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Abstract 

We examined relations between symbolic and non-‐symbolic numerical magnitude 

representations, between whole number and fraction representations, and between these 

representations and overall mathematics achievement in fifth graders. Fraction and whole 

number symbolic and non-‐symbolic numerical magnitude understandings were measured 

using both magnitude comparison and number line estimation tasks. After controlling for 

non-‐mathematical cognitive proficiency, both symbolic and non-‐symbolic numerical 

magnitude understandings were uniquely related to mathematics achievement, but the 

relation was much stronger for symbolic numbers. A meta-‐analysis of 19 published studies 

indicated that relations between non-‐symbolic numerical magnitude knowledge and 

mathematics achievement are present, but tend to be weak, especially beyond age six. 

Keywords: fractions, magnitude representations, Approximate Number System, 

mathematics achievement 
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Relations of Symbolic and Non-‐symbolic Fraction and Whole Number Magnitude 

Representations to Each Other and to Mathematics Achievement 

Introduction 

Precise representations of numerical magnitudes are foundational for learning 

mathematics. Both correlational and causal evidence link the precision of individual 

children’s numerical magnitude representations to their whole number and fraction 

arithmetic skill, memory for numbers, and other aspects of mathematical knowledge 

(Halberda, Mazzocco, & Feigenson, 2008; Holloway & Ansari, 2009; Siegler, Thompson, & 

Schneider, 2011; Thompson & Siegler, 2010). Such relations have been demonstrated with 

both symbolically expressed numbers (e.g., choosing the larger Arabic numeral) and non-‐

symbolic numbers (e.g., choosing the more numerous dot array). 

It remains unclear, however, how the symbolic and non-‐symbolic numerical 

magnitude representation systems are related to each other and whether each is uniquely 

related to mathematics achievement. It has been hypothesized that non-‐symbolic 

numerical magnitude representations give rise to symbolic ones, and that both are related 

to mathematics achievement (e.g., Dehaene, 2011; Verguts & Fias, 2004), but experimental 

tests of these hypotheses have not yielded a consistent pattern. Almost all of these 

experiments have used a single task (magnitude comparison) and all have used a single 

type of number (whole numbers); none have compared alternative models of the relations 

between the types of magnitudes and the relation of each to overall mathematics 

achievement. In addition, many studies have used narrow measures of mathematics 

achievement such as arithmetic performance rather than broad measures such as 

standardized mathematics achievement test scores. 
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In the present study, we seek to provide a broader and more general understanding 

of relations between symbolic and non-‐symbolic numerical magnitude representations, 

and their unique relation to overall mathematics achievement. We pursue this goal by 

examining the relations of symbolic and non-‐symbolic numerical magnitude understanding 

on different tasks (magnitude comparison and number line estimation) and with different 

types of numbers (whole numbers and fractions), and then use these data to evaluate three 

models of relations among non-‐symbolic numerical magnitude representations, symbolic 

numerical magnitude representations, and mathematics achievement. We also try to 

explain the inconsistent relations between non-‐symbolic numerical magnitude knowledge 

and mathematics achievement by performing a meta-‐analysis that examines variables that 

might influence the relation between the two abilities. 

Understanding of Symbolic Numerical Magnitudes 

Numerical magnitude understanding refers to the ability to comprehend, estimate, 

and compare the sizes of numbers (both symbolic and non-‐symbolic whole numbers and 

fractions). Numerical magnitude understanding is separate from other numerical abilities 

such as counting, cardinality or arithmetic and deals solely with understanding numbers as 

magnitudes that can be compared and ordered. Such understanding is typically assessed 

using comparison or estimation tasks. Symbolic magnitude comparison tasks ask which of 

two Arabic numerals is larger (e.g., 3 or 6, 1/2 or 1/3). On such tasks, speed and accuracy 

increase with age, experience, and the distance between the numbers being compared (e. g., 

Moyer & Landauer, 1967; Sekuler & Mierkiewicz, 1977). Comparisons are faster and 

distance effects smaller among students at selective universities than among community 

college students, suggesting a link between symbolic numerical magnitude understanding 
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and mathematics proficiency even among adults (Schneider & Siegler, 2010). Moreover, 

symbolic magnitude comparison performance correlates positively with arithmetic skill 

and mathematics achievement test scores for comparisons of whole numbers (Castronovo 

& Gobel, 2012; De Smedt, Verschaffel, & Ghesquiere, 2009; Holloway & Ansari, 2009; 

Vanbinst, Ghesquiere, & De Smedt, 2012) and fractions (Hecht & Vagi, 2010; Siegler & Pyke, 

2013; Siegler et al., 2011). 

Another task that is often used to measure symbolic numerical magnitude 

understanding is number line estimation. Participants are shown a horizontal line with a 

number at each end and are asked to estimate other numbers' positions on the line. For 

example, if the line had 0 and 1000 at the two ends, 500 would go at the midpoint. As 

children gain experience with increasing ranges of numbers, their number line estimates 

become more accurate and more closely approximate a linear function (Siegler & Opfer, 

2003). As with magnitude comparison, number line estimation accuracy for symbolically 

expressed whole numbers and fractions is closely related to both arithmetic proficiency 

and mathematics achievement (Ashcraft & Moore, 2012; Geary, 2011; Siegler & Booth, 

2004; Siegler & Pyke, 2013; Siegler et al., 2011). 

These two tasks, though superficially different, both tap children’s understanding of 

numerical magnitudes. In both participants are asked to compare magnitudes: comparing 

the two presented numbers for magnitude comparison or comparing the to-‐be-‐estimated 

number to the two endpoints in number line estimation. Supporting the hypothesis that 

the two tasks tap the same underlying construct, performance on the two types of tasks is 

highly correlated among preschoolers (Ramani & Siegler, 2008), elementary school 

students (Laski & Siegler, 2007), and middle school students (Siegler et al., 2011). 
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Causal evidence also links understanding of symbolic numerical magnitudes to 

other mathematics knowledge. Presenting randomly chosen children accurate number line 

representations of the magnitudes within arithmetic problems improves the children’s 

learning of the answers to the problems (Booth & Siegler, 2008). Similarly, playing a game 

with randomly chosen children that emphasizes numerical magnitude understanding 

improves their ability to learn answers to arithmetic problems (Siegler & Ramani, 2009). 

Understanding of Non-symbolic Numerical Magnitudes 

Humans and many other animals also have a non-‐symbolic Approximate Number 

System (ANS) that represents numerical quantity without using symbolic numerals. 

Discriminability of the number of items in two sets is a function of the ratio between the 

quantities, as described by Weber’s Law. For example, discriminating between 8 and 10 

objects and between 16 and 20 objects is equally difficult (e. g., Brannon, Jordan, & Jones, 

2010; Libertus & Brannon, 2009). Like the precision of symbolic numerical magnitude 

representations, non-‐symbolic numerical magnitude understanding (ANS precision) 

increases with age. Six-‐month-‐olds do not discriminate 12 from 8 sounds, but 9-‐month-‐olds 

do (Lipton & Spelke, 2003); 3-‐year-‐olds discriminate dot displays that differ by 3:4 ratios, 

6-‐year-‐olds 5:6 ratios, and some adults 10:11 ratios (Halberda & Feigenson, 2008; Piazza et 

al., 2010). Additionally, infants’ ability to discriminate fractions matches their whole 

number discrimination (McCrink & Wynn, 2007). 

As with symbolic numerical magnitude representations, individual differences in non-‐

symbolic numerical magnitude understanding have been related to mathematics 

achievement. Preschoolers’ non-‐symbolic magnitude comparison accuracy has been 

related to their concurrent mathematics achievement (e. g., Bonny & Lourenco, 2013; 
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Libertus, Feigenson, & Halberda, 2011; Mussolin, Nys, Leybaert, & Content, 2012) and to 

their mathematics skills two years later (Mazzocco, Feigenson, & Halberda, 2011b). 

Preschoolers’ non-‐symbolic numerical magnitude understanding also predicts their growth 

in mathematics achievement over six months (Libertus, Feigenson, & Halberda, 2013). 

Moreover, non-‐symbolic numerical magnitude understanding in 9th grade has been related 

to mathematics achievement test scores during elementary school (Halberda et al., 2008) 

and has been found to be greater in typically achieving children than in ones with 

mathematics difficulties (Mazzocco, Feigenson, & Halberda, 2011a; Piazza et al., 2010). In 

addition, college students’ non-‐symbolic numerical magnitude understanding has been 

related to their quantitative SAT scores, mental arithmetic ability, and geometry skill 

(Dewind & Brannon, 2012; Libertus, Odic, & Halberda, 2012; Lourenco, Bonny, Fernandez, 

& Rao, 2012; Lyons & Beilock, 2011). 

On the other hand, many other studies have not found relations between non-‐

symbolic numerical magnitude understanding and mathematics achievement in adults 

(Castronovo & Gobel, 2012; Inglis, Attridge, Batchelor, & Gilmore, 2011; Price, Palmer, 

Battista, & Ansari, 2012) and in elementary school children (Holloway & Ansari, 2009; 

Sasanguie, De Smedt, Defever, & Reynvoet, 2012; Vanbinst et al., 2012). Similarly, several 

researchers have found that children with and without mathematics difficulties have 

similar non-‐symbolic numerical magnitude understanding (Iuculano, Tang, Hall, & 

Butterworth, 2008; Rousselle & Noel, 2007). The general goal of the present study was to 

systematically determine how and when understandings of non-‐symbolic and symbolic 

numerical magnitudes are related to each other and to mathematics achievement. 
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The Present Study 

In pursuit of this general goal, the current research addressed four specific theoretical 

questions: 1) How are children’s magnitude representations of symbolic fractions and 

whole numbers related? 2) Are children’s understandings of symbolic and non-‐symbolic 

numerical magnitude representations related to each other, and are they uniquely related 

to overall mathematics achievement? 3) What are the direct and indirect causal pathways 

among non-‐symbolic numerical magnitude representations, symbolic numerical magnitude 

representations, and overall mathematics achievement? 4) What are some possible 

explanations for previous discrepant findings about the relation between non-‐symbolic 

numerical magnitude representations and overall mathematics achievement? 

With regard to the first question, children’s understanding of fractions is typically 

depicted as quite separate from their whole number knowledge. When the two are 

discussed together, the purpose is usually to contrast children’s early and “natural” 

learning about whole numbers with their later, painstaking and often unsuccessful 

acquisition of fraction knowledge (Geary, 2006; Gelman & Williams, 1998; Wynn, 2002). As 

these theories of numerical development note, the two types of numbers differ in many 

ways that make fractions more difficult to learn: whole numbers are represented by a 

single number, whereas fractions require understanding the relation between two 

numbers; whole numbers have unique successors, whereas fractions do not; multiplication 

of whole numbers always produces a result at least as great as either multiplicand, whereas 

multiplication of fractions may not; and so on. 

However, as noted in the integrated theory of numerical development (Siegler, Fazio, 

Bailey, & Zhou, 2013; Siegler et al., 2011), whole numbers and fractions share one essential 
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property: They both express magnitudes. Neuroscience data are consistent with the view 

that this property connects whole number and fraction representations. Fraction and 

whole number magnitudes are processed in similar areas of the brain, and both types of 

numbers show neuronal distance effects (see Jacob, Vallentin, & Nieder, 2012 for a review). 

This perspective led to the hypothesis that, as with whole numbers, the precision of 

fraction magnitude representations should be related to arithmetic proficiency and to 

mathematics achievement. Consistent with this inference, both 6th and 8th graders’ 

symbolic fraction magnitude understanding, measured by both magnitude comparison and 

number line estimation, are highly correlated with their fraction arithmetic accuracy and 

overall mathematics achievement (Siegler & Pyke, 2013; Siegler et al., 2011). In addition, 

children’s fraction magnitude understanding has been related to their mathematics 

achievement one year later (Bailey, Hoard, Nugent, & Geary, 2012) and to their concurrent 

whole number arithmetic abilities (Hecht, 1998; Hecht, Close, & Santisi, 2003). However, 

we know of no studies that have directly compared concurrent understanding of fraction 

and whole number magnitudes. 

The current study expands upon previous research to directly compare children’s 

understanding of symbolic whole number and fraction magnitudes. If understanding of 

magnitudes involves the same process regardless of the type of number, then 1) Individual 

differences in whole number and fraction symbolic magnitude representations should be 

related, and 2) This relation should be present regardless of whether symbolic magnitude 

knowledge is assessed through number line estimation or magnitude comparison. Whereas 

other theories of numerical development are agnostic about the relation between symbolic 

whole number magnitude understanding and the corresponding understanding of fractions, 
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the integrated theory of numerical development explicitly predicts strong relations 

between them (Siegler et al., 2011). 

The second question that motivated the present study was how symbolic and non-‐

symbolic numerical magnitude representations are related to each other and to overall 

mathematics achievement. As discussed above, both types of magnitude knowledge have 

been shown to correlate with mathematics achievement (e. g., Halberda et al., 2008; Siegler 

et al., 2011). However, it is unclear whether they are related to each other and whether 

each of their relations to mathematics achievement are present after controlling for the 

effect of the other type of magnitude knowledge and non-‐mathematical cognitive ability. 

Examining the contribution of each type of magnitude knowledge after statistically 

controlling for the other also promised to shed light on the more general relation between 

non-‐symbolic and symbolic numerical magnitude representations. If statistically 

controlling the contribution of one type of representation eliminated the contribution of 

the other, and the opposite was not the case, this would imply that only one type of 

knowledge was crucial to mathematics achievement. If both types of knowledge remained 

predictive after controlling for the effect of the other, this would support either a 

bidirectional relation between them or independent causal linkages between them and 

mathematics achievement (see Lourenco et al., 2012 for similar logic). 

A third question involves causal relations among non-‐symbolic numerical magnitude 

understanding, symbolic numerical magnitude understanding, and mathematics 

achievement. Three simple alternatives are shown in Figure 1. One possibility (panel A) is 

that children with more precise understanding of non-‐symbolic numerical magnitudes 

more easily learn number words and their associated magnitudes, which in turn improves 
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their overall mathematics achievement. A second possibility (panel B) is that non-‐symbolic 

numerical magnitude understanding has both direct and indirect effects on mathematics 

achievement. A third possibility (panel C) is that non-‐symbolic and symbolic numerical 

magnitude understandings may or may not be related, but that they independently affect 

overall mathematics achievement. Whereas the first two alternatives predict that non-‐

symbolic numerical magnitude understanding bootstraps symbolic understanding, this 

hypothesis proposes that the two abilities have separate, independent effects on 

mathematics achievement. 
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Figure 1. Possible causal links between non-‐symbolic numerical magnitude understanding, 

symbolic numerical magnitude understanding and overall mathematics achievement. 
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It is intuitively plausible that a more precise understanding of non-‐symbolic 

numerical magnitudes leads to a better understanding of symbolic numerical magnitudes. 

Indeed, several researchers have suggested such a developmental path (e.g., Dehaene, 

2011; Verguts & Fias, 2004). However, evidence for a relation between symbolic and non-‐

symbolic numerical magnitude knowledge is mixed for both children and adults. Kolkman 

and colleagues (2013) found a relation between symbolic and non-‐symbolic number line 

estimation accuracy in kindergarten, and Gilmore, McCarthy, and Spelke (2010) found that 

kindergarteners’ accuracy at non-‐symbolic approximate addition was related to their 

accuracy at symbolic magnitude comparison. However, many studies have found no 

relation between symbolic and non-‐symbolic magnitude comparison in kindergarten 

(Desoete, Ceulemans, De Weerdt, & Pieters, 2012; Kolkman, Kroesbergen, & Leseman, 

2013; Sasanguie, Defever, Maertens, & Reynvoet, 2013) and elementary school (Holloway 

& Ansari, 2009; Iuculano et al., 2008; Landerl & Kolle, 2009; Mussolin et al., 2012; Vanbinst 

et al., 2012). Studies with adult participants include one that documented a relation 

between non-‐symbolic and symbolic magnitude comparison with the numbers 1-‐9 

(Gilmore, Attridge, & Inglis, 2011) and another that found no relation in the same 

numerical range (Maloney, Risko, Preston, Ansari, & Fugelsang, 2010). 

Our strategy for clarifying the relation between non-‐symbolic and symbolic numerical 

magnitude understanding was to broaden the range of tasks and types of numbers 

examined. Earlier studies have relied on magnitude comparison tasks with whole numbers. 

In contrast, we used both number line estimation and magnitude comparison tasks with 

both whole numbers and fractions to examine relations between non-‐symbolic and 

symbolic numerical magnitude representations. This broader base of tasks yields 
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additional data points indicating when relations between non-‐symbolic and symbolic 

numerical magnitudes are and are not present. We also conducted mediation analyses to 

examine whether symbolic numerical magnitude understanding partially or fully mediated 

the relation between non-‐symbolic numerical magnitude understanding and mathematics 

achievement. 

To address these questions, we assessed fifth graders’ symbolic and non-‐symbolic 

numerical magnitude representations of fractions and whole numbers on magnitude 

comparison and number line tasks and obtained their mathematics and reading 

achievement scores. The reading scores were used to rule out the possibility that relations 

between different types of numerical magnitude understanding and mathematics 

achievement were due to a common influence of non-‐mathematical cognition. Fifth-‐graders 

were studied because they have some knowledge of symbolic fraction magnitudes, but 

their understanding of whole number magnitudes is below adult levels (see Siegler & Opfer, 

2003). Observing performance on these tasks allowed a systematic examination of 

relations between symbolic and non-‐symbolic numerical magnitude understanding, whole 

number and fraction understanding, and each of these and mathematics achievement, as 

well as evaluation of three models of the relation. 

In order to more systematically examine the currently mixed evidence on the relation 

between non-‐symbolic numerical magnitude understanding and mathematics achievement, 

we also performed a meta-‐analysis on the previously published research. The meta-‐

analysis provided an estimate of the true size of the relation and examined how participant 

age and the measure of non-‐symbolic numerical magnitude understanding are related to 

the correlation between non-‐symbolic numerical magnitude understanding and overall 
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mathematics achievement. 

Method 

Participants 

The participants were 53 fifth graders at four small charter schools in or near 

Pittsburgh, PA (Mage = 10.72, SD = 0.36; 59% female; 50% White, 44% Black, 6% Biracial). 

Of the children attending these schools, 74% are eligible for free or reduced-‐price lunches; 

Pennsylvania’s average is 39%. Despite the low-‐income population, the schools score at or 

above the state average on standardized achievement tests. 

Tasks 

Children completed the eight tasks shown in Figure 2; they varied in the type of task 

(magnitude comparison or number line estimation), type of number (whole numbers or 

fractions), and form of number (symbolic or non-‐symbolic). Numbers of items on the tasks 

varied considerably based on the number of trials required for a stable estimate of 

performance. Time/task was roughly equivalent; each took less than five minutes. 

The full instructions for each task can be found in the online supplement. 
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Number line estimation of symbolic whole numbers. Twenty-‐six number lines 

were presented sequentially on a computer screen, with “0” at the left end and “1000”at the 

right. Above each line was the to-‐be-‐estimated number. Children made their estimates by 

clicking the mouse when the cursor was at the desired location. All numbers remained on 

the screen until the child responded. As in previous studies, there were four numbers from 

each of the first three tenths of the number line and two numbers from each remaining 

tenth: 53, 67, 83, 100, 125, 143, 167, 200, 222, 250, 286, 300, 333, 375, 417, 444, 556, 600, 

625, 667, 750, 800, 833, 875, 909, and 929. Previous findings suggested that the 0 – 1000 

numerical range would produce large individual differences in fifth-‐graders’ performance 

(Booth & Siegler, 2006; Siegler & Opfer, 2003). 

Number line estimation of symbolic fractions. The fraction estimation task was 

almost identical to the whole number task. Children again saw 26 number lines but with 

the left endpoint labeled “0” and the right endpoint labeled “1”. The numbers estimated on 

the two tasks were at the same positions on the number line (e.g., 250 and ¼; 7/8 and 875). 

The fractions were 1/19, 1/15, 1/12, 1/10, 1/8, 1/7, 1/6, 1/5, 2/9, 1/4, 2/7, 3/10, 1/3, 3/8, 

5/12, 4/9, 5/9, 3/5, 5/8, 2/3, 3/4, 4/5, 5/6, 7/8, 10/11, and 13/14. Fractions can obviously 

be larger than one, but the 0 – 1 range allowed us to easily match positions with the whole 

number task and is a numerical range emphasized in most fifth-‐grade curricula. 

Number line estimation of non-symbolic whole numbers. This task paralleled 

the number line task with symbolic whole numbers. Children were presented 26 number 

lines; the left and right endpoints were labeled with pictures of 0 and 1000 dots (Figure 2). 

The to-‐be-‐estimated number was shown as a collection of dots. To avoid activating the 

symbolic number system, the endpoints were labeled as “no dots” and “a lot of dots.” To 
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prevent counting, the to-‐be-‐estimated dots disappeared from view after 5 s. Total area 

covered by the dots was fixed, so that as the number of dots increased, dot size decreased. 

This control prevented children from responding based on area covered rather than 

number. Children were told to focus on the number of dots and to ignore their size. Number 

of dots on each trial matched the trials with symbolic whole numbers. 

Number line estimation of non-symbolic fractions. On this task, the number line 

had 1 blue dot and 99 yellow dots (1/100 blue dots) on the left and 99 blue dots and one 

yellow dot (99/100 blue dots) on the right (Figure 2). Children were asked to estimate 

where mixed sets of blue and yellow dots belonged on the line. The endpoints were 

verbally labeled as “lots of yellow dots” and “lots of blue dots.” The 26 fractions matched 

those from number line estimation of symbolic fractions. For example, for the symbolic 

fraction 5/9, the corresponding non-‐symbolic problem involved 5 blue and 4 yellow dots. 

On each trial, the area covered by the blue and yellow dots was equal (for the to-‐be-‐

estimated fraction and each of the endpoints). This again ensured that children could not 

accurately respond based on area. The to-‐be-‐estimated dots disappeared from the screen 

after 2 s; the time was shorter than for whole numbers to prevent counting of the smaller 

number of dots on fraction trials. 

Magnitude comparison of symbolic whole numbers. Children were asked which 

of two Arabic numerals was larger. The numbers ranged from 5 to 21 (these values 

matched the default values of our non-‐symbolic magnitude comparison task, downloaded 

from panamath.org). The numbers remained on the screen until the child responded. 

Among the 40 trials, 10 came from each of 4 ratio bins: 1.15-‐1.28, 1.28-‐1.43, 1.48-‐1.65, and 

2.46-‐2.71. The ratio for each trial was determined by dividing the larger number by the 

http:2.46-�-2.71
http:1.48-�-1.65
http:1.28-�-1.43
http:1.15-�-1.28
http:panamath.org
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smaller number. For example, a trial with 18 blue and 15 yellow dots would have a ratio of 

1.2:1, whereas a trial with 18 and 7 would have a ratio of 2.57:1 (ratios hereafter 

abbreviated as 1.2, 2.57, etc.). Children were asked to respond as quickly and accurately as 

possible. 

Magnitude comparison of symbolic fractions. Children were asked which of two 

symbolically expressed fractions was larger. The denominators ranged from 5 to 21, to 

match the numbers used on the other comparison tasks. There were 40 trials, 10 from each 

of the ratio bins. To ensure that participants could not be consistently correct by attending 

to numerators or denominators alone, each bin included five types of problems in which, 

relative to the smaller fraction, the larger fraction had either 1) a larger numerator and an 

equal denominator; 2) an equal numerator and a smaller denominator; 3) a larger 

numerator and a larger denominator; 4) a larger numerator and a smaller denominator; or 

5) a smaller numerator and a smaller denominator. 

Magnitude comparison of non-symbolic whole numbers. The non-‐symbolic 

magnitude comparison task was downloaded from panamath.org, designed by Justin 

Halberda; it closely resembled the task used by Halberda, Mazzocco, and Feigenson (2008). 

On each problem, children saw blue dots on the left side of the screen, yellow dots on the 

right, and judged which side had more dots. There were 186 trials: 2 practice trials and 46 

trials in each of the four ratio bins. After the dots were on the screen for 1382 ms, the 

display was replaced by a backward mask of yellow and blue dots for 500 ms. Number of 

dots on each side of the screen varied from 5 to 21. On half of the trials, individual dot size 

was equated on the two sides; on the other half, the overall area covered by the dots on the 

two sides was equal. These controls insured that the children could not consistently 

http:panamath.org
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respond correctly on the basis of the size of the dots or the total area covered. As on all 

magnitude comparison tasks, children were asked to respond as quickly and accurately as 

possible. 

Magnitude comparison of non-symbolic fractions. Children saw blue and yellow 

dots on both sides of the screen. Participants were told that they should pretend that the 

dots were candies, that the blue candies taste best, and that they should pick the side of the 

screen that would give them the best chance of getting a blue candy. They were also told 

that the size of the candies did not matter. After 2 s, a mask of small yellow and blue dots 

covered the screen (the mask appeared later than in the whole number task since the task 

was more demanding). The children could respond either before or after the mask 

appeared. 

There were 182 trials: two practice trials and 45 trials in each of the usual four ratio 

bins. In each bin, each of the five types of problems described for the symbolic fraction 

comparison task was presented nine times. Total number of dots on a side equaled the 

denominator, and the number of blue dots equaled the numerator. For example, 5/8 was 

represented by five blue and three yellow dots. The relevant ratio was that between the 

two fractions; if the fractions on the two sides were 6/12 and 2/8, the ratio was 2.00. The 

total number of dots on each side ranged from 5 to 21, to match the number on the whole 

number tasks. On half of the trials, size of each dot was equivalent on the two sides; on the 

other half, the total area on each side covered by dots of each color was equivalent. 

Pennsylvania system of school assessment (PSSA) mathematics and reading 

tests. Fifth grade PSSA scores were obtained from the schools as standardized measures of 

mathematics and reading achievement. The mathematics test included three open-‐ended 
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items and 60 four-‐alternative multiple-‐choice questions. The test covers numbers and 

operations (41-‐45% of questions), measurement (12-‐15%), geometry (12-‐15%), algebraic 

concepts (13-‐17%) and data analysis and probability (12-‐15%). Magnitude knowledge 

received little attention; of 65 multiple-‐choice items released from the fifth grade PSSA 

Mathematics Test, only three addressed numerical magnitudes. 

The reading test included 40 multiple-‐choice questions and four open-‐ended 

questions. Most of the test deals with comprehension and reading skills (60-‐80%), the rest 

with interpretation and analysis of fiction and nonfiction text (20-‐40%). 

Procedure 

Children performed the experimental tasks in a quiet space in their school. The eight 

tasks were presented over two sessions separated by an average of two days; four tasks 

were presented per day. Tasks and items within tasks were presented in a separate 

random order for each child. Children were tested individually. 

Results 

We first present descriptive statistics for each task, examine relations among 

performance on the experimental tasks, and analyze relations between the experimental 

tasks and mathematics achievement test scores. Next, we examine the fit of the three 

models illustrated in Figure 1 to the data and present a meta-‐analysis aimed at clarifying 

when non-‐symbolic numerical magnitude understanding is related to math achievement. 

Trials with RTs greater than or equal to 2.5 standard deviations from the child’s 

mean RT (2% -‐ 3% of trials) were removed as outliers. Children who scored more than 4 

SDs from the mean were excluded from analyses of that task. This led to one child being 

removed from each of the following tasks: magnitude comparison of symbolic whole 
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numbers, magnitude comparison of non-‐symbolic whole numbers, and magnitude 

comparison of non-‐symbolic fractions (three separate children). All eight experimental 

tasks had high reliabilities (alpha = .82 -‐ .93), including the three novel tasks: magnitude 

comparison of non-‐symbolic fractions (.90), number line estimation of non-‐symbolic whole 

numbers (.92) and number line estimation of non-‐symbolic fractions (.82). Unless 

otherwise noted, all results were significant at the .05 alpha level. 

Symbolic and Non-symbolic Number Line Estimation 

Accuracy on all number line estimation tasks was measured by percent absolute 

error (PAE): (|actual location of number – child’s estimate|)/numerical range. For example, 

if a child was asked to place 200 on the 0-‐1000 number line and placed it at 300, his PAE 

would be 10% ((|200 – 300|)/1000). Thus, smaller PAEs indicate more accurate estimates. 

On the symbolic number line tasks, estimation with whole numbers was more 

accurate than estimation with fractions: PAEs = 12% vs. 20%, t(52) = 5.42, SEM = 1.54, d = 

0.86; more linear, R2lin = .78 vs. .47, t(52) = 6.18, SEM = 0.05, d = 1.00; and with the slope of 

the best fitting linear function closer to 1.00, .73 vs. .52, t(52) = 3.44, SEM = 0.06, d = 0.56. 

On the corresponding non-‐symbolic number line tasks, the best fitting linear function 

fit estimates for whole numbers better than fractions, R2lin = .69 vs. .48, t(52) = 5.13, SEM = 

0.04, d = 0.96. Unlike with symbolic numbers, however, estimates with non-‐symbolic whole 

numbers and fractions were equally accurate, PAEs = 22% and 19%, t(52) = 1.35, ns., and 

had similar slopes, .69 and .63, t(52) = 1.03, ns. 

Symbolic and Non-symbolic Magnitude Comparison 

Magnitude comparisons of symbolic and non-‐symbolic numbers were more accurate 

and faster with whole numbers than fractions (Table 1). On both, accuracy increased and 
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reaction time decreased with the larger ratios. 

For the non-‐symbolic magnitude comparison tasks, we used Halberda and 

Feigenson’s (2008) psychophysical model to estimate each child’s Weber fraction. The 

Weber fraction represents the noise in the non-‐symbolic numerical magnitude 

representation; thus, lower w values indicate more precise representations. The average 

Weber fraction was much lower for whole numbers than fractions, w = .21 versus .63, t(48) 

= 9.62, SEM = 0.04, d = 1.76. Three participants were eliminated from analyses of the 

fraction task because the models of their judgments could not converge on a value of w. 

We did not compute Weber fractions for symbolic magnitude comparisons. The 

reason for whole numbers was ceiling effects. The reason for fractions was that the model 

could not converge on a value for w for 45% of children. These children’s accuracy did not 

increase with larger ratios, which resulted in the model not fitting their performance. 
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Consistency of Individual Differences across Experimental Tasks 

For the number line tasks, analyses were based on accuracy (PAE). For magnitude 

comparison, the measure varied with the task. On magnitude comparison of symbolic 

whole numbers, accuracy was at ceiling, so we only analyzed reaction time. On magnitude 

comparison of symbolic fractions, variability of strategy use (reliance on numerator, 

denominator, and/or fraction magnitudes) led to reaction times being uninformative, so we 

only analyzed percent correct. 

On non-‐symbolic magnitude comparisons, w and mean RT were standardized (M = 0, 

SD = 1) and summed to create a measure of non-‐symbolic numerical magnitude 

understanding. Past research has varied in the measures used to examine non-‐symbolic 

magnitude comparison performance, with researchers using the slope of the linear 

function relating reaction time to ratio (e.g., Holloway & Ansari, 2009; Price et al., 2012), 

percent correct (e.g., Lourenco et al., 2012; Mazzocco et al., 2011b), w (e.g., Halberda et al., 

2008; Inglis et al., 2011) or both w and mean RT (e.g., Halberda, Ly, Wilmer, Naiman, & 

Germine, 2012; Libertus et al., 2011). We used w and RT together, because doing so yielded 

stronger relations to other tasks and helped to control for speed/accuracy tradeoffs. The 

correlations with w and RT as separate variables and with RT slope and percent correct can 

be found in Table S1 of the online supplement. Due to skewed distributions, RT, PAE, and w 

measures were log transformed prior to analysis. 
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Note. N = 53 for all correlations except for those with achievement scores (N = 43),
symbolic whole number comparison (N = 52), non-‐symbolic whole number comparison (N
= 52) and non-‐symbolic fractions comparison (N = 49). The lower N for achievement scores
reflected a number of parents not giving permission for their children’s test scores to be
released. 
NL = number line. PAE = percent absolute error. PSSA = Pennsylvania System of School
Assessment. w = Weber fraction. 
* p < .05. ** p < .01. 
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As shown in Table 2, all four symbolic tasks were significantly correlated, in 

most cases quite strongly (Rows and Columns 3-‐5). The correlations among the non-‐

symbolic tasks and between the symbolic and non-‐symbolic tasks were generally 

weaker and non-‐significant. 

We conducted a factor analysis to further explore these relations. Based on 

Horn’s Parallel Analysis (Horn, 1965), we retained two factors. Items with loadings 

greater than 0.40 were standardized (M = 0, SD = 1) and summed to create factor 

scores. The first factor, symbolic knowledge, consisted of three of the four symbolic 

tasks: magnitude comparison of fractions, number line estimation of whole numbers, 

and number line estimation of fractions (loadings = -‐.72, .54, and .96, respectively). 

The second factor, non-‐symbolic knowledge, consisted of magnitude comparison of 

non-‐symbolic whole numbers and fractions (loadings = .95 and .59, respectively). 

Magnitude comparison of symbolic whole numbers loaded similarly on symbolic 

knowledge (.37) and non-‐symbolic knowledge (.44) and was excluded from 

subsequent analyses that used the results of the factor analysis. The non-‐symbolic 

number line estimation tasks did not load on either factor. Details about the factor 

analysis are in the online supplement. 

Relations of Experimental Tasks to Mathematics Achievement 

As shown in the first row of Table 2, children’s performance on all four 

symbolic tasks was strongly related to their mathematics achievement, rs > .55. 

Magnitude comparison of non-‐symbolic whole numbers was also strongly related to 

mathematics achievement, r(40) = -‐.60. The two non-‐symbolic number line tasks 

were more weakly related to mathematics achievement, r(41) = -‐.32 and r(41) = -‐.46. 
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Finally, magnitude comparison of non-‐symbolic fractions was not related to 

mathematics achievement. However, this was likely due to the elimination of three 

lower achieving participants for whom the model was unable to converge on a value 

of w. Accuracy on the non-‐symbolic fraction number line task, a measure that could 

be computed for all participants, was related to mathematics achievement, r(40) 

= .35 (Table S1). Overall, performance on all eight tasks was related to mathematics 

achievement, although the relations were stronger for the symbolic tasks. 

Scatterplots of the relation between each of the tasks and overall mathematics 

achievement are shown in Figure S1 online. 

Testing the Three Models 

To determine which of the three models pictured in Figure 1 best fit the data, 

we examined whether symbolic numerical magnitude knowledge mediated the 

relation between non-‐symbolic numerical magnitude understanding and 

mathematics achievement. In Panel A, symbolic numerical magnitude 

understanding fully mediates the relation between non-‐symbolic numerical 

magnitude understanding and mathematics achievement. Panel B depicts partial 

mediation. Panel C depicts no mediation, although both abilities should be 

independently related to mathematics achievement. 

To evaluate the models, we used the symbolic and non-‐symbolic knowledge 

factors identified in the above factor analysis. Both they and PSSA mathematics 

scores were standardized prior to running the bootstrap mediation analysis 

(Preacher & Hayes, 2008). 
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As shown in Figure 3, mathematics achievement was strongly related to 

knowledge of symbolic numerical magnitudes and somewhat related to knowledge 

of non-‐symbolic magnitudes, both before and after controlling for symbolic 

magnitude knowledge. Controlling for symbolic knowledge reduced the direct effect 

of non-‐symbolic knowledge on mathematics achievement, but not significantly (β 

= .17, p=.07). Importantly, the relation between non-‐symbolic and symbolic 

knowledge was not significant (β = .25, p=.10), suggesting that the different types of 

numerical magnitude knowledge independently influence math achievement. 

Figure 3. Mediation analysis examining whether symbolic numerical magnitude 

understanding mediates the relation between non-‐symbolic numerical magnitude 

understanding and overall mathematics achievement. 

If symbolic and non-‐symbolic numerical magnitude understandings have 
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independent effects on mathematics achievement, then each should uniquely 

predict variance in mathematics achievement after controlling for the other type of 

knowledge and non-‐mathematical cognitive ability. To examine this hypothesis, we 

conducted two hierarchical regressions. In both models, we first entered reading 

achievement test scores as a measure of non-‐mathematical cognition, followed by 

the symbolic and non-‐symbolic factors identified in the factor analysis. In Model 1, 

after entering reading achievement, we entered the measure of non-‐symbolic 

numerical magnitude knowledge, followed by the measure of symbolic numerical 

magnitude knowledge. Model 2 included the same variables, but with symbolic 

magnitude knowledge entered before non-‐symbolic magnitude knowledge. 

Reading achievement accounted for 33% of the variance in mathematics 

achievement, F(1, 36) = 17.56. In Model 1, non-‐symbolic knowledge added 7% to the 

explained variance, F(1, 35) = 4.32, and symbolic knowledge explained an additional 

27%, F(1, 34) = 28.59. Ordered in this way, both non-‐symbolic and symbolic 

numerical magnitude representations were predictive of mathematics achievement, 

although symbolic knowledge explained almost four times as much variance. 

In Model 2, symbolic knowledge added 31% to the 33% of variance in 

mathematics achievement explained by reading achievement, F(1, 35) = 29.44. 

Adding the measure of non-‐symbolic knowledge increased the explained variance 

by 4%, F(1, 34) = 4.20. Again, both measures explained unique variance in 

mathematics achievement, but the contribution of symbolic knowledge was much 

larger. Our results best support the model in Panel C, with non-‐symbolic and 
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symbolic numerical magnitude knowledge having independent effects on 

mathematics achievement. 

Meta-analysis of the Relation between Non-symbolic Numerical Magnitude 
Knowledge and Overall Mathematics Achievement 

Although non-‐symbolic numerical magnitude understanding and mathematics 

achievement were related in the present data set, a number of previous studies have 

failed to find any relation. Several reasons for the inconsistent relations seemed 

plausible. 

1) Variation in sample sizes. In most studies, the relation has been positive but 

weak. For example, a study of more than 10,000 participants found a small but 

reliable correlation (r = .21) between non-‐symbolic numerical magnitude 

understanding and mathematics achievement (Halberda et al., 2012). A correlation 

of this magnitude would not have been significant with many smaller sample sizes. 

2) Achievement level of sample. The relation has tended to be stronger for 

children with poor mathematics achievement (Bonny & Lourenco, 2013; Mazzocco 

et al., 2011a), and the percentage of such children in the sample probably varies 

across studies. 

3) Ages of participants. Participant ages have varied from 3-‐years to adulthood. 

Some studies that have included participants of multiple ages have found relations 

at some ages but not others (Inglis et al., 2011; Mussolin et al., 2012). 

4) Measures. As noted by Price and colleagues (2012), studies have varied in 

whether they measure non-‐symbolic numerical magnitude understanding in terms 

of percent correct, w, RT slope, or a combination of w and mean RT. The particular 

measure can influence the strength of the relation found. In the present study, using 
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a combination of w and RT to measure non-‐symbolic magnitude knowledge yielded 

a considerably stronger relation than using RT slope (r = .60 versus .27). 

5) Content of mathematics achievement test. Tests that include advanced 

arithmetic and geometry (such as the PSSA used in the present study) have 

sometimes yielded stronger relations (Lourenco et al., 2012). 

To systematically examine the size of the relation between non-‐symbolic 

numerical magnitude understanding and overall mathematics achievement, we 

conducted a meta-‐analysis of all published research as of February 28, 2013. We 

focused on how participant age and the measure of non-‐symbolic numerical 

magnitude understanding influenced the size of the correlation. The other three 

variables listed above might also matter, but we did not include them in the meta-‐

analysis because the effects of sample size on significance level is well known, 

because the number of low achieving participants in each sample requires data 

about individual participants that frequently was not available, and because 

whether material on achievement tests taps advanced concepts is an inherently 

subjective judgment. To avoid ambiguities in participant age, we included only 

studies that examined non-‐symbolic numerical magnitude understanding and 

mathematics achievement at the same time point. 

We found 19 articles that reported the bivariate correlation between 

performance on a non-‐symbolic numerical magnitude comparison task and 

mathematics achievement, with both constructs measured at the same age. Due to 

some articles containing multiple age groups or multiple experiments, the meta-‐

analysis included 34 samples of participants (see Table S2 in the online supplement). 
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Many studies reported multiple measures of non-‐symbolic numerical magnitude 

understanding. For the overall meta-‐analysis, we included only the measure that 

produced the highest correlation with mathematics achievement. If a study 

included more than one measure of mathematics achievement, we again included 

only the measure that led to the largest correlation. 

Using a random-‐effects model, the overall weighted average correlation 

was .22 (95% CI = .20-‐.25). Given that we examined only published studies, which 

often have larger effect sizes, the true correlation might be lower. However, 

Halberda et al.’s (2012) study of 10,000 participants yielded an almost identical 

correlation, r = .21, and it would require 16 additional samples that found no 

correlation between non-‐symbolic numerical magnitude understanding and overall 

mathematics achievement to reduce the estimated correlation to .15, 41 to reduce it 

to .10, and 116 to reduce it to .05 (Orwin, 1983). Thus, it is safe to assume that there 

is a small but true relation between non-‐symbolic numerical magnitude 

understanding and overall mathematics achievement. 

We next conducted separate random-‐effects meta-‐analyses for each of the 

dependent measures; studies that reported multiple measures were included in 

multiple analyses. The three measures of non-‐symbolic numerical magnitude 

understanding that were based on accuracy all yielded relations: percent correct r 

= .29 (95% CI = .18-‐.40, N = 11), w r = .19 (95% CI = .17-‐.21, N = 26), and w & mean 

RT r = .21 (95% CI = .19-‐.23, N = 10). In contrast, when performance was measured 

using reaction time alone, the relations were very weak: mean RT r = .09 (95% 

CI .06-‐.12, N = 14), RT slope r = .03 (95% CI = -‐.10-‐.16, N = 5). 

http:10-�-.16
http:20-�-.25
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Because a test of homogeneity indicated that the correlations in the overall 

model were heterogeneous, Q(33) = 58, we examined whether participants’ age 

could explain variability among effect sizes. We separated the samples into three 

groups: younger children (mean age below 6 years), older children (6-‐ to 18-‐years) 

and adults (over 18 years). The logic for this division was that children under age 6 

have usually had relatively little formal instruction on symbolically expressed 

numbers, those between 6 and 18 have had much more experience with 

symbolically expressed numbers, and those over 18 are primarily adults from the 

more select population receiving a college education. 

Using a random-‐effects model, the weighted effect size for younger children 

was .40. This was significantly larger than the correlations for older children (r 

= .17) and adults (r = .21), which did not differ (Table 3 and Figure 4). The relation 

between non-‐symbolic numerical magnitude understanding and mathematics 

achievement thus appears to be stronger before children begin formal instruction in 

mathematics at around age six. Additional analyses are included in the online 

supplement. 

Table 3. Effect of Participant Age on the Correlation between Non-‐symbolic
Numerical Magnitude Understanding and Mathematics Achievement 

Between-‐ Homogeneity
Group Weighted within each 

Participant Age Effect (Qb) N r 95% CI group (Qw) 
28.29** 

< 6 9 .40 [.33, .47] 10.01 
6-‐18 7 .17 [.12, .21] 6.24 
18+ 18 .21 [.19, .23] 13.27 

• p < .05. ** p < .01.
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Figure 4. Forest plot of the correlations for each sample and the weighted average of 

each age group. The top panel includes samples with an average age less than 6 

years, the middle panel shows samples with an average age between 6 and 18 years, 

the bottom panel shows samples whose participants are over 18 years. 
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Discussion 

The present findings help answer the four main questions that motivated the 

study. In this concluding section, we discuss the implications of the findings for 

these main questions and discuss the contribution of the novel tasks in the study. 

Relations between Symbolic Fraction and Whole Number Representations 

Although numerous theories of numerical development emphasize the 

interfering effects of whole number knowledge on learning fractions, a basic 

prediction of the integrated theory of numerical development (Siegler et al., 2011) is 

that magnitude knowledge of whole numbers and fractions should be closely related. 

The present findings supported this prediction. Children who were more accurate at 

placing symbolic whole numbers on number lines and faster at comparing symbolic 

whole number magnitudes were also superior at the corresponding tasks with 

fractions. Thus, despite the many differences between symbolically expressed 

fractions and whole numbers, the common element that they both represent 

magnitudes seems to connect them psychologically as well as mathematically. 

Relations of Magnitude Understanding to Mathematics Achievement 

The present findings indicated that knowledge of magnitudes of symbolic 

whole numbers and fractions is quite strongly related to mathematics achievement. 

Each of the four symbolic tasks accounted for 30%-‐45% of variance in mathematics 

achievement test scores. These results match those of previous studies showing 

large relations between symbolic numerical magnitude understanding and 

mathematics achievement (Ashcraft & Moore, 2012; Siegler & Booth, 2004; Siegler & 

Pyke, 2013; Siegler et al., 2011). Symbolic numerical magnitude representations 
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also explained variance in mathematics achievement test scores beyond that 

explained by non-‐mathematical cognitive proficiency and non-‐symbolic numerical 

magnitude representations. The consistency of the relation between symbolic 

numerical magnitude representations and math achievement test scores across 

different tasks and different types of numbers, even after these controls, is striking. 

Non-‐symbolic magnitude understanding was also related to mathematics 

achievement, but the relations were much weaker. For example, whereas symbolic 

magnitude knowledge accounted for 27% of the variability in math achievement 

after controlling for reading scores and non-‐symbolic knowledge, non-‐symbolic 

knowledge accounted for only 4% of the variance after controlling for reading 

scores and symbolic knowledge. Our results suggest that efforts to train non-‐

symbolic numerical magnitude representations in order to improve mathematics 

achievement may be misguided. Interventions that target understanding of 

symbolic numerical magnitudes are likely to be much more effective. 

Direct and Indirect Relations between Numerical Magnitude Understanding 
and Overall Mathematics Achievement 

The present findings also help to clarify how non-‐symbolic and symbolic 

numerical magnitude knowledge affect mathematics achievement. Figure 1 depicts 

three ways that non-‐symbolic numerical magnitude understanding could affect 

mathematics achievement. In the first model, symbolic numerical magnitude 

understanding fully mediates the relation. We found no evidence to support this 

account. Non-‐symbolic numerical magnitude understanding explained significant 

variance in mathematics achievement, even after controlling for symbolic numerical 

magnitude understanding and non-‐mathematical cognition. 
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The second model suggests that non-‐symbolic numerical magnitude 

knowledge has both direct and indirect effects on mathematics achievement. We 

again found little support for this hypothesis. The path in the mediation analysis 

between non-‐symbolic and symbolic numerical magnitude knowledge was not 

significant. Moreover, controlling for symbolic numerical magnitude knowledge did 

not significantly reduce the direct path between non-‐symbolic numerical magnitude 

knowledge and mathematics achievement. 

The results were most consistent with the third model: symbolic and non-‐

symbolic numerical magnitude knowledge have independent effects on 

mathematics achievement. While both types of knowledge were related to 

mathematics achievement, the symbolic and non-‐symbolic tasks loaded on different 

factors and there was no correlation between symbolic and non-‐symbolic 

magnitude knowledge. These results fit with other recent findings suggesting that 

symbolic and non-‐symbolic numerical magnitude understanding may be unrelated 

in both adults and children (e.g., Lyons, Ansari, & Beilock, 2012; Sasanguie et al., 

2013) and contrast with theories that predict strong relations between symbolic 

and non-‐symbolic numerical magnitude understanding (e.g., Dehaene, 2011; 

Verguts & Fias, 2004). It remains an open question how non-‐symbolic numerical 

magnitude understanding affects mathematics achievement if it is not by improving 

understanding of symbolic numerical magnitudes. 

There might also be bidirectional relations between symbolic and non-‐

symbolic magnitude understanding and mathematics achievement. Non-‐symbolic 

numerical magnitude understanding increases throughout childhood and into 
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adulthood, which raises the possibility that it could be affected by school instruction 

(Halberda & Feigenson, 2008; Halberda et al., 2012). Consistent with this idea, 

educated European adults have been found to have more precise non-‐symbolic 

numerical magnitude representations than Amazonian indigene adults without 

formal education (Pica, Lemer, Izard, & Dehaene, 2004). 

We were unable to examine bidirectional relations with our current cross-‐

sectional data; longitudinal data would allow tests of whether such bidirectional 

relations are present. We also cannot rule out the possibility that symbolic and non-‐

symbolic numerical magnitude understandings are more closely linked earlier in 

development. Non-‐symbolic magnitude understanding may bootstrap initial 

learning of symbolic magnitudes, but with additional instruction on symbolic 

numerals and magnitudes, the two constructs might become independent by fifth-‐

grade. However, some researchers have found no relation between non-‐symbolic 

and symbolic numerical magnitude understanding even with kindergarteners 

(Desoete et al., 2012; Sasanguie et al., 2013). 

Differences in the Size of the Correlation between Non-symbolic Numerical 
Magnitude Understanding and Overall Mathematics Achievement 

The meta-‐analysis of previously published studies showed a small, but reliable, 

correlation between non-‐symbolic numerical magnitude understanding and overall 

mathematics achievement. Importantly, two aspects of the studies affected the size 

of the correlation. First, studies that measured non-‐symbolic knowledge using a 

measure of accuracy consistently showed a relation to mathematics achievement, 

but studies that used only reaction time measures did not show such relations. 

Thus, future studies should use percent correct, w, or a combination of accuracy and 
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RT when examining how non-‐symbolic numerical magnitude understanding relates 

to skill in formal mathematics. Second, we found that the relation between non-‐

symbolic numerical magnitude understanding and mathematics achievement was 

larger for younger children who have not yet started formal schooling. Mathematics 

achievement tests used with younger children might be more sensitive to non-‐

symbolic numerical magnitude knowledge; alternatively, younger children might be 

more reliant on non-‐symbolic representations than older children who have more 

experience with symbolic numbers. Future work should examine in greater detail 

how the link between non-‐symbolic numerical magnitude understanding and 

mathematics achievement changes over development. 

Validity of the Novel Tasks 

We used three novel tasks in this experiment: magnitude comparison of non-‐

symbolic fractions, number line estimation of non-‐symbolic whole numbers, and 

number line estimation of non-‐symbolic fractions. This raised the question of 

whether these tasks yield reliable and valid measures of non-‐symbolic magnitudes. 

A variety of evidence suggests affirmative answers. All three novel tasks had 

satisfactory reliability (alpha = .82 -‐ .92), and all appeared to have construct validity 

as well. For magnitude comparison of non-‐symbolic fractions, one indicator that the 

task was assessing the magnitude representations that it was designed to measure 

was that accuracy increased with the ratio of the numbers being compared, an 

essential prediction of the ANS construct (Halberda et al., 2008). Another indicator 

of this task’s construct validity was the large correlation between it and the widely 

used non-‐symbolic whole number magnitude comparison task. This relation 



MAGNITUDE UNDERSTANDING 41 

suggests that non-‐symbolic fraction magnitude comparison, like non-‐symbolic 

whole number magnitude comparison, reflects ANS functioning. Finally, accuracy on 

this task and on both non-‐symbolic number line estimation tasks was related to 

overall mathematics achievement. These data are definitely not the final word, but 

the present results provide at least preliminary evidence for the validity of the new 

tasks for measuring non-‐symbolic numerical magnitude understanding. 

Conclusions 

By examining children’s performance on numerical magnitude tasks that 

varied in the type of task (magnitude comparison or number line estimation), 

number (whole number or fraction), and form (symbolic or non-‐symbolic), we were 

able to answer a number of questions about children’s understanding of numerical 

magnitudes. First, we found strong evidence supporting the integrated theory of 

numerical development. There were large correlations between children’s 

understanding of symbolic whole number and fraction magnitudes. Second, we 

found that both symbolic and non-‐symbolic numerical magnitude understanding 

uniquely predicted overall mathematics achievement, above and beyond the 

influence of non-‐mathematical cognition and the other type of numerical magnitude 

understanding. Third, we found that symbolic and non-‐symbolic magnitude 

understandings have separate and independent effects on overall mathematics 

achievement. 

A clear pattern that emerged in the present study is that, at least by fifth grade, 

mathematics achievement is more closely related to symbolic than non-‐symbolic 

magnitude knowledge. Performance on all four tasks that assessed symbolic 



42 MAGNITUDE UNDERSTANDING 

magnitude knowledge was highly correlated with overall mathematics achievement 

test scores. The relations were equally strong for number line estimation and 

magnitude comparison and were even stronger with fractions than whole numbers. 

Together with the causal evidence showing that manipulations that improve young 

children’s whole number magnitude representations also improve their ability to 

learn novel arithmetic problems (Booth & Siegler, 2008; Siegler & Ramani, 2009), 

the findings suggest that interventions designed to improve symbolic magnitude 

representations might be useful for children considerably older than the 

preschoolers and first graders with whom previous interventions have been 

conducted. 
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