposition into cones of dimension ρ(Z) associated
to {Ai; i ∈ I}. Edge paths on Ner CR are dual to piecewise linear paths between points in int(Cj)
that cross all ∂Cj transversally along codimension 1 faces.

3. Complexes and the Sarkisov program

Let {Xj/Sj , Φj,j′ } be a collection of Mori fibre spaces and birational maps between them. As
mentioned in § 2.2, there are divisors Θj on a nonsingular variety Z such that each Xj/Sj is the
result of a KZ-MMP and of a (KZ + Θj)-MMP, where KZ + Θj is strictly pseudoeffective. In
§ 3.1, I show that {Θj}j can be chosen so that all KZ + Θj lie in a good region CR ⊂ DivR(Z)
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in the sense of § 2.3. As above, I denote by CR both the cone and the polyhedral complex
supported on this cone and defined by a decomposition as in Proposition 2.18. Any Φj,j′ can
then be decomposed into a finite number of steps that are elementary contractions or inverses
of elementary contractions dominated by Z. By Definition–Lemma 2.20, a decomposition is
determined by considering suitable paths in CR. In general, some of the models (of divisors
D ∈ CR) that appear in such a decomposition are not Mori fibre spaces. To achieve a
decomposition of Φj,j′ where all elementary steps are birational maps between Mori fibre spaces, I
consider paths on CR that lie on the part of ∂CR consisting of strictly pseudoeffective divisors; this
is done in § 3.2. Lastly, in § 3.3, given a cone A in the decomposition of CR with A ∩ Big(Z) = ∅, I
define a residual ring resiA R. If ϕ : Z −→ W is the ample model corresponding to A, the support
of resiA R inherits a geography that is a geography of models over W .

3.1 Cones of divisors for the Sarkisov program

Consider a collection {X1/S1, . . . , Xr/Sr; Φj,j′ :Xj 99KXj′ } of Mori fibre spaces and birational
maps between them. Denote by pj :Xj → Sj the fibration morphisms. The following construction
is similar to the one in [HM13, § 4].

Proposition 3.1. Let f = (f1, . . . , fr) : Z → X1 × · · · × Xr be a resolution of all maps Φj,j′ .
There are ample Q-divisors ∆1, . . . ,∆n such that the rational polyhedral cone CR associated to
R =R(Z;KZ + ∆1, . . . , KZ + ∆n) contains an ample divisor and has the following properties.

Let V be the R-vector space
∑

R(KZ + ∆i), ∂
+CR the cone {D ∈ CR|D 6∈ Big(Z)} and let

CR =
∐
i∈I Ai be the coarsest decomposition in Theorem 2.16. Let ϕi : Z 99K Zi be the ample

model of any D ∈ Ai ∩ DivQ(Z). Then the following hold.

(i) The cone CR has dimension ρ(Z) and contains no line.

(ii) There are indices j0, j1 ∈ I such that fj ≃ ϕj0 and pj ◦ fj ≃ ϕj1 . Moreover, Aj1 ⊂ Aj0 and
dim Aj0 = ρ(Z) = dim Aj1 + 1.

(iii) For every Φj,j′ in the collection, both ϕj0 and ϕj′
0

are results of log-MMPs for (Z,∆) klt
with KZ + ∆ ∈ V . Further, ϕj0 and ϕj′

0
are MMPs with scaling by suitable ample divisors

A, A′ ∈ V .

(iv) ∂+CR is purely (ρ(Z) − 1)-dimensional.

(v) If ∂+CR ⊆
⋃r
j=1 Aj1 , any result of a log-MMP for (Z,∆) klt with KZ + ∆ ∈ V

nonpseudoeffective that is an MMP with scaling by an ample divisor A ∈ V is one of the
Xj/Sj in the collection.

Proof. Observe that it is enough to construct a finitely generated ring R =R(Z;KZ +
∆1, . . . , KZ + ∆n) such that assertions (ii)–(v) hold and such that the numerical classes of
elements of CR span N1(Z)R. Indeed, if L ⊂ V is the maximal subspace with CR + L ⊆ CR, then
p(CR) = CR

′ constructed as in Proposition 2.18 satisfies assertions (i)–(v).

Step 1. I first construct a ring R satisfying assertion (ii) and such that the classes of divisors in
CR span N1(Z)R.

Let f = (f1, . . . , fr) : Z → X1 × · · · × Xr be a common resolution that resolves all maps Φj,j′ ,
and let {Ek} be the collection of f -exceptional divisors. Since Xj is terminal,

KZ = f∗
jKXj

+Gj , (3)

where Gj > 0 is a Q-divisor whose support contains all fj-exceptional divisors. Fix a rational
number λ > 1. For each j, let {Alj} be ample Q-divisors on Sj whose numerical classes
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span N1(Sj)R and such that −(λ − 1)KXj
+ p∗

jA
l
j , −λKXj

+ p∗
jA

l
j , and −KXj

+ p∗
jA

l
j are ample.

Denote the reduced sum of fj-exceptional divisors by Ej =
∑
Ek, and by Ejk = Ej + Ek,

where Ek ranges over fj-exceptional divisors. Let 0< δ ≪ 1 be a rational number such that
Gj − δEkj > 0 and its support contains all fj-exceptional divisors. Define a collection of divisors

Θk,l
j = f∗

j {−λKXj
+ p∗

jA
l
j} − δEkj and Dk,l

j = f∗
j {−KXj

+ p∗
jA

l
j} − δEkj ;

we may assume that δ is chosen so that Θk,l
j , and Dk,l

j are ample. Then,

KZ + Θk,l
j = f∗

j {−(λ − 1)KXj
+ p∗

jA
l
j} +Gj − δEjk

is big, and fj is KZ + Θk,l
j -negative, and is the ample model of KZ + Θk,l

j . Similarly, since

KZ +Dk,l
j = f∗

j {p∗
jA

l
j} +Gj − δEjk,

fj is a semiample model for KZ +Dk,l
j , and pj ◦ fj is the ample model of KZ +Dk,l

j . Since Dk,l
j

is ample and KZ +Dk,l
j is not big, KZ is not pseudoeffective, and Z 99KXj/Sj is the result of a

KZ-MMP with scaling by any Dk,l
j .

Let ∆i be the divisors in {Θk,l
j , D

k,l
j }j,k,l. If

∑
R+(KZ + ∆i) does not contain an ample

divisor, add to the collection {∆i} a very general ample divisor ∆ such that KZ + ∆ is ample.

Since each ∆i is ample, up to replacing ∆i with εiHi ∼Q ∆i, where εi ∈ Q, 0< εi ≪ 1
and Hi is a very ample Q-divisor, we may assume that the pairs (Z,∆i) are klt. The ring
R =R(Z;KZ + ∆1, . . . , KZ + ∆n) is finitely generated by [CL12, Theorem 3.2]. Since CR

contains an ample divisor, there is a coarsest decomposition CR =
∐
i∈I Ai as in Theorem 2.16.

By uniqueness of ample models, for each j, there are indices j0, j1 ∈ I with fj = ϕj0 and

KZ + Θk,l
j ∈ Aj0 , and pj ◦ fj = ϕj1 and KZ +Dk,l

j ∈ Aj1 for all k, l. The divisors KZ +Dk,l
j

are not big, and Aj1 ⊆ ∂+CR, and ϕj1 = pj ◦ ϕj0 . Also, since λ can be chosen arbitrarily close

to 1 in the definition of divisors of the form of Θk,l
j , Aj1 ∩ Aj0 6= ∅, and by definition of the

decomposition (4), Aj1 ( Aj0 . The only thing that is left to prove is that the numerical classes
of divisors in Aj0 span N1(Z)R.

The classes [KZ + Θk,l
j ] (respectively [KZ +Dk,l

j ]) span N1(Z)R (respectively a subspace of
codimension 1) because fj is a resolution and pj a Mori fibration, so that

N1(Z)R = (pj ◦ fj)
∗N1(Sj)R ⊕ R[f∗

j (−KXj
)] ⊕

⊕
R[Ek]

where the sum runs over fj-exceptional divisors, and
⊕

R[Ek] =
⊕

R[Ejk].

Step 2. For assertion (iii), let Φj,j′ :Xj 99KXj′ be a birational map in the collection. As in Step 1,
denote by j0, j1 ∈ I (respectively j′

0, j
′
1), the indices such that fj and pj ◦ fj (respectively fj′ and

pj′ ◦ fj′ ) are the ample models associated to Aj0 , Aj1 (respectively to Aj0 , Aj′
1
). As noted in

Step 1, KZ is not pseudoeffective, and there are ample divisors Dj , Dj′ with KZ +Dj ∈ Aj1 and
KZ +D′

j ∈ Aj′
1
. Then, for 0 6 ε ≪ 1, if ∆ = ε(Dj +Dj′ ), (Z,∆) is klt and KZ + ∆ 6∈ CR and fj

(respectively fj′ ) is an MMP with scaling of (Z,∆) by R+Dj (respectively R+Dj′ ).

Step 3. I now prove the statements on ∂+CR. Using the notation set in Notation 2.19, let PR

be a base of CR. Since D is big if and only if λD is big for all λ > 0, to prove assertion (iv),
it is enough to ensure that ∂+PR = {D ∈ PR | D is not big} is purely (ρ(Z) − 2)-dimensional.
Assume that this is not the case, and let ∂+PR = T

∐
T ′, where dim T = ρ(Z) − 2> dim T ′.
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Note that T 6= ∅ because for any Xj/Sj in the collection, if Aj1 is defined as above, Aj1 ∩ PR ⊆
∂+PR is (ρ(Z) − 2)-dimensional. Let P ′

R
( PR be a polytope of the same dimension as PR

that contains all the vertices of PR in T but none of those in T ′. The vertices of P ′
R

are
of the form ε1(KZ + ∆′

1), . . . , εm(KZ + ∆′
m) for εi ∈ Q, and (Z,∆′

i) klt with ∆′
i big. Then,

R
′ =R(Z, KZ + ∆′

1, . . . , KZ + ∆′
m) is finitely generated, and C ′

R
is the cone spanned by P ′

R
.

Further, R
′ satisfies assertions (i)–(iii), because for all Xj/Sj , Aj0 ∩ P ′

R
is (ρ(Z) − 1)-dimensional

and Aj1 ∩ P ′
R

is (ρ(Z) − 2)-dimensional. After replacing R by R
′, assertion (iv) holds.

For assertion (v), let (Z,∆) be a klt pair with KZ + ∆ ∈ V not pseudoeffective. Let Θ be such
thatKZ + Θ ∈ CR is not big, (Z,Θ) is klt and Θ − ∆ ∈ V is ample. Let Ai0 be the cone of maximal
dimension with KZ + Θ ∈ Ai0 . Since KZ + Θ is not big, KZ + Θ belongs to a codimension 1 face
Ai1 of Ai0 with KZ + Θ ∈ Ai1 . In the notation of Theorem 2.16, ϕi0,i1 : Zi0 → Zi1 is a Mori fibre
space that is the result of a (KZ + ∆)-MMP. By Lemma 2.10, −(KZi0

+ ϕi0∆) is ϕi0,i1-nef, and

since ρ(Zi0/Zi1) = 1, it is ϕi0,i1-ample because Θ − ∆ is ample and (ϕi0)∗(Θ − ∆) 6≡ 0. If the Aj1

cover ∂+CR, Ai1 = Aj1 for some j, and Xj/Sj ≃ Zi0/Zi1 . ✷

As a by-product, the proof of Proposition 3.1 shows the next lemma.

Lemma 3.2. Let Ai0 , Ai1 be cones in the decomposition of CR such that Ai0 has maximal
dimension, Ai1 ⊂ Ai0 has codimension 1 in Ai0 and contains no big divisor. Then
(Zi0 , (ϕi0)∗∆)/Zi1 is a log Mori fibre space, where (Z,∆) is any klt pair with ∆ = Θ − H for H
ample and KZ + Θ ∈ Ai1 ∩ DivQ(Z).

Remark 3.3. In Proposition 3.1, KZ is not effective and all Zi0/Zi1 that are results of KZ-MMPs
with scaling by nef divisors Θ with KZ + Θ ∈ V are Mori fibre spaces.

Remark 3.4. By construction, the movable part of any D ∈
∑

R+(KZ + ∆i) is basepoint free,
and hence, in the notation of Theorem 2.16, f is an isomorphism and all ϕi are morphisms.

Remark 3.5. If Ai1 ∩ Big(Z) = ∅ and Ai1 ⊆ Ai0 with dim Ai0 = ρ(Z), then ϕi0,i1 : Zi0 → Zi1 has
1 6 ρ(Zi0/Zi1) 6 dim Ai0 − dim Ai1 .

3.2 Polyhedral complexes

In this section, I define a polyhedral complex supported on ∂+CR, where CR is as in
Proposition 3.1.

Notation 3.6. Let {X1/S1, . . . , Xr/Sr; Φj,j′ } be a collection of Mori fibre spaces and
birational maps between them and R =R(Z;KZ + ∆1, . . . , KZ + ∆n) the ring constructed in
Proposition 3.1. Write V =

∑
R(KZ +Di). Fix the coarsest decomposition

CR =
∐

i∈I

Ai (4)

as in Theorem 2.16. As above, ϕi : Z −→ Xi is the ample model of all D ∈ Ai. Let PR be a base
of CR and Qi = Ai ∩ PR the induced decomposition as in Notation 2.19.

Enlarging the collection if necessary, assume that Xj/Sj exhaust the possible results of
(KZ + ∆)-MMPs with scaling by ample divisors A ∈ V for noneffective KZ + ∆ ∈ V . Let
B+(I) = {i ∈ I|Ai ∩ Big(Z) = ∅}, where I is the index set in (4), so that

∂+CR =
∐

i∈B+(I)

Ai. (5)
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By construction, ∂+CR is purely (ρ(Z) − 1)-dimensional and is the cone over ∂+PR =∐
i∈B+(I) Qi, where Qi are defined in Notation 2.19.

Notation 3.7. Let Z and R be as in Notation 3.6, and let CR be the polyhedral complex of
Definition–Lemma 2.20. Let B+(CR) be the subcomplex of CR with objects Ai for i ∈ B+(I);
B+(CR) is a pure polyhedral complex of dimension ρ(Z) − 1. Similarly, the polyhedral complex
B+(QR) with objects Qi for i ∈ B+(I) is pure of dimension ρ(Z) − 2. Denote by NR the simplicial
complex Ner B+(QR).

Remark 3.8. There is a natural identification between NR and the (ρ(Z) − 2)-skeleton of
Ner B+(CR). Any ρ(Z) distinct vertices of Ner B+(CR) span a (ρ(Z) − 1)-simplex dual to the
cone {0}.

Remark 3.9. By definition, the geometric realisations of the complexes defined above are |CR| =
CR, |B+(CR)| = ∂+CR and |B+(QR)| = ∂+PR.

In what follows, I always assume that ρ(Z) > 3, as the Sarkisov program reduces to the two-
ray game otherwise. In particular, the vertices and edges of NR are precisely the vertices and
edges of Ner B+(CR). I use both constructions of NR. The next proposition states some easy
properties of CR, B+(CR), and NR.

Proposition 3.10. If Ai, Aj are distinct facets of CR, then ϕi 6≃ ϕj . If A is a facet of B+(CR),
there is a unique facet A′ of CR with A ⊆ A′.

There is a one-to-one correspondence between the vertices of NR and the Mori fibre spaces
produced by MMPs with scaling by nef divisors H ∈ V .

Proof. Let Ai and Aj be distinct facets of CR. If ϕi is the ample model for all D ∈ Ai ∪ Aj ,
then D 7→ Fix |dD| is linear on Ai ∪ Aj . This is impossible because the decomposition (4) is the
coarsest such.

The second assertion follows immediately from the definition of the decomposition (4). If
Ai, Aj are facets of CR with Ai,j = Ai ∩ Aj and dim Ai,j = ρ(Z) − 1, any D ∈ Ai,j can be written
D =Di +Dj for Di ∈ Ai and Dj ∈ Aj . But then, D is big because Di and Dj both are, and
Ai,j 6∈ B+(CR). In particular, a facet of B+(CR) is not the intersection of two facets of CR.

Lastly, let vi = (Ai1)
∗ be a vertex of NR, and Ai0 the facet of CR that contains Ai1 . By

Lemma 3.2 and Remark 3.3, Zi0/Zi1 is a Mori fibre space that is the result of a KZ-MMP
by scaling in V , and all results of KZ-MMPs with scaling in V are of this form. This finishes the
proof. ✷

Remark 3.11. If Ai, Aj are distinct facets of B+(CR), the associated ample models ϕi and ϕj need
not be distinct. When ϕi ≃ ϕj , ϕi has distinct factorisations through semiample models that are
ample models for the (not necessarily distinct) facets A ′

i, A′
j , compare with Corollary 3.18.

Example 3.12. Let S be the blow up of P2 in two points P1 6= P2. Let E1, E2 be the (−1)-
curves lying over P1, P2 and L the proper transform of the line through P1 and P2. Figure 1
represents a base PR and the decomposition induced by (4), where R =R(S, KS +A+ E1,
KS +A+ E2, KS +A+ L) for an ample divisor A ∼Q −KS . Then, CR = Eff(S) = R+[L] +
R+[E1] + R+[E2]. If Ai denotes the interior of the cones Ci in Figure 1, the ample models

associated to A0, . . . , A4 are ϕ0 : S
≃

−−→ S, ϕ1 : S → P1
a × P1

b , ϕ2 : S → F1a, ϕ3 : S −→ F1b
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and ϕ4 : S −→ P2. The complex NR is the following graph with five vertices and five edges.

Definition 3.13. A birational map Φ : Zi 99K Zj between the ample models associated to Ai, Aj

in (4) is dominated by Z if Z is a resolution of Φ, that is if Φ ≃ ϕj ◦ ϕ−1
i . Equivalently, Φ is

dominated by Z when Φ ◦ ϕi is the ample model of some nonzero Q-divisor D ∈ Aj .

An elementary Sarkisov link Li,j :Xi/Si 99KXj/Sj as in (2) is dominated by Z in V if Xi/Si
and Xj/Sj are the results of (KZ + ∆)-MMPs with scaling in V for (Z,∆) klt and KZ + ∆ ∈ V .

Remark 3.14. The map Φ : Zi 99K Zj is dominated by Z when Φ is induced by the geography of
ample models associated to the decomposition (4) of CR. When Φ = Li,j is a Sarkisov link, this is
equivalent to requiring that Xi 99KXj is dominated by Z and that the induced map Z 99K Ti,j
is the ample model for some nonzero Q-divisor D ∈ CR.

3.3 Residual rings and complexes

In this section, I define subrings of R associated to affine subspaces H ⊂ V , and show that, for
suitable choices of H, the geography of ample model induced by (4) on the support of these
subrings corresponds to running suitable relative Minimal Model Programs.

Definition 3.15. Let W be a subspace of DivR(Z) and D a nonzero Q-divisor. The affine
subspace H =D +W of dimension d6 ρ(Z) − 1 is in general position with respect to CR if
H ∩ CR is not contained in any union or intersection of cones Ai in (4).

Let A be a cone of dimension d in (5). An affine subspace H of dimension ρ(Z) − 1 − d is in
general position with respect to CR and A if it is in general position with respect to CR and if
H ∩ A 6= ∅.

The following two lemmas are reformulations of results in [HM13].

Lemma 3.16 [HM13, Corollary 3.4]. Let D ∈ V be a nonzero adjoint Q-divisor. For any k 6

ρ(Z) − 1 the subset U ⊂ Gr(k, V ) of k-dimensional affine subspaces D +W ⊂ V in general
position with respect to CR is Zariski dense.

Proof. This is an immediate consequence of the existence of the finite decomposition (4) into
rational polyhedral cones. ✷

Lemma 3.17. There is a one-to-one correspondence between edges of NR and elementary
Sarkisov links dominated by Z.

Proof. I use the notation of the proof of Proposition 3.1. First, I show that an edge of NR

determines an elementary link dominated by Z. Let vi, vj be vertices of NR that span a
1-simplex. Let i1, j1 ∈ B+(I) be such that Ai1 = v∗

i and Aj1 = v∗
j , and i0, j0 ∈ I be the indices of

the facets of CR with Ai1 ⊆ Ai0 and Aj1 ⊆ Aj0 . Denote by Xi/Si (respectively Xj/Sj) the Mori
fibre spaces Zi0/Zi1 (respectively Zj0/Zj1).

Let A = Ak be the object of B+(CR) dual to the 1-simplex {vi, vj} of NR. Then, A = Ai1 ∩ Aj1

and A has dimension ρ(Z) − 2. Let ϕ : Z −→ Ti,j be the ample model associated to the face A.
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Figure 2. Intersection of PR with a suitable affine plane H.

Then, by Theorem 2.16(iii), there are morphisms ϕi0,k and ϕj0,k that decompose as

Xi
ϕi0,i1−−−−−→ Si

ϕi1,k

−−−−→ Ti,j and Xi
ϕj0,j1−−−−−→ Sj

ϕj1,k

−−−−→ Ti,j

such that ϕ ≃ ϕi0,k ◦ ϕi0 ≃ ϕj0,k ◦ ϕj0 .

Fix D ∈ A ∩ DivQ(Z), and let H =D +W be a two-dimensional affine subspace in general
position with respect to CR and A. Then, CR ∩ H = PR ∩ H for a suitable base PR, and PR ∩ H
is as in Figure 2, where Qi = Ai ∩ H.

Since D is an exposed point of PR ∩ H and since the decomposition (4) is finite, there is a line
L such that (PR ∩ H) ∩ L contains no other vertices of PR ∩ H, and the only two-dimensional
polytopes Qi that L intersects contain D (e.g. a small translation of the supporting hyperplane
of PR ∩ H at D). Let A1, . . . , An be the facets of CR that have one-dimensional intersection with
L, where Ai ∩ H = Qi. Then, A ⊂ Al for l = 1, . . . , n, and there is a morphism Zl → Ti,j for all
l, with ρ(Zl/Ti,j) 6 2 by Remark 3.5 because dim A = dim Al − 2.

Let l0 be such that ρ(Zl0) is maximal. Then, again by Proposition 2.18, both Zl0 99KXi and
Zl0 99KXj are compositions of finitely many elementary contractions and by definition of l0, these
are birational contractions. Since ρ(Xi) and ρ(Xj) are both greater than or equal to ρ(Ti,j) + 1,

there are indices 1 6 i′, j′ 6 n and elementary contractions Zi′ = X̃i → Xi and Zj′ = X̃j → Xj

with Zl0 , X̃i, X̃j isomorphic in codimension 1, that fit in the following diagram.

X̃i
//________

��

X̃j

��

Xi

��

Xj

��

Si

  BB
BB

BB
BB

Sj

~~||
||

||
||

Ti,j

This shows that every edge of NR defines a Sarkisov link dominated by Z.

Conversely, let Li,j :Xi/Si 99KXj/Sj be an elementary Sarkisov link dominated by Z. Let vi
be the vertex of NR associated toXi/Si and vj that associated toXj/Sj , and, as above, denote by
Ai1 , Aj1 the dual facets of B+(CR). By Definition 3.13, Ai1 ∩ Aj1 6= ∅. But then, by definition of
the decomposition (4), there is an index k ∈ B+(I) with Ak = Ai1 ∩ Aj1 , and dim Ak = ρ(Z) − 2.
The vertices {vi, vj} span a 1-simplex dual to Ak. ✷

Corollary 3.18. Let [vi, vj ] be a 1-simplex of NR, A ∈ Ob B+(CR) its dual face and let
ϕ : Z −→ Ti,j be the ample model associated to A. The elementary Sarkisov link associated
to [vi, vj ] is of
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type I (respectively type III) if ϕi ≃ ϕ 6≃ ϕj (respectively ϕi 6≃ ϕ ≃ ϕj),

type II if ϕi ≃ ϕj , and type IV if ϕi 6≃ ϕ 6≃ ϕj .

Proof. This is a reformulation of the definition of the types of links. ✷

The next proposition is an extension of Lemma 3.17 to affine spaces of arbitrary dimension.
Explicitly, if H is in general position with respect to CR, there is a subring RH whose support
CR,H is the cone over CR ∩ H. There is a natural geography of models associated to the convex
geometry of CR,H , which behaves like the geography of models of a divisorial ring on some Z ′ of
Picard rank ρ(Z ′) = dimH + 1.

Proposition 3.19. Let H be an affine space of dimension d6 ρ(Z) − 1 in general position with
respect to CR. There is a finitely generated ring RH whose support CR,H has dimension d+ 1
and a decomposition

CR,H =
∐

A ′
i (6)

into cones A′
i with base Ai ∩ H, where Ai are the cones in (4); the cones A ′

i in (6) satisfy
Theorem 2.16(i)–(iv).

For every Ai in (4), when {0} 6= A′
i, the codimension of A ′

i in CR,H is that of Ai in CR. If
ϕi : Z −→ Zi is the ample model associated to A′

i with dim A ′
i = d+ 1, Zi is Q-factorial.

There are polyhedral complexes CR,H , B+(CR,H) naturally associated to (6); NR,H =
Ner(B+(CR,H))(d) is a subcomplex of NR.

Proof. Since H is in general position with respect to CR, H ∩ CR is a rational polytope of
dimension ρ(Z) − d − 1 whose vertices are of the form ε1(KZ + ∆1), . . . , εm(KZ + ∆m) ∈ CR

for εi ∈ Q, (Z,∆i) klt and ∆i big Q-divisors. Define RH =R(Z;KZ + ∆1, . . . , KZ + ∆m); then
RH is finitely generated and its support is the cone over H ∩ CR. The properties of the cones in
the decomposition of RH then follow from the fact that H is in general position. Also, if Ai ⊂ Aj

and Ai ∩ H 6= ∅, then Aj ∩ H 6= ∅ and dim Aj − dim Ai = dim A′
j − dim A′

i, so that NR,H is a
subcomplex of NR. ✷

Definition 3.20. Let C be a polyhedral complex, and A ∈ Ob(C). The residual complex resiA(C)
is the minimal subcomplex of C containing all objects c ∈ Ob C such that there is a map
{f : A −→ c} ∈ Mor C.

Lemma 3.21. Let A = Ai0 be a cone in (5), where i0 ∈ B+(I).

(i) Let A1, A2 be facets of resiA CR (and hence of CR). Then, Z1 99K Z2 is the composition
of a finite number of maps Zj 99K Zj′ that are either isomorphisms in codimension 1, morphisms
that contract a single divisor, or inverses of morphisms contracting a single divisor and, for all
j, j′, the diagram

Zj //_______

  AA
AA

AA
AA

Zj′

}}||
||

||
||

Zi0

commutes.

(ii) If H is an affine subspace in general position with respect to CR and A, then resiA CR ⊆
CR,H .

(iii) If A1, . . . , An are the cones in (4) such that H is in general position with respect to
A1, . . . , An, then CR,H = ∪ resiAi

(CR).
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Proof. For assertion (i), recall that by Theorem 2.16(iii), the diagram

Z
ϕ1

}}{{
{{

{{
{{ ϕ2

!!CC
CC

CC
CC

Z1
//_______

ϕ1,i0   BB
BB

BB
BB

Z2

ϕ2,i0
~~||

||
||

||

Zi0

commutes; the result follows immediately from the decomposition of the morphisms ϕ1, ϕ2 into
elementary contractions of Proposition 2.18(iv). Assertions (ii) and (iii) follow from the fact that
H is in general position and from the definition of the decomposition (4). ✷

Definition–Lemma 3.22. Let A = Ai0 be a cone in (5) of dimension d, where i0 ∈ B+(I). There
is an (ρ(Z) − d − 1)-dimensional affine subspace HA in general position with respect to CR such
that the cones A ′

i in the decomposition (6) of CR,HA
are in one-to-one correspondence with the

objects of resiA CR. The ring resiA R = RHA
is residual to A.

Proof. Let H be a (ρ(Z) − d)-dimensional affine subspace in general position with respect to
CR such that A ∩ H is zero-dimensional and CR ∩ H is (ρ(Z) − d)-dimensional. The intersection
A ∩ H is convex, so that A ∩ H = {D} is a single point.

Let A1, . . . , An be the cones distinct from A in (5) that are of dimension d and that
intersect H. Denote by D1, . . . , Dn the points A1 ∩ H, . . . , An ∩ H: D and D1, . . . , Dn are
vertices of the polytope CR ∩ H. Therefore, we may choose HA ⊆ H a suitably small translation
of the supporting hyperplane of CR ∩ H at D that is in general position with respect to CR, and
such that D belongs to one of the half-space of H defined by HA, the vertices D1, . . . , Dn to
the other half-space, and the only cones A ′

i that have nonempty intersection with HA contain D
(i.e. are of the form A ′

i = Ai ∩ H, with A ⊂ Ai).
Let CR,HA

=
∐

A ′′
i be the decomposition induced by (4) on the support of RHA

. Then,
by construction and by Lemma 3.21(ii), there is a one-to-one correspondence between cones
{0} 6= A′′

i and objects A 6= Ai of resiA CR; this is what we wanted. ✷

The next lemma is a reformulation of a key idea in [HM13], and implies Theorem 1.2. It shows
that, similarly to Definition–Lemma 2.20, decompositions of birational maps between Mori fibre
spaces correspond to edge paths on NR, or, equivalently, as in Remark 2.21, to suitable paths
on ∂+CR.

Lemma 3.23. Assume the setup of Notation 3.6. Let Φ :X/S 99K Y/T be a map in the collection
(Φ = Φj,j′ for some j, j′). If vX/S and vY/T are the vertices of NR associated to X/S and
Y/T , there is an edge path (v0, . . . , vn) on NR with v0 = vX/S and vn = vY/T on NR. Further,
Φ ≃ Ln−1,n ◦ · · · ◦ L0,1, where Lj,j+1 is the elementary Sarkisov link associated to the 1-simplex
{vj , vj+1}.

There is a one-to-one correspondence between edge paths on NR and the decompositions of
birational maps Xj/Sj 99KXj′/Sj′ into elementary Sarkisov links dominated by Z.

Proof. Let AS and AT be the facets of B+(CR) dual to vX/S and vY/T , and AX , AY the associated
facets of CR. Denote by f : Z −→ X and g : Z −→ Y the ample models associated to AX , AY .

I first show that if Φ is dominated by Z, there is a well-defined edge path on NR from
vX/S to vY/T that decomposes Φ into elementary links. It is enough to prove that there is a
two-dimensional affine subspace H of V in general position with respect to R such that vX/S
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and vY/T belong to the same connected component of NR,H . Dually, this is equivalent to showing
that AS ∩ H and AT ∩ H belong to the same connected component of ∂+PR ∩ H.

By Proposition 3.1(iii), there is a klt pair (Z,∆), with KZ + ∆ ∈ V not pseudoeffective,
and ample Q-divisors AX and AY such that f and g are results of log-MMPs for (Z,∆).
These results of log-MMPs are MMPs with scaling by AX and AY , i.e. KZ + ∆ +AX ∈ AS

and KZ + ∆ +AY ∈ AT ; this forces KZ + ∆ + (1 + ε)AX ∈ AX and KZ + ∆ + (1 + ε)AY ∈ AT

for 0< ε ≪ 1. By Lemma 3.16, up to small perturbation of AX , AY , and ∆, we may further
assume that H = (KZ + ∆) + R+AX + R+AY ⊆ V is in general position with respect to CR.
Write PR,H = CR ∩ H and Qi = Ai ∩ H. By construction, QS and QT and hence also ∂+PR,H

are one-dimensional. Since KZ + ∆ 6∈ PR,H ,

T = {KZ + ∆ + λ(tAX + (1 − t)AY ) | λ > 0, t ∈ [0, 1]} ∩ ∂PR,H

is one-dimensional, and intersects QS and QT in a one-dimensional locus. A divisor D ∈ T is not
big, as this would imply that there is t6 1 such that KZ + ∆ + tAX or KZ + ∆ + tAY is big.
Therefore, T ⊆ ∂+PR,H and QS and QT belong to the same component of ∂+PR,H .

Since vX/S and vY/T belong to the same path-connected component of NR, there is an

edge path (v0, . . . , vn) on NR with v0 = vX/S and vn = vY/T . Since Φ ≃ fn ◦ f−1
0 and since each

Lj,j−1 ≃ fj ◦ f−1
j−1, then Φ ≃ Ln,n−1 ◦ · · · ◦ L0,1 is a decomposition of Φ into elementary Sarkisov

links.

Conversely, an edge path of NR defines a birational map Φ which is the composition of the
elementary Sarkisov links associated to its edges, and Φ is dominated by Z by construction. ✷

4. Relations in the Sarkisov program

Let Φj,j′ :Xj/Sj 99KXj′/Sj′ be a birational map between Mori fibre spaces; by Theorem 1.2,
Φj,j′ is the composition of a finite number of elementary Sarkisov links. However, in general, this
decomposition needs not be unique. In this section, I study relations in the Sarkisov program,
i.e. distinct factorisations of this form of a given Φj,j′ . More precisely, I show that a factorisation of
Φj,j′ into elementary Sarkisov links corresponds to an edge path on a suitable simplicial complex
NR. As a consequence, relations are determined by the fundamental group of ∂+CR, the locus of
CR that consists of nonzero divisors that are not big, where R is a suitable divisorial ring.

4.1 Sarkisov program and edge paths on NR

In this section, I define elementary relations in the Sarkisov program and show that they
correspond to generators of the edge path group of NR.

Definition 4.1. A (nontrivial) relation in the Sarkisov program is a composition of r > 2
Sarkisov links

Id ≃ Lr−1,r ◦ · · · ◦ L0,1 (7)

which defines an automorphism of X0 ≃ Xr that commutes with X0 → S0.

The relation (7) is elementary if, in addition, no proper subchain of links in (7) forms a
relation, i.e. Lj,j−1 ◦ · · · ◦ Li+1,i 6≃ Id for any 1< i < j 6 r, and if, for all i, Li+1,i ◦ Li,i−1 is not
an elementary Sarkisov link.

The relation is dominated by a normal projective variety Z if Z dominates all the elementary
Sarkisov links Lj,j−1.
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Consider a relation in the Sarkisov program, and let Z and R be associated to the collection
{X1/S1, . . . , Xr−1/Sr−1; Lj+1,j} as in Proposition 3.1. By Lemma 3.23, we may assume that
NR is connected (or equivalently that ∂+CR is connected and purely (ρ(Z) − 1)-dimensional) to
study birational maps dominated by Z. This is not restrictive: given a map Φ :X/S 99K Y/T
dominated by Z, R may be replaced by a subring to get rid of components of ∂+CR that do not
contain vX/S and vY/T . This is achieved as in the proof of Proposition 3.1(iv). The next result
is a simple consequence of Lemma 3.23.

Corollary 4.2. There is a one-to-one correspondence between elementary relations in the
Sarkisov program dominated by Z and equivalence classes of edge paths (v0, . . . , vn) on NR

with v0 = vn and vi 6= vj for any 0< i < j 6 n. Equivalently, there is a one-to-one correspondence
between elementary relations in the Sarkisov program dominated by Z and generators of the
fundamental group π1(∂

+PR). When ρ(Z) > 4, π1(∂
+PR) ≃ π1(∂

+CR).

Proof. Lemma 3.23 associates to any nontrivial relation dominated by Z an edge loop
(v0, . . . , vn) on NR based at v0. When the relation is elementary, (v0, . . . , vn) is a simple edge
loop, because vi = vj for 0 6 i < j < N would contradict the definition. Also, since Li+1,i ◦ Li,i−1

is not a Sarkisov link, {vi, vi+1, vi} never spans a simplex, and (v0, . . . , vn) is the ‘minimal’ edge
loop in its equivalence class. This shows that an elementary relation defines the equivalence class
of a generator of E(NR). The converse is clear by construction of NR. Since NR is connected,
E(NR, v) is independent of the choice of v = v0.

For the last assertion, recall that E(NR) ≃ π1(|NR|), and π1(|NR|) ≃ π1(|B+(QR)|) by
Lemma 2.5. However, as noted in Remark 3.9, ∂+PR is the underlying space of B+(QR). Similarly,
E(Ner B+(CR)) ≃ π1(∂

+CR), and since the edge path group of a simplicial complex only depends
on its 2-skeleton, E(NR) = E(Ner B+(CR)) when ρ(Z) > 4. ✷

Standard results in Algebraic Topology give the following description of E(N R). The
1-skeleton of NR is a connected combinatorial graph. Let TR be a spanning tree, i.e. an edge
path (v0, . . . , vn) containing all vertices of NR but no cycle, and let A be the set of edges of NR

that are not in TR. Then, E(NR) is the set of equivalence classes of the group freely generated
by the fundamental cycles {γi,j | {vi, vj} ∈ A}, where γi,j is the class of the cycle obtained by
adding {vi, vj} ∈ A to TR.

Corollary 4.3. If dim CR = 3, then E(NR) is either trivial or generated by a single element γ.

Proof. When dim CR = 3, ∂PR is homeomorphic to S1, and E(NR) is trivial when ∂+PR ( ∂PR

and generated by an element γ otherwise. The path γ is naturally dual to the complex B+(QR). ✷

Example 4.4. Recall the setting of Example 3.12. The group E(NR) is generated by the unique
fundamental cycle through all vertices, and there is a unique elementary relation of the Sarkisov
program dominated by Z, which is the relation (1) mentioned in the introduction.

Convention 4.5. So far, I always assumed that dim CR > 2. When CR is two-dimensional, the
situation is that studied in the two-ray game, and there is at most one Sarkisov link: NR consists
of at most one vertex. Set E(NR) to be the trivial group when dim CR = 2.

4.2 Relations on three-dimensional rings

In this section, I give a geometric description of E(NR) when ρ(Z) = 3. There is a fairly explicit
description of two-ray configurations on varieties Z with ρ(Z) = 2 and rational polyhedral
pseudoeffective cone. This leads to the definition of four types of elementary Sarkisov links.
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When ρ(Z) = 3, there is no such description: any attempt at a classification elementary relations
in the Sarkisov program is essentially qualitative.

Definition 4.6. Let γ = (v0, . . . , vn) be an edge path on NR, and denote by Ai = v∗
i , and by

Z −→ Si the ample model associated to Ai. Assume that ρ(S0) = min{ρ(Sj)}, and set S = S0

and ρ= ρ(S0).
The path γ is of type A if, for some n1 < n2 < n or n1 = n2 = n,

{vj−1, vj} is of type II or IV unless j = n1 or n2,

{vn1−1, vn1
} is of type I, and {vn2−1, vn2

} is of type III.

In this case, ρ(Sj) = ρ+ 1 for n1 6 j 6 n2 − 1, and ρ(Sj) = ρ otherwise.
The path γ is of type B if there are n1 < n2 < n such that

{vj−1, vj} is of type II or IV for j < n1 and j > n2,

{vn1−1, vn1
} is of type I and {vn2−1, vn2

} of type III, and

(vn1
, . . . , vn2−1) is the product of finitely many paths of type A.

In this case, ρ(Sj) = ρ+ 1 or ρ+ 2 for n1 6 j 6 n2 − 1, and ρ(Sj) = ρ otherwise.

Corollary 4.7. Assume that dim CR = 3. A nontrivial edge loop (v0, . . . , vn) ∈ E(NR) is the
composition of finitely many paths of type A or B. An elementary relation Ln,n−1 ◦ · · · ◦ L1,0 of
the Sarkisov program dominated by Z is the composition of finitely many chains of elementary
links of type A or B.

Proof. Let Xj/Sj be the Mfs associated to each vertex vj and assume that ρ(S0) = ρ=
min{ρ(Sj)}. As noted above, E(NR) is nontrivial precisely when ∂+PR = ∂PR is homeomorphic
to S1. Consider ∂PR equipped with the triangulation induced by the decomposition (4); then
∂PR is a simplicial complex dual to NR. There are two cases. If S0 is not a point, ρ> 1 and
the generator of E(NR) (i.e. the dual of ∂PR) is the composition of a finite number of edge
paths of the form L1 ∪ L2 ∪ L3, where L1, L2 and L3 are connected, and for each vi ∈ L1 ∪ L3

(respectively vi ∈ L2), ρ(Si) = 1 (respectively ρ(Si) = 2); L1 ∪ L2 ∪ L3 is of type A.
If ρ= 0, the generator of E(NR) is the composition of finitely many edge paths of the form

L1 ∪ L2 ∪ L3, where each Li is connected, L2 is a path of type A, and Si is a point (respectively
ρ(Si) = 1 or 2) for all vi ∈ L1 ∪ L3 (respectively vi ∈ L2); L1 ∪ L2 ∪ L3 is of type B. ✷

Corollary 4.8. Assume that dim CR = ρ> 3 and let A be a cone in (4) of dimension ρ − 3
that contains no big divisor. Then E(resiA NR) is trivial or is the free group generated by an
edge-loop (v0, . . . , vn) which is the composition of finitely many chains of type A or B.

Proof. Recall from Definition–Lemma 3.22 that resiA R is a finitely generated ring with three-
dimensional support. By Corollary 4.3, E(resiA NR) is trivial or generated by a single edge loop
(v0, . . . , vn). Denote by Z −→ S the ample model associated to the cone A. By Lemma 3.21, the
proof of Corollary 4.7 applies to this situation after replacing ‘point’ by S because all relevant
contractions occur over S. ✷

The goal of Example 4.9 is to show that both types of relation in the Sarkisov program
are realised among the end products of the MMP on a terminal Q-factorial Fano 3-fold Z with
ρ(Z) = 3. Let {Xi/Si} be the Mori fibre spaces that are results of the MMP on Z. The 3-fold Z
admits no small contraction and is a common resolution of allXi. IfD1, D2, D3 is a basis of Eff(Z)
and A ∼Q −KZ , the ring R(KZ +A+D1, KZ +A+D2, KZ +A+D3) is finitely generated and
has support EffR(Z). Then, Z, R are associated to the collection of Xi/Si and Sarkisov links
dominated by Z.
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Figure 3. Geography of ample models of a Picard rank 3 Fano 3-fold: Case 1.

Figure 4. Geography of ample models of a Picard rank 3 Fano 3-fold: Case 2.

Example 4.9. The methods of [MM86] can be used to classify the polytopes PR and complexes
QR. The numbers between parentheses are those in the classification of [MM81], and n is the
number of chambers of maximal dimension in the coarsest decomposition (4). In the figures,
the faces Qi of dimension 1 and 2 are labelled by the associated ample models except when this
model is Z −→ {P}.

Case 1. The 3-fold Z admits no E1-contraction to a Fano 3-fold (Figure 3). Either Z admits
no E1 contraction and n= 1 (1, 27), or Z admits an E1-contraction to a weak Fano 3-fold and
n= 3 (2, 31). The relation is of type A.

Case 2. The 3-fold Z is not primitive and admits a structure of Mori fibre space (Figure 4).
There are three cases: n= 2 (4, 28), n= 3 (3, 8, 17, 24) and n= 4 (6, 10, 25, 30). Here, ρ(Xi) = 2
and ρ(V ) = 1. The relation is of type A in the first two cases, and of type B in the last one.

Case 3. The 3-fold Z is not primitive and has no Mori fibre space structure (Figure 5). There
are two cases with n= 5 that correspond to whether the interior chambers yield ample models
with ρ= 2 only (7,13) or not (11, 12, 15, 16, 20, 26, 22), one with n= 6, and one with n= 8.
Again, ρ(Xi) = 2 and ρ(Vj) = 1. The relation is always of type A.

Remark 4.10. Example 4.9 shows that both types of elementary relations in the Sarkisov program
occur among the end products of the MMP of Fano 3-folds with ρ= 3. Note that the end products
of the MMP on a Picard rank 3 del Pezzo surface only give an example of a relation of type
A (see Example 4.4 and (1)). Since (1) and (25) in the classification of [MM81] are toric, both
types of relations actually occur among the end products of the MMP on toric Fano 3-folds.
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Figure 5. Geography of ample models of a Picard rank 3 Fano 3-fold: Case 3.

Lastly, P3/{P} is among the end products of the MMP on (11) and of (25), and this shows that
both types of relations are realised in the Cremona group of P3.

4.3 General case

I now make precise the statement that relations in the Sarkisov program are generated by
relations of the type occurring among the end products of the MMP on Picard rank 3 Fano
3-folds.

Theorem 4.11. The edge path group E(NR) is generated by edge loops {γA | E(resiA NR) =
Z[γA]} as A ranges over (ρ(Z) − 3)-dimensional cones in (4) that contain no big divisor.

Corollary 4.12. Relations in the Sarkisov program are generated by elementary relations.
These are compositions of finitely many chains of type A or B, and there are examples of
relations of type A and B induced by the MMP on nonsingular Fano 3-folds of Picard rank 3.

Proof. Let I ′, I ′′ ⊂ B+(I) be such that I ′ = {i ∈ B+(I) | dim Ai = ρ(Z) − 3}, and I ′′ = {i ∈
B+(I) | dim Ai = ρ(Z) − 2, Aj 6⊂ Ai for j ∈ I ′ }. For each i ∈ B+(I) and cone Ai in (6), let
resiAi

R be the (ρ(Z) − d)-dimensional residual ring as in Definition–Lemma 3.22. Then, the
1-skeleton of NR is

N
(1)
R

=
⋃

i∈I′

resiAi
NR ∪

⋃

i∈I′′

resiAi
NR.

By Corollary 4.3, E(resiAi
NR) is trivial for all i ∈ I”, and by Corollary 4.7, E(resiAi

NR) is
either trivial or of the form Z[γAi

] for i ∈ I ′. Since NR is connected, by the van Kampen theorem,

E(N
(1)
R

) is generated by the groups E(resiAi
NR). Corollary 4.12 then follows immediately from

Corollary 4.8, Example 4.9 and Remark 4.10. ✷

Remark 4.13. Note that E(NR) is not in general freely generated by the loops γAi
when dim CR >

3. The loops γAi
generate the free group E(N

(1)
R

). When dim CR > 3, NR 6= N
(1)
R

, and the relations
in E(NR) depend on the 2-skeleton of NR, that is by faces A of dimension ρ(Z) − 4. For example,
there is a relation between γA1

and γA2
when A3 = A1 ∩ A2 has dimension ρ(Z) − 4, so that

resiA1
NR and resiA2

NR both are subcompanies of resiA3
NR. In general, these relations between
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Figure 6. The 1-skeleton of NEff S .

relations in the Sarkisov program can be more complicated, but they are accounted for by
divisorial rings with four-dimensional support.

Example 4.14. To conclude, I determine the edge loops on NEff S , for S a smooth del Pezzo
surface S with ρ(S) = 4. Let S be the blow up of P2 in three points {P1, P2, P3}; then
CR = Eff(S) = Eff(S) is a rational polyhedral cone of dimension 4. Let E1, E2, E3 be the (−1)-
curves and L1, L2, L3 the proper transforms of lines through two of the three points Pi on P2.
Let S → Si (resp S → Ti) be the contraction of Ei (resp of Li). The vertices of NR are as follows:

(1) (respectively (14)) corresponds to the ample model S −→ P2 → pt factoring through the
three maps S −→ Si (respectively S −→ Ti);

(2, 3, 4) (respectively (11, 12, 13)) correspond to the three ample models S −→ F1 → P1

factoring through S −→ Si (respectively S −→ Ti);

(5, 6) (respectively (7, 8), respectively (9, 10)) are the ample models S −→ P1 × P1 → P1

factoring through S −→ S1 and S −→ T1 (respectively S2, T2 and S3, T3).

Figure 6 illustrates the 1-skeleton of NR. Here, there are nine faces of B+(CR) of dimension 1,
NR =

⋃
i∈I′ ResA NR and the associated cycles have the following interpretation:

(1, 2, 5, 6, 3) (respectively (1, 3, 9, 10, 4), respectively ((1, 2, 7, 8, 4))) corresponds to
relations among the end products of the MMP on S1 (respectively on S2, respectively on
S3);

(12, 9, 10, 13, 14) (respectively (11, 5, 6, 12, 14), respectively (11, 7, 8, 13, 14)) corresponds
to relations among the end products of the MMP on T1 (respectively on T2, respectively on
T3);

(2, 5, 7, 11), (3, 9, 12, 6) and (4, 8, 10, 13) correspond to relations among the end products
of the MMP of S over each of the three P1 that arise as ample models S −→ P1 for some
D ∈ Eff(S).

As a by-product, this example shows how to recover all factorisations of the quadratic involution
P2 99K P2; these correspond to edge-loops through the two vertices of NR associated to the two
distinct maps S −→ P2 → {P}.
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KKL13 A.-S. Kaloghiros, A. Küronya and V. Lazić, Minimal models and extremal rays, Advanced
Studies in Pure Mathematics (Mathematical Society of Japan, Tokyo, 2013).

KK11 M. Kapovich and J. Kollár, Fundamental groups and links of isolated singularities, Preprint
(2011), math.AG/1109:4047.

Kaw08 Y. Kawamata, Flops connect minimal models, Publ. Res. Inst. Math. Sci. 44 (2008), 419–423.

Kol92 J. Kollár, Flips and abundance for algebraic threefolds, Astérisque 211 (Société Mathématique
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