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with k-Set Agreement in Message-Passing Systems
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Abstract: The k-set agreement problem is a coordination problem where each process is assumed to propose a value

and each process that does not crash has to decide a value such that each decided value is a proposed value and at most

k different values are decided. While it can always be solved in synchronous systems, k-set agreement has no solution

in asynchronous send/receive message-passing systems where up to t ≥ k processes may crash.

A failure detector is a distributed oracle that provides processes with additional information related to failed pro-

cesses and can consequently be used to enrich the computability power of asynchronous send/receive message-passing

systems. Several failure detectors have been proposed to circumvent the impossibility of k-set agreement in pure asyn-

chronous send/receive message-passing systems. Considering three of them (namely, the generalized quorum failure

detector Σk, the generalized loneliness failure detector Lk and the generalized eventual leader failure detector Ωk) the

paper investigates their computability power and the relations that link them. It has three mains contributions: (a) it

shows that the failure detector Ωk and the eventual version of Lk have the same computational power; (b) it shows

that Lk is realistic if and only if k ≥ n/2; and (c) it gives an exact characterization of the difference between Lk (that

is too strong for k-set agreement) and Σk (that is too weak for k-set agreement).

Key-words: Asynchronous message-passing system, Distributed computability, Equivalence, Eventual leader, Fail-

ure detector, Fault-tolerance, Impossibility, Quorum, Realistic failure detector, Reduction, k-Set agreement, Theory.
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trop forts et d’autres trop faibles. Ce rapport a pour but de déterminer l’espace qui sépare les premiers des seconds

afin d’essayer de se rapprocher du détecteur minimal.

Mots clés : détecteur de fautes, k-accord, leader, tolérance aux fautes, oracle, réduction algorithmique, système

asynchrone.

* Projet ASAP: équipe commune avec l’INRIA, le CNRS, l’université Rennes 1 et l’INSA de Rennes, achour@irisa.fr
** IUF and Projet ASAP: équipe commune avec l’INRIA, le CNRS, l’université Rennes 1 et l’INSA de Rennes, raynal@irisa.fr

*** Projet ASAP: équipe commune avec l’INRIA, le CNRS, l’université Rennes 1 et l’INSA de Rennes, jstainer@irisa.fr

c©IRISA – Campus de Beaulieu – 35042 Rennes Cedex – France – +33 2 99 84 71 00 – www.irisa.fr



1 Introduction

On failure detectors Let us observe that in asynchronous systems where the only means for processes to commu-

nicate is using send/receive message-passing, no process is able to know if another process has crashed or is only

very slow. The concept of a failure detector originates from this simple observation. A failure detector is a device

(distributed oracle) whose aim is to enrich a distributed system by providing alive processes with information on failed

processes [6]. Several classes of failure detectors can be defined according to the type of information on failures they

provide to processes (see [16] for an introduction to failure detectors).

The k-set agreement problem This problem, that has been introduced by S. Chaudhuri [8], is a coordination prob-

lem that generalizes the consensus problem. It can be defined as follows [8, 15]. Each process proposes a value and

every non-faulty process has to decide a value (termination) in such a way that any decided value is a proposed value

(validity) and no more than k different values are decided (agreement). The problem parameter k defines the coordi-

nation degree: k = 1 corresponds to its most constrained instance (consensus) while k = n − 1 corresponds to its

weakest non-trivial instance (called set agreement).

Let t be the model parameter that denotes the upper bound on the number of processes that may crash in a run,

1 ≤ t < n. If t < k, k-set agreement can be trivially solved in both synchronous and asynchronous systems: k
predetermined processes broadcast the values they propose and a process decides the first proposed value it receives.

Hence, the interesting setting is when k ≥ t, i.e., when the number of values that can be decided is smaller or equal to

the maximal number of processes that may crash in a run.

Algorithms that solve the k-set agreement problem in synchronous message-passing systems when k ≤ t are

presented in [1, 13, 18]. These algorithms are based on a sequence of synchronous communication rounds. It is shown

in the three books previously referenced that ⌊ t
k
⌋ + 1 rounds are necessary and sufficient to solve k-set agreement.

(This lower bound is still valid in more severe failure models such as general omission failures [18].)

For crash-prone asynchronous systems (be the communication medium a read/write shared memory or a send/receive

message-passing network) the situation is different, namely, the k-set agreement problem has no solution when t ≥ k
[5, 12, 20].

The cases k = 1 and k = n − 1 in message-passing systems When k = 1, as already indicated k-set agreement

boils down to consensus, and it is known that the failure detector denoted Ω is the weakest to solve consensus in

asynchronous message-passing systems where t < n/2 [7]. Ω ensures that there is an unknown but finite time after

which all the processes have the same non-faulty leader (before that time, there is an anarchy period during which

each process can have an arbitrarily changing leader). This lower bound result is generalized in [10] where the failure

detector Σ is introduced and it is shown that the pair 〈Σ,Ω〉 is the weakest failure detector to solve consensus in

message-passing systems when t < n. This means that Σ is the minimal additional power (as far as information on

failures is concerned) required to overcome the barrier t < n/2 and attain t ≤ n − 1. Actually, the power provided

by Σ is the minimal one required to implement a shared register in a message-passing system [4, 10]. Σ provides each

process with a quorum (set of process identities) such that the values of any two quorums (each taken at any time)

intersect, and there is a finite time after which any quorum includes only correct processes. Fundamentally, Σ prevents

partitioning. A failure detector 〈Σ,Ω〉 outputs a pair of values, one for Σ and one for Ω.

The Loneliness failure detector (denoted L) has been proposed in [11] where it is proved that it is the weakest

failure detector for solving (n−1)-set agreement in the asynchronous message-passing model. Such a failure detector

provides each process p with a boolean (that p can only read) such that the boolean of at least one process remains

always false and, if all but one process crash, the boolean of the remaining process becomes and remains true forever.

It is important to notice that, albeit surprisingly, the weakest failure detector for (n− 1)-set agreement is not the same

in the read/write shared memory model (where it is Ωn−1) and the send/receive message-passing model (where it is

L).

Unfortunately, the weakest failure detector for k-set agreement when 1 < k < n − 1 in message-passing asyn-

chronous crash-prone systems is not yet known. The interested reader will find an introductory survey on failure

detectors suited to k-set agreement in [19].
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Content of the paper Among the failure detectors for k-set agreement, 1 ≤ k ≤ n − 1, that have been proposed

in the past few years, this paper investigates the relations on three of them, namely the ones denoted Lk, Ωk and Σk

(their precise definitions are given in Section 3). The failure detector Ωk, introduced in [14], is a generalization of Ω
(Ω1 is Ω).

The failure detector Lk, introduced in [2], is a generalization of L. It allows the k-set agreement problem to be

solved in message-passing despite asynchrony and any number of process crashes. Unfortunately, Lk has been proved

to be (a little bit) too strong to solve k-set agreement. Hence, the question “How much stronger is it?”

The failure detector Σk, introduced in [3], is a generalization of Σ. It is shown in [3] that Σk is necessary (but

unfortunately not sufficient) to solve k-set agreement. Hence, the question “How much weaker is it?” It is also shown

in [3] that Σn−1 and Ln−1 are equivalent (they provide processes with the same computational power).

Answering the two previous questions seems difficult as it would provide us with key elements to obtain the

weakest failure detector for asynchronous message-passing k-set agreement. Hence, we consider a more modest

question in this paper whose answer will help us better understand and pave the way to the discovery of the weakest

failure detector for message-passing k-set agreement. The question is “Which is the property that has to be added to

Σk in order to obtain exactly Lk?” To be more explicit let Xk be this property. Answering this question means solving

the equation 〈Σk, Xk〉 ≃ Lk where Xk is the unknown and ≃ means “have the same computational power”. This

paper has three contributions.

• It first focuses on the implementability of Lk in a synchronous system. Let us remember that a failure detector

is realistic if it can be implemented in a synchronous system [9]. The paper shows that k ≥ n/2 is a necessary

and sufficient requirement for Lk to be realistic.

• It then answers the previous question by giving Xk.

• It finally shows that the “eventual” version of Lk, which we denote ✸Lk, is nothing else than Ωk. (“Eventual”

means that the property of Lk are required to be satisfied only after some finite time).

Roadmap The paper is made up of 8 sections. Section 2 presents the base computation model and the k-set agree-

ment problem. Section 3 introduces the failure detectors in which we are interested, i.e., Σk, Lk and Ωk. Section 4

presents an Lk-based k-set agreement algorithm due to [2]. The next three sections are the contributions of the paper:

Section 5 is on the realism of Lk, Section 6 solves the equation 〈Σk, Xk〉 ≃ Lk, while Section 7 shows that ✸Lk and

Ωk are equivalent. Finally, Section 8 concludes the paper.

2 Base computation model and k-set agreement

2.1 Computation model

Process model The system consists of a set of n sequential processes denoted p1, ..., pn. Π = {1, . . . , n} is the

set of process identities. Each process executes a sequence of (internal or communication) atomic steps. A process

executes its code until it possibly crashes (if it ever crashes). After it has crashed, a process executes no more step. A

process that crashes in a run is said faulty in that run, otherwise it is correct. Given a run, C and F denote the set of

processes that are correct and the set of processes that are faulty, respectively. Up to t = n− 1 processes may crash in

a run, hence, 1 ≤ |C| ≤ n.

Communication model The processes communicate by executing atomic communication steps which are the send-

ing or the reception of a message. Every pair of processes is connected by a bidirectional channel. The channels

are failure-free (no creation, alteration, duplication or loss of messages) and asynchronous (albeit the time taken by a

message to travel from its sender to its receiver is finite, there is no bound on transfer delays). The notation “broadcast

MSG_TYPE(m)” is used as a (non-atomic) shortcut for “for each j ∈ Π do send MSG_TYPE(m) to pj end for”.

Underlying time model The underlying time model is the set N of natural integers. As we are in an asynchronous

system, this time notion is not accessible to processes (hence, the model is sometimes called time-free model). It can

only be used from an external observer point of view to state or prove properties. Time instants are denoted τ , τ ′, etc.
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Notation The previous asynchronous crash-prone message-passing system model is denoted AMP[∅]. AMP
stands for “AsynchronousMessage-Passing”; ∅ means the “base” system (not enriched with a failure detector).

2.2 The k-set agreement problem

As already indicated, the k-set agreement problem has been introduced by Soma Chaudhuri [8]. It generalizes the

consensus problem (that corresponds to k = 1). It is defined as follows. Each process proposes a value and has to

decide a value in such a way that the following properties are satisfied:

• Termination. Every correct process decides a value.

• Validity. A decided value is a proposed value.

• Agreement. At most k different values are decided.

3 The failure detectors Ωk, Σk and Lk

This section presents the three failure detectors we are interested in. (People interested in the underlying assumptions

and algorithms to implement failure detectors in asynchronous systems can consult Chapter 7 of [17].)

The system modelAMP[∅] enriched with any of these failure detectors A is denotedAMP[A]. A failure detector

provides each alive process pi with a read-only local variable, say xxxi. The value of xxxi at time τ is denoted xxxτ
i .

3.1 The eventual leadership failure detector Ωk

The failure detector Ωk has been introduced in [14]. Its local output at pi is a set denoted leadersi . Ωk is defined by

the two following properties.

• Validity. ∀i, ∀τ : (leadersτ
i
⊂ Π) ∧ (|leadersτ

i
| = k).

• Eventual leadership. ∃ LD , ∃ τ : (LD ∩ C 6= ∅) ∧ (∀τ ′ ≥ τ, ∀i ∈ C : leadersτ
′

i
= LD).

Validity means that the values of leadersi are k process identities. Eventual leadership states that, after some

unknown but finite time, all correct processes have the same set of leaders and at least one of these leaders is a correct

process. Before all processes are provided with the same set of leaders, there is possibly an unknown but finite anarchy

period during which the sets leadersi have arbitrary values.

The failure detector from which Ωk originates is Ω (which is the same as Ω1). As already noticed, Ω has been

introduced in [7] where it is shown to be the weakest failure detector to solve consensus in message-passing systems

with a majority of correct processes. It has later been shown in [10] that 〈Σ,Ω〉 is the weakest failure detector to solve

consensus for t = n− 1.

3.2 The quorum failure detector Σk

The failure detector Σk has been introduced in [3]. It is a generalization of the failure detector Σ (called quorum failure

detector) introduced in [10] where it is shown to be the weakest failure detector to implement a register in AMP[∅]
(Σ1 is Σ).

The local output at pi of Σk is a set qri (called quorum) that satisfies the following properties.

• Liveness. ∃ τ : ∀ i ∈ C, ∀ τ ′ ≥ τ : qrτ
′

i ⊆ C.

• Intersection. Let I = {idx}1≤x≤k+1 ⊂ Π be a multiset of k + 1 process identities. Let T = {τx}1≤x≤k+1 be

a multiset of k + 1 time instants. ∀ I, ∀ T : ∃ i, j ∈ [1..k + 1] : (i 6= j) ∧ (qrτiidi
∩ qr

τj
idj
6= ∅).

The liveness property states that the quorum of a correct process eventually includes only correct processes. The

intersection property states that any set of k+1 quorums, whose values are taken at any times, contains two intersecting

quorums. This means that the intersection property prevents processes to partition in more than k subsets. It is shown

in [3] that Σk is necessary when one wants to solve k-set agreement in AMP[∅].
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3.3 The loneliness failure detector Lk

The Lk family introduced in [2] is a generalization of the failure detector L proposed in [11] where it is shown that L
is the weakest failure detector for (n− 1)-set agreement in asynchronous message-passing systems. Ln−1 is L.

The local output at pi of Lk is a boolean variable alonei that satisfies the following two properties (after a process

pi has crashed, we have alonei = false by definition).

• Stability. ∃K ⊂ Π : (|K| = n− k) ∧ (∀ i ∈ K, ∀ τ : aloneτi = false).

• Loneliness. (|C| ≤ n− k) ⇒ (∃ i ∈ C, ∃τ : ∀ τ ′ ≥ τ : aloneτ
′

i = true).

Stability states that the boolean variables of at most k processes can take the value true , while the loneliness

property states that, if at least k processes crash, then there is a finite time after which there is a correct process pi
whose boolean variable alonei remains forever equal to true . An algorithm solving the k-set agreement problem in

AMP[Lk] due to [2] is described in the next section. It is also shown in [2] that, for 1 < k < n − 1, Lk is not the

weakest failure detector for k-set agreement in AMP[∅].

4 A k-set agreement algorithm for AMP [Lk]

Algorithm 1 is an Lk-based k-set agreement algorithm due to Biely, Robinson and Schmid [2]. This algorithm is

based on a sequence of asynchronous rounds (ri denotes the current round number of process pi). The local variable

esti is pi’s current estimate of its decision value; it is initialized to the value vi proposed by pi. The execution of the

statement return(v) returns the value v and terminates the invocation of set_agreementk().

when operation set_agreementk(vi) is invoked by pi:
(01) esti ← vi; ri ← 1;

(02) repeat forever

(03) for each j 6= i do send EST(ri, esti) to pj end for;

(04) wait until
(

(n− k) messages EST(ri,−) have been received
)

;

(05) esti ← min(esti, the estj received at the previous line);
(06) if (ri = k + 1)
(07) then for each j 6= i do send DEC(esti) to pj end for;

(08) return(esti)
(09) else ri ← ri + 1
(10) end if

(11) end repeat.

when
(

alonei ∨ DEC(v) is received
)

:

(12) if (DEC(v) received) then esti ← v end if;

(13) for each j 6= i do send DEC(esti) to pj end for;

(14) return(esti).

Algorithm 1: k-Set agreement in AMP[Lk] algorithm (code for pi) [2]

Algorithm description In each round, each non-crashed process pi first broadcasts a message EST(ri, esti) (line

03) to inform the other processes of its current estimate esti and waits until it has received (n− k) estimate messages

associated with its current round ri (line 04). When it has received these estimates, it computes the smallest of them

including its own estimate (line 05). Then if ri < k + 1, pi proceeds to the next asynchronous round (line 09). If

ri = k + 1, it broadcasts DEC(esti) to inform the other processes on the value it is about to decide (line 07) and then

decides it (line 08).

When considering lines 01-11 only, let us observe that pi can block forever at line 04 if more than k processes have

crashed. Such a permanent blocking is prevented by the combined use of the failure detector Lk and DEC() messages

(which ensures that, as soon as a process decides, all correct processes eventually decide). Observing that the boolean

alonei of at least one correct process pi becomes true when the number of alive processes becomes smaller than

or equal to n − k, we can conclude that this correct process pi unblocks the situation when this condition becomes

satisfied.
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On the power of Lk It is shown in [2] that, for n > 2 and k ≥ 2, Lk is either weaker than or not comparable to

Σ. As (a) consensus can be solved in both system models AMP[L1] and AMP[Σ,Ω], and (b) AMP[Σ,Ω] is the

weakest failure detector-based model in which consensus can be solved, it follows that AMP[L1] is not the weakest

failure detector-based model in which consensus can be solved. It also follows that, while Ln−1 = L is the weakest

failure detector for (n − 1)-set agreement [11], Lk, 1 ≤ k < n − 1, is not the weakest failure detector for k-set

agreement. But, as shown in the following theorem, Lk seems to be not too much stronger than what is necessary.

Theorem 1 [2] Let 2 ≤ k ≤ n − 1. k-Set agreement can be solved in AMP[Lk]. Moreover, (k − 1)-set agreement

cannot be solved in AMP[Lk]. (Proof in [2].)

5 On the implementability of Lk in a synchronous system

This section addresses the realism of Lk, i.e., its implementability in a synchronous distributed system.

Synchronous distributed system Synchrony is an abstraction that encapsulates (and hides) specific timing assump-

tions. A synchronous system provides the processes with a global clock r called round number which entails the

progress of the computation. The processes progress simultaneously from round to round. During a round, a process

sends a message to all processes, receives messages from other processes and executes local computation. The funda-

mental property associated with a synchronous system is that a message sent by a process during a round r is received

by the other processes during the very same round r. (More information on synchronous systems can be found in the

book [18] that is entirely devoted to such systems.)

Let SMP denotes a SynchronousMessage-Passing system made up of n processes, in which up to t = n − 1
processes may crash.

BuildingLk in SMP when k ≥ n/2 Algorithm 2 presents the code of such a construction for a process pi. Initially,

alonei is false. Then, during each round r, pi broadcasts a message ALIVE(i) to inform the other processes that it was

alive at the beginning of round r (line 04). Then, pi receives round r messages and updates rec_idsi accordingly (line

05). Finally, if rec_idsi contains at most n− k process identities, pi sets alonei to true (line 06).

(01) init alonei ← false;

(02) when r = 1, 2, ... do

(03) begin synchronous round

(04) broadcast ALIVE(i);
(05) rec_idsi ← { j such that ALIVE(j) received during the current round };
(06) if (|rec_idsi | ≤ n− k) then alonei ← true end if

(07) end synchronous round.

Algorithm 2: Building Lk in SMP when k ≥ n/2 (code for pi)

Lemma 1 Let k ≥ n/2. Algorithm 2 builds a failure detector Lk in SMP .

Proof Proof of the stability property. Let r be the first round during which a process pi sets alonei to true . This

means that at least k processes have crashed before sending their round r message to pi. Consequently, at most n− k
processes will ever set their boolean alonei to true . As k ≥ n/2 ⇒ n − k ≤ k, it follows that at least k processes

will never set their boolean variables to true which proves the property.

Proof of the loneliness property. If k or more processes crash during a run, for each correct process pi, there is a

round r such that pi receives at most n− k messages at every round r′ ≥ r, from which it follows that, from round r,

alonei remains forever equal to true . ✷Lemma 1

Lemma 2 It is not possible to build Lk in SMP when k < n/2.
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Proof Assuming by contradiction that there is a synchronous algorithmA that builds Lk (with k < n/2) in SMP , let

us consider a run rk+1 of A in which the processes p1, p2, ..., pk have initially crashed. It follows from the loneliness

property (guaranteed by A) that there is a process (say pk+1) whose boolean alonek+1 becomes eventually true and

remains afterward forever equal to true .

Let us now consider a second run rk+2 of A that is identical to rk+1 until alonek+1 becomes and remains forever

equal to true and such that, after that round, pk+1 crashes. As previously, it follows from the loneliness property

(guaranteed by A) that there is a process (say pk+2) whose boolean alonek+2 becomes and remains forever equal to

true . It is possible to continue to design similar runs rk+3, etc., until rn (in each rx, k + 1 ≤ x ≤ n, x− 1 processes

crash).

Hence, in the run rn, n−k processes pj have set their boolean variable alonej to true . As k < n/2⇒ n−k > k,

this contradicts the fact that the algorithmA guarantees the stability property of Lk, namely, at most k processes never

set their boolean variable to true . A contradiction from which the lemma follows. ✷Lemma 2

The next theorem follows from Lemma 1 and Lemma 2.

Theorem 2 k ≥ n/2 is a necessary and sufficient condition for Lk to be realistic.

Let us notice that the failures detectors P (perfect failure detector) [6], Σ, Σk, Ω, Ωk are realistic.

6 Relating Lk and Σk

This section determines the property that has to be added to Σk (which is necessary to solve k-set agreement) in order

to obtain exactly Lk. Let Xk be this property. Hence, this section solves the equation 〈Σk, Xk〉 ≃ Lk where Xk is the

unknown and A ≃ B means “AMP[A] and AMP[B] have the same computational power”.

6.1 The property Xk

Xk is designed to work with Σk. It is defined by the following property where qri is the output of Σk at pi.
• Loneliness. (|C| ≤ n− k) ⇒ (∃ i ∈ C, ∃τ : qrτi = {i}).

Hence, Xk requires that, when at least k processes are faulty, there a time instant at which the quorum of a correct

process contains only itself.

The next theorem follows directly from the lemmas 3 and 4 that are proved in the next two sections.

Theorem 3 AMP[Lk] and AMP[〈Σk, Xk〉] have the same computational power.

6.2 Building Lk in AMP [〈Σk, Xk〉]

Algorithm 3 presents a very simple algorithm that builds Lk in AMP[〈Σk, Xk〉]. The output alonei of each process

pi is initialized to false and is set to true if the predicate qri = {i} becomes satisfied at least once.

init alonei ← false;

when qri = {i}: alonei ← true .

Algorithm 3: Building Lk in AMP[〈Σk, Xk〉]

Lemma 3 Algorithm 3 builds Lk in AMP[〈Σk, Xk〉].

Proof The intersection property of Σk guarantees that at most k processes will execute the body of the when statement.

It follows that at most k processes pi will ever set their boolean to true which (combined with the initialization of the

variables alonei) proves the stability property of Lk.

The loneliness property of Xk implies that if k or more processes crash, there a time instant at which the predicate

qri = {i} will be satisfied at a correct process pi. Hence, this process pi will execute the body of the when statement

and we will then have alonei = true forever, which proves the loneliness property of Lk. ✷Lemma 3
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Remark Let us notice that the previous proof does not use the liveness property of Σk.

6.3 Building 〈Σk, Xk〉 in AMP [Lk]

Underlying principle and description of the algorithm Algorithm 4 relies on the observation of the predicate

qri = {i} that it makes stable (once satisfied, it remains forever satisfied).

The variable qri of each process is initialized to Π in order not to compromise the intersection property. Then, if

alonei becomes true, pi sets qri to {i} (line 03) and, from then on, qri will keep that value forever and pi repeatedly

informs of it the other processes by broadcasting a message ALONE(i).
When it receives ALONE(j) from another process (line 04), pi learns that qrj is keeping forever the value {j}. If

qri 6= {i}, pi updates accordingly qri to {i, j} in order to preserve the intersection property of Σk (line 05).

Independently of its other statements, pi repeatedly informs the other processes that it is alive (task T1 where

messages ALIVE(i) are broadcast forever). This triggers coordination among the processes even if no boolean alonei
becomes equal to true . Its aim is to ensure the liveness property of Σk.

The task T2 is associated with the processing of the ALIVE(j) received by pi. When it has received such messages

from (n− k) distinct processes, if qri has not stabilized on {i}, pi resets qri to the set containing i and the processes

from which alive messages have been received.

(01) init: qri ← Π; start T1, T2.

(02) when alonei becomes equal to true:

(03) qri ← {i}; repeat forever broadcast ALONE(i) end repeat.

(04) when ALONE(j) with j 6= i is received:

(05) if (qri 6= {i}) then qri ← {i, j} end if.

(06) task T1: repeat forever broadcast ALIVE(i) end repeat.

(07) task T2:

(08) repeat forever

(09) wait until
(

new ALIVE(j) messages with j 6= i received from n− k processes
)

;

(10) let proci = the set of n− k processes from which messages have been received;

(11) if (qri 6= {i}) then qri ← {i} ∪ proci end if

(12) end repeat.

Algorithm 4: Building 〈Σk, Xk〉 in AMP[Lk]

Lemma 4 Algorithm 4 builds 〈Σk, Xk〉 in AMP[Lk].

Proof Proof of the liveness property of Σk and the loneliness property of Xk.

Let A be the set of correct processes pi whose boolean variable alonei takes the value true . Due to line 02, each

process pi of A sets qri to {i} and, due to lines 05 and 11, it follows that qri remains forever equal to {i}, We consider

two cases.

• Case 1: There are k or more faulty processes (|C| ≤ n− k).

As |C| ≤ n − k, it follows from the loneliness property of Lk that A 6= ∅ which establishes the loneliness

property of Xk.

It follows from line 03 that each process pi of A broadcasts forever the message ALONE(i) and from line 05 that,

after all the messages ALONE() sent by faulty processes have been received, no process pj will add the identity

of a faulty process to its quorum qrj at line 05. Moreover, after k processes have crashed, the task T2 of each

correct process pi not in A eventually remains blocked forever at line 09 and pi will never add faulty processes

to qri at line 11. Consequently, there is a time after which no faulty process will ever be added to the quorum

qri of a correct process from which we conclude that there is a time after which the quorum qri of any correct

process pi contains only its identity or its identity plus the identity of another process of A. This concludes the

proof of the liveness property of Σk when |C| ≤ n− k.
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Remark. Let us observe that eventually any correct process pi of A is such that qri = {i} while any process pi
not in A is such that qri = {i, j} where pj is a process of A that can change with time. In the paragraph that

follows the proof, the set A is called kernel.

• Case 2: There are less than k faulty processes (|C| > n− k).

As |C| > n− k, there are at least (n− k + 1) correct processes that forever broadcast messages ALIVE() (line

06) and consequently no process will ever block forever at line 09. Hence, every correct process pi that does

not belong to A will infinitely often updates qri to sets of (n − k + 1) correct processes (line 11). Moreover,

after it has received the last message ALONE() sent by a faulty process, pi no longer includes a faulty process

in its quorum qri at line 05. It follows that there is a time after which the quorum of a correct process contains

only correct processes which proves the liveness property of Σk. The loneliness property of Xk follows trivially

from ¬(|C| ≤ n− k).

Proof of the intersection property of Σk.

Let us assume by contradiction that there is a set of quorum values {qj}1≤j≤k+1 computed by the algorithm that are

such that ∀j1 6= j2 : qj1 ∩ qj2 = ∅. Let P be the set of identities of the processes from which these k + 1 quorum

values have been obtained. As, for any process pi, we always have i ∈ qri (lines 01, 03, 05 and 11), it follows that

|P | = k + 1.

Let us assume without loss of generality that P = {1, 2, . . . , k + 1} and qj has been computed by pj . The value

of each qj has been computed at line 03, 05 or 11 (it cannot be the initial value qrj = Π because that quorum value

would intersect any other quorum and our contradiction assumption would not be satisfied).

Let B ⊆ P the set of processes whose quorum values have been computed at line 03 or 05. Hence, each of

these quorum values contains a process px whose boolean variable alonex has taken the value true . It then follows

from the stability property of Lk that at most k processes px can have alonex = true , from which we conclude that

0 ≤ |B| ≤ k. It follows from B ⊆ P , |P | = k + 1 and 0 ≤ |B| ≤ k that P \B 6= ∅.
Let i ∈ P \B. Due to the definition of B, pi has computed qi at line 11 and, consequently, we have |qi| = n−k+1.

As ∀j1, j2 ∈ P : (j1 6= j2) ⇒ (qj1 ∩ qj2 = ∅) and ∀i ∈ P : i ∈ qi, we have qi ∩ (P \ {i}) = ∅. It follows that

|qi| ≤ |Π|− |P \ {i}| = n− k which contradicts |qi| = n− k+1 and concludes the proof of the intersection property

of Σk. ✷Lemma 4

A property of 〈Σk, Xk〉 The loneliness property of Xk is (|C| ≤ n− k) ⇒ (∃ i ∈ C, ∃τ : qrτi = {i}). Actually,

Algorithm 4 ensures a stronger property, that we call strong loneliness, defined as follows.

• Strong loneliness. (|C| ≤ n− k) ⇒
(

∃τ : ∀τ ′ ≥ τ, ∀ i ∈ C : (∃ j ∈ qrτ
′

i : ∀ τ ′′ ≥ τ : qrτ
′′

j = {j})
)

.

When |C| ≤ n − k, let us call kernel the set of processes pi that after some time have forever qri = {i} (this is the

set called A in the proof of the liveness property of Σk and the loneliness property of Xk in Lemma 4). As it requires

that, after some time, each correct process pi either belongs to the kernel or has a quorum containing a process of the

kernel (which can change with time) it is easy to see that strong loneliness property implies loneliness defined by Xk.

As far as the other direction is concerned we have the following. As algorithm 4 ensures strong loneliness, it

follows from Lemma 3 and Lemma 4 that this stronger property is implicitly contained in 〈Σk, Xk〉.

7 Relating Lk and Ωk

This section shows that a simple and pretty natural weakening of the stability of Lk gives rise to a new failure detector

which is equivalent to Ωk. This establishes a strong relation linking Lk and Ωk.

7.1 The failure detector ✸Lk

Weakening the stability property of Lk from perpetual to eventual gives rise to the failure detector ✸Lk. Hence, ✸Lk

is defined by the following properties.

• Eventual stability. ∃τ , ∃K ⊂ Π : (|K| = n− k) ∧ (∀ i ∈ K, ∀ τ ′ ≥ τ : aloneτ
′

i = false).
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• Loneliness. (|C| ≤ n− k) ⇒ (∃ i ∈ C, ∃τ : ∀ τ ′ ≥ τ : aloneτ
′

i = true).

Hence, when compared to Lk, ✸Lk ensures the boolean variables of at least n−k processes remains forever equal

to false only after an unknown but finite time.

The next two sections show that ✸Lk and Ωk are equivalent inAMP[∅], i.e., ✸Lk can be built inAMP[Ωk] and

Ωk can be built in AMP[✸Lk]. The next theorem follows directly from the lemmas 5 and 7 that are proved in the

next two sections.

Theorem 4 AMP[✸Lk] and AMP[Ωk] have the same computational power.

7.2 Building ✸Lk in AMP [Ωk]

Algorithm 5 is a very simple construction of ✸Lk in AMP[Ωk]. The boolean alonei of each process pi is initialized

to false . Then, a process pi repeatedly updates it to true or false according to the fact that its identity appears or does

not appear in the local output leadersi currently provided by its underlying failure detector Ωk.

init alonei ← false;

repeat forever alonei ← (i ∈ leadersi ) end repeat.

Algorithm 5: Building ✸Lk in AMP[Ωk] (code for pi)

Lemma 5 Algorithm 5 builds ✸Lk in AMP[Ωk].

Proof Let τ be a finite time after which all faulty processes have crashed and there is a set LD of k process identities

such that LD ∩ C 6= ∅, ∀ i ∈ C, ∀ τ ′ ≥ τ : leadersτ
′

i
= LD . (Due to the eventual leadership property of Ωk, τ and LD

do exist.) It follows from the algorithm that, after τ , each process pi with i ∈ LD ∩C executes forever alonei ← true

(Observation O1) while each process pi with i ∈ C \ LD executes forever alonei ← false (Observation O2). Let

τ ′ ≥ τ be a time instant at which each correct process pi has updated at least once its boolean variable alonei.
Proof of the eventual stability property of ✸Lk. Let K = Π \ LD (hence |K| = n− k). For the faulty processes

of K, let us remember that, by definition, the boolean variable alonex of a crashed process px is equal to false . The

correct processes pi of K are such that i ∈ C \ LD and it follows from observation O2 that the boolean variables

of all correct processes in C \ LD remain forever equal to false after τ ′. Hence, we have ∃τ ′′ ≥ τ ′, ∃ K : (|K| =
n− k) ∧ (∀ i ∈ K, ∀ τ ′′′ ≥ τ ′′ : aloneτ

′′′

i = false), which proves the eventual stability property of ✸Lk.

Proof of the loneliness property of ✸Lk. Let us observe that, due to Ωk, C ∩ LD 6= ∅, hence ∃i ∈ C ∩ LD . It then

follows from observation O1 that, after τ ′, pi forever executes alonei ← true which concludes the proof. ✷Lemma 5

7.3 Building Ωk in AMP [✸Lk]

Underlying principle The idea of the algorithm is the following. We know from ✸Lk that there is a finite time after

which there is a set X of at least n − k processes pi that will no longer have their boolean alonei equal to true . The

algorithm strives to capture the complementary set Y of X in order to have Y in the final output LD of Ωk. Let us

observe that we have the following when Y has been captured. If k or more processes are faulty, it follows from the

loneliness property of ✸Lk that there is a correct process pi whose boolean becomes and remains true forever, hence

we have i ∈ Y and we can take any LD such that Y ⊆ LD . If less than k processes are faulty, it is relatively easy for

the correct processes to agree on any set of k processes (as any such set includes a correct process).

A list of all subsets of size k Let us consider all possible subsets of k processes. Moreover, let us order all of them

according to lexicographical ordering when considering each subset as a sorted array. Hence, the set {1, 2, . . . , k−1, k}
is the first, {1, 2, . . . , k − 1, k + 1} the second, etc., until the set {n − k + 1, . . . , n − 1, n} that is the last one. Let

L be this sorted list of all subsets of size k. Moreover, let L′ be the list L where {1, 2, . . . , k − 1, k} is defined as the

successor of the last subset {n− k + 1, . . . , n− 1, n}.
Finally, let next_ℓd(sbst) be the function that returns the subset that follows sbst in L′.
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Local variables To attain their goal, the processes execute asynchronous rounds. The local variable ri contains the

current round number of pi. The current local output computed by pi to implement Ωk is kept in the local variable

leadersi .

Each process pi manages a set called next_seti. This set contains all the pairs (r, leaders) received by pi. The

aim of this set is to allow the processes to proceed in the very same order from the pair (1, {1, 2, . . . , k− 1, k}), to the

pair (1, {1, 2, . . . , k − 1, k + 1}), etc., until the pair (1, {n − k + 1, . . . , n − 1, n}) during the first round, then from

(2, {1, 2, . . . , k − 1, k}) until (2, {n − k + 1, . . . , n − 1, n}) during the second round, etc., until they stop during a

round r on the very same pair (r, leaders) and define accordingly LD = leaders .

(01) init leadersi ← {1, 2, . . . , k}; ri ← 1; next_seti ← ∅;
(02) repeat forever if (alonei) then broadcast ALONE(i) end if end repeat.

(03) when ALONE(j) is received: if (j /∈ leadersi ) then broadcast NEXT(ri, leadersi ) end if.

(04) when NEXT(r, leaders) is received for the first time:

(05) broadcast NEXT(r, leaders);
(06) next_seti ← next_seti ∪ {(r, leaders)};
(07) while

(

(ri, leadersi ) ∈ next_seti
)

do

(08) leadersi ← next_ℓd(leadersi );
(09) if (leadersi = {1, 2, . . . , k}) then ri ← ri + 1 end if

(10) end while.

Algorithm 6: Building Ωk in AMP[✸Lk] (code for pi)

Behavior of a process pi Algorithm 6 describes the behavior of a process pi. Let us first observe that, if no correct

process pi ever receives a message ALONE(j), we can conclude from the eventual stability property of ✸Lk that less

than k processes are faulty. Then no message is ever exchanged among the correct processes pi and they all agree on

leadersi = LD = {1, 2, . . . , k} (that contains at least one correct process) and Ωk is trivially implemented.

Let us now consider the general case. Each time it reads true from alonei, process pi broadcasts a message

ALONE(i). When it receives a message ALONE(j) such that pj is not currently in leadersi , process pi broadcasts

NEXT(ri, leadersi) (line 03). This message is to indicate to the others processes that its current set leadersi seems not

to be the final one and consequently pi demands the others processes to try the next candidate leader set obtained from

the list L′.

When pi receives a message NEXT(r, leaders) for the first time, it forwards it to all in case the sender crashed

during its broadcast (line 05) and saves it in next_seti (line 06). Then if the current pair (ri, leadersi) belongs to

next_seti (line 07), pi progresses to the next candidate set of the list L′ (line 08). If the new value of leadersi is

{1, . . . , k}, all the elements of L have been tried during round ri and consequently pi progresses to the next round

(line 09) to try again the elements of L with the aim to stop on one of them.

Let (r1, leaders1) < (r2, leaders2)
def
= (r1 < r2) ∨

(

(r1 = r2) ∧ (leaders1 < leaders2)
)

(where leaders1 <
leaders2 is the order of the sorted list L).

Lemma 6 Let pi be a correct process. Let ri = r and leadersi = ℓd . Process pi has received and broadcast all the

messages NEXT(r′, ℓd ′) such that (r′, ℓd ′) < (r, ℓd).

Proof Due to lines 08-09, when modified, the new value of the pair (ri, leadersi) is the direct successor pair, according

to the order defined on these pairs. If follows from this observation and the initial value of the pair (ri, leadersi)
(namely, (1, {1, . . . , k})) that, when (ri, leadersi) = (r, ℓd), the pair (ri, leadersi) has taken all the pair values

(r′, ℓd ′) such that (1, {1, . . . , k}) ≤ (r′, ℓd ′) < (r, ℓd).
Let us now observe that the pair (ri, leadersi) progresses to its next value only when its current value belongs to

the set next_seti (line 07). Moreover, a pair (r′, ℓd ′) is added to next_seti only when a message NEXT(r′, ℓd ′) is

received by pi for the first time, and this message is then systematically forwarded to all (lines 04-07).
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It follows that, when (ri, leadersi) = (r, ℓd), pi has received and broadcast all the messages NEXT(r′, ℓd ′) such

that (1, {1, . . . , k}) ≤ (r′, ℓd ′) < (r, ℓd). ✷Lemma 6

Lemma 7 Algorithm 6 builds Ωk in AMP[✸Lk].

Proof Let us first observe that the values taken by any set leadersi are the subsets of size k defined in the list L. The

validity property of Ωk follows trivially.

Let Π1 denote the set of processes that broadcast an infinity of messages ALONE(). It follows from the eventual

stability property of ✸Lk that there is a finite time τ1 after which at least n−k boolean variables alonei remain forever

equal to false , hence |Π1| ≤ k. Moreover, there is a time τ2 ≥ τ1 from which (a) all received messages ALONE() are

from processes of Π1 and (b) no process broadcasts at line 03 a message NEXT(r, ld) with Π1 ⊂ ld (this follows from

the predicate used in the if statement of line 03).

Let (r0, ℓd0) be the greatest pair such that Π1 ⊆ ℓd0 and there is a message NEXT(r0, ℓd0) that entailed an update

of leadersi at some correct process pi (line 08). If there is no such pair, let (r0, ℓd0) = (0, α) where next_ℓd(α) =
{1, . . . , k}. Let (r1, ℓd1) be the smallest pair such that (r0, ℓd0) < (r1, ℓd1) and Π1 ⊂ ℓd1.

It follows from the definition of (r0, ℓd0) and Lemma 6 that each message NEXT(r, ℓd) such that (r, ℓd) ≤
(r0, ℓd0) has been sent by a correct process from which we conclude that each correct process pi eventually updates

leadersi to next_ℓd(ℓd0).
If Π1 6⊂ leadersi at some correct process pi, it follows from the definition of Π1 that pi eventually receives a

message ALONE(j) sent by pj such that j ∈ Π1 \ leadersi . When it receives such a message (line 03), process pi
broadcasts NEXT(−, leadersi). It follows that, for each pair (r, ℓd) such that (r0, ℓd0) < (r, ℓd) < (r1, ℓd1), each

correct process broadcasts (at line 03 or line 05) a message NEXT(r, ℓd). Moreover, once all these messages have

been received, the correct processes pi eventually agree on the same set leadersi = ℓd1 and no longer broadcast

NEXT(−,−) messages.

If there are k or more faulty processes, the loneliness property of ✸Lk implies that Π1 ∩ C 6= ∅ and consequently

ℓd1 contains at least one correct process. If there are less than k faulty processes, as |ℓd1| = k, ℓd1 contains at least

one correct process, which concludes the proof of the lemma. ✷Lemma 7

8 Conclusion

This paper has investigated the computability power and explored the relations linking three failure detectors that have

been proposed to solve the k-set agreement problem in asynchronous crash-prone message-passing systems. (The k-set

agreement problem is a coordination problem that generalizes the consensus problem.) These three failure detectors

are the generalized quorum failure detector Σk, the generalized loneliness failure detector Lk and the generalized

eventual leader failure detector Ωk.

The paper has (a) shown that the failure detector Ωk and the eventual version of Lk have the same computational

power; (b) shown that Lk is realistic if and only if k ≥ n/2; and (c) given an exact characterization of the difference

between Lk and Σk. Hence, this paper provides us with a better understanding of these failure detectors in the quest

for the weakest failure detector to solve the k-set agreement problem in asynchronous message-passing crash-prone

systems.
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