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ABSTRACT 

At low homologous temperature the plastic strain rate seems 
to be controlled largely by dislocation glide friction. However, 
since a sizeable fraction of the applied stress a is dissipated 
in overcoming the strong barriers due to dislocation tangles gen
erated by strain hardening, only a portion of the applied stress is 
actually expended against the frictional resistance. A recent 
model for this process, proposed by Hart, includes the role of 
dislocation pile-ups at the strong barriers. The pile-ups provide 
a mechanism for producing the internal back stresses that limit 
the effective frictional stress. They also appear in the deforma
tion as a stored anelastic strain component. The resultant be
havior at low temperature and high stress is similar to that pro-

(7) posed by Grupta and Li. The same model also predicts an 
anelastic behavior at low stress. Measurements at both high and 
low stress levels 6n 316 Stainless Steel have now shown that the 
predictions of the model are quantitatively consistent at both 
stress levels. 



The experiment reported here was designed to test,whether a 
complete deformation model proposed recently by Hart was fully 
consistent over its entire predictive range. The consistency test 
to be described is especially stringent since, according to the 
model, stress-strain rate measurements in the fully plastic stress 
range already determine the most important parameters of the model. 
The model then predicts a low stress anelastic behavior that de
pends on the same parameters. Consistency requires that the same 
parameter values yield a reliable description for both fully plas
tic and anelastic behavior. 

The measurements were made on Type 316 Stainless Steel at 
25°C. The anelasticity measurements were made by recording strain-
time histories after each of a sequence of abrupt load changes, 
all at stress levels low enough so that no unrecpverable (plastic) 
straining occurred. These measurements were performed in the same 

. (2) way as those reported earlier by Nir ,>7<Wfor high-purity Al. 
The plastic stress-strain rate behavior was measured by load re
laxation testing. Such measurements had already been reported for 

(3) 
this material by Yamada and Li. However, because of the metal
lurgical variability of this material, it seemed desirable to repeat 
the plastic range tests on the same specimen for which the an
elasticity measurements had been made. The relationship of the 
load relaxation test data to the stress-strain rate characteristics 

(4) has been described in detail elsewhere. 
In the following we shall first describe the theoretical model 

that is under test. The characterization of the experimental speci
men will then be described. The experimental results and data 
analysis will then be presented for the two types of test. Finally 
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we shall discuss the agreement between the two types of test. 

The Deformation Model 
The deformation model is described in considerable detail and 

in three-dimensional context in reference (1). We shall limit our 
description here to uniaxial deformation for simplicity. 

The theory that underlies the model is phenomenological 
and thus leads directly to deformation constitutive relations. The 
theory is a state variable theory, and the constitutive equations 
represent a mechanical plastic equation of state. 

The model represents a synthesis of three deformation mech
anisms whose mutual relationship is most easily described by the 
rheological diagram of Fig. 1. The three mechanisms are repre
sented by three elements labeled 1, 2, and 3. We shall refer to 
them in our discussion by the names a - element (or stored strai n 
element), a - element, and c - element (or frictional element) 

1 

respectively. These elements and their relationships can be taken 
to represent familiar micro-mechanical processes as was discussed 
in reference (1). The micro-mechanical relationships are considered 
to be as follows: 

The dislocation flux that is responsible for the non-elastic 
deformation of the metal grain matrix must traverse not only large 
regions of relatively well ordered crystal but also the strong 
barriers to dislocation motion due to dislocation tangles and cell 
walls. The strong barriers represent the basic strain hardening 
and are generated by straining. Dislocation motion in the good 
regions is limited by glide friction. Passage through the strong 
barriers can occur either by mechanical cutting of dislocations at 
high enough stress or by therma] activation at lower stresses. 



-3-

Since the dislocation flux in the good regions will generally ex
ceed the rate of passage of barriers, there will be an accumula
tion of dislocations in pile-ups at the barriers. The pile-ups 
will generally raise the driving force for barrier passage and will 
generate back stresses that slow down the dislocation flux through 
good crystal. 

In our model the a-element represents the barrier processes, 
the a-element characterizes the pile-ups as a stored strain, and the 
e-element represents the glide friction. The resultant mechanical 
interactions among the processes and the dislocation flux balance 
is then accounted for by the diagram of Fig. 1. These relations 
will now be described quantitatively. 

The applied uniaxial stress a is the sum of the stresses a 
and of that are operative in each branch of the diagram. The ob
served total inelastic uniaxial strain rate e is the same as the 
strain rate exhibited by the lower branch and is equal to the sum 
of the strain rate component a and the time rate of change of 
stored strain a. Thus we have two constraint equations on the 
auxiliary variables a , af, a, and a. These are 

0 = °a + °f ' (1) 

e = a + da/dt . (2) 
The constitutive equations for the component elements are as 

follows: 
The a-element is a linear elastic element with a modulus M 

such that 
a = Ma . (3) 

The a-element is the plastic-creep element satisfying the re

lations 
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ln(o*/aa) = (e*/a)A , (4) 

k* = (aVG)mf e"(Q/RT) , .(5) 
dlno*/dt = T(a ,a*)a - R(a*,T) . (6) 

In these equations T is the absolute temperature, R is the gas 
constant, G is the modulus of rigidity at temperature T, and A, 
f, m, and Q are constants for each material. The functions r and 
R are to be determined experimentally. 

The a-element depends prominently on the scalar state vari
able a* which we shall call the hardness. The strain hardening is 
then conveniently represented by an evolution equation that provides 
for incremental increase of hardness with strain increments da and 
for purely thermal recovery of hardness. In the tests described 
here, the recovery term R is entirely negligible. The structure of 
r is described in greater detail elsewhere ' and is not important 
in the current paper. The dependence of a on a will be described 
below graphically and will be shown to be especially simple for the 
experiment under discussion. 

Finally, the e-element, which represents dislocation glide 
friction, can be represented over fairly large ranges of strain 
rate c as a non-linear viscous element with a power law behavior. 
In order to emphasize that c has the same sign as of we write this 
relation with the signum function (sgn) whose value is simply the 
algebraic sign of the argument. Thus 

e = a*(T)(|of|/M)Msgn(af) . (7) 

We omit the signum and absolute value sign below when both c and 

of are positive. The rate variable a* is to be measured as a function 
of temperature. For our isothermal experiment it is of course a 
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constant. The exponent M is a constant for any one material if 
such a simple power law is obeyed. This representation will be 
adequate for our experiment. 

Some typical values of the material constants are: M = 7-9, 
m = 4-5, A = 0.15, M is of the order of G, and Q is commonly the 
same as the activation energy for self-diffusion of the atomic 
species. 

Application of the Model 
If a specimen, for which the initial value of a is zero, is 

loaded at an applied stress a, the strain rate £ is initially high, 
and it rapidly decreases to a lower more steady value. There then 
ensues a further much slower time rate of decrease of e. The 
initial loading transient corresponds to a rapid increase in the 
value of a until the time when da/dt falls to a level much lower 
than E. The subsequent slower rate of reduction of e is due prin
cipally to the continued strain hardening of the a-element. Now, 
in the transient-free stage, a is closely equal to e and so we can 
plot both o and of against E. This is done schematically in Fig. 
2 for a fixed value of a*, and for a typically low homologous temp
erature case. The curve of operative applied stress o is shown as 
the sum of o and of, and in such a temperature range it is typically 
concave upward as a function of E. The o curve as shown becomes 
asymptotically tangent to the line o=o* at large £ and so at suf
ficiently low temperature a* appears substantially as a plastic 
yield stress for the a-element. This is in fact the situation for 
the 316 Stainless Steel of the current experiment. 

We may then employ a considerably simplified version of our 
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equation of state for the transient free behavior as follows: 

da/dt = 0 , (8) 
and so 

a = E . (9) 
Now to a very good approximation 

o = o * , (10) 
a 

and so 

of = o-o* . (11) 

Then E can be obtained directly from Equation (7) as ' 

£ - a*[ (o-o*)/A(]M . (12) 
This equation can be rewritten in the form 

£ = a*(o*//vi)M [(o/o*)-l]M . (13) 
M Then, if o is scaled by o*, and E by (o*/M) , the resultant scaled 

E vs o curve is a single invariant curve. This means that a set 
of transient-free lno vs.lnE curves at a variety of values of o* can 
be made to superpose exactly by translation along a fixed direction 
with slope 1/M. Such a behavior had already been reported by 

(3) Yamada and Li for the material under discussion, and we show a 
set of such curves obtained in the present experiment in Fig. 3. 

The important thing about the scaling behavior is that it pro
vides an experimental determination of the exponent M from the 
scaling direction independently of the shape of the curves. 

Now the same theory that describes the transient-free behavior 
also makes a unique prediction of the transient behavior. The 
transient, at low homologous temperature, is most sensitively mea
sured at low o since the relaxation time for the transient is then 
much longer than at a high stress level. Furthermore, if o is much 
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smaller than o*, a is entirely negligible and the a-elcment is 
effectively frozen. The model then appears simply as an anelastic 
body with Hookean spring but with non-Newtonian dash-pot. In 
this range a=o and 

E = da/dt . (14) 
The resultant constitutive equation for this behavior (writing a for 
da/dt) is 

a = a* [(o - o a)/M] M . (15) 

Now application of Equation (3) leads to the equation 

a = a* [(o/M) - a ] M , (16) 
or if we introduce the saturation anelastic strain a for o/M 
this can be written 

a = a* [aS - a ] M . (17) 

The Consistency Test 
We have deduced from a single model the behavior of the defor

mation at low homologous temperature both in the fully plastic 
range for which o>o* and in the anelastic range for which o<<o*. 

The predictions for the former case are given simply by Equations 
(12) and (13) and in the latter case by Equations (16) and (17). 
Tests of either case will completely determine the material con
stants M and a* if M is known, and M is determined by the anelas-
ticity tests. A crucial test of consistency, then, is the extent 
of agreement of the values of M and a* determined by the two types 
of measurement. 

Tests are reported in the following for both high and low o 
behavior for 316 Stainless Steel. The consistency of the predic
tions will be shown to be quite good. 
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In the anelasticity measurements it will be shown that in 
addition to the grain matrix anelasticity discussed above there is 
also a readily identifiable linear anelasticity due to grain 
boundary sliding. The same behavior was found and described in the 

(2) 
earlier work on high-purity aluminum. This component is unim
portant in the plastic range measurements since grain boundary slid
ing plays no significant role in plastic deformation at low temp
erature. The test of the theory concerns only the grain matrix 
behavior. To distinguish the quantities for grain boundary anelas
ticity from those for grain matrix anelasticity we shall use sub
scripts gb and m for the two cases respectively as was done in 
reference (2). Thus, d.n the following, Equations (16) and (17) 
will simply be rewritten with the m subscript throughout. 

The Experimental Procedure 
The 316 Stainless Steel used in this experiment was a commer

cial grade obtained from Allegheny Ludlum Steel Co. The gage sec
tion of the single specimen was 1.0 inch long with a diameter of 
0.1 inch. After machining, the specimen was annealed in vacuum for 
five minutes at 1200°C and air cooled. It was then strained 5% at 
room temperature in tension and annealed in Argon at 800°C for 48 
hours. The average grain size was then 4 5pm. The specimen was 
then prestrained 20% in tension prior to the start of the load 
change measurements. 

The principles and the procedures for the anelastic deforma
tion (load change) experiment and for the load relaxation experi
ment have been described in references (2) and (4). 

As mentioned above, the stress.level during the load change 

tests was always so low that the plastic (unrecoverable) strain 
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rate was negligible. After each abrupt load change the specimen 
extension was measured as a function of time. 

The load relaxation tests yielded records of load vs. time. 
From that data the plastic strain rate E could be determined as a 
function of stress for each relaxation run. 

The load relaxation tests were performed on the same speci
men after the anelasticity measurements were concluded. 

The Plastic Range Load Relaxation Tests 
The load relaxation results in the form of curves of logo vs. 

logs are shown in Fig. 3. These data were obtained from the same 
specimen on which the anelasticity measurements had been made. 
The curves shown represent three different levels of hardness. 
The different hardness levels were obtained by about 1% interim 
plastic straining between each pair of relaxation runs. 

t These data are consistent with those reported by Yamada and 
. (3) Li. The constant hardness curves are of the same shape and 

they exhibit the same O-E scaling behavior. The curves in Fig. 3 
can be superposed by translation along the line shown in the figure. 
The slope of that line, according to Equation (13) is 1/M. The 
value of the exponent obtained this way is 7.7+0.2. Since the 
range of hardness of the curves in Fig. 3 is so small, the accuracy 
of determination of M is not very sharp by this means. A sharper 
determination of M is obtained by fitting the actual shape of the 
curves according to Equation (13)., By that means M is found to 
be 7.8+0.1. 

The solid lines through the data points in Fig. 3 are plots 
of Equation (13) with M = 7.8 and the parameter values shown in 

5 2 Table I. The value of M has been taken to be 1.01x10 MN/m as 
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21 determined in the anelasticity analysis below, and a* = 1.65x10 
-1 sec 

THE ANELASTICITY TESTS 
(2) Two distinct components, similar to those found in aluminum, 

were observed for the anelastic strain. One component had a very 
short time constant and is associated with the grain boundary. The 
other component saturated over a much longer time period and is 
associated with the grain matrix. These two components can be 
identified easily from the data shown in Fig. 4 in which the 
logarithm of the anelastic strain rate is plotted against the dif
ference between the saturation and the current anelastic strain. 

The Grain Boundary Anelasticity 
The grain boundary anelastic strain a was found to satisfy 

a linear relaxation equation of the form 

a , = a* (aS
w - a , ) , (18) 

gb gb gb gb 
where a* is a rate constant and a , is the saturation grain gb gb 
boundary anelastic strain at stress a. A linear relationship was 
found for a , of the form gb 

a
s = o/M , (19) 
gb gb 

and At is a grain boundary anelastic modulus. gb 
Integration of Equation (18) with respect to time t and sub

stitution into Equation (18) (see ref. 2) yields the relationship 

lna , = ln[a* (aS. -a° ) ] - a* t , (20) gb gb gb gb gb 
where a , is the anelastic strain at time t=o. The initial an-gb 
elastic strain a . at the time of a load change is generally the 

saturation anelastic strain at the prior load. 
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A plot of lna , vs. t is shown in Fig. 5 for the data of two 
separate test runs. The data agree well with the relation of 
Equation (20). From the data the average parameter values deter-

-1 7 mined were a* = 12.1+1.1 sec and M . = 1.69+0.12x10 psi gb — gb — c 

5 2 (1.16+0.08x10 MN/m ). The individual determinations for each run 
are shown in Table II. 

The Grain Matrix Anelasticity 
The long time anelasticity data of Fig. 4 is the grain matrix 

anelastic strain a'. The non-linear relation of Equation (17) was 
found to provide a good fit for the observed data. 

Integration of Equation (17) yields 

(a S-a°) 1 - M - (as-a ) 1 _ M = (l-M)'a* (t-t ) , (21) m m m m m o 
where a is the grain matrix anelastic strain at time t=t . This m o 
equation was used to analyze the grain matrix anelastic strain by 
means of a non-linear least squares fitting routine. The best fit 
curves to two of the test runs are shown plotted with the data 
points in Fig. 6. 

The average values of the best parameters determined individ-
20 -1 ually from four runs are: M = 7.7+0.2, a* = 7.0+2.0x10 sec , J — ' m — 

7 5 2 and M = 1.46+0.07x10 psi (1.01+0.05x10 MN/m ). The separate in-m — ^ • — 
dividual determinations are listed in Table III. 

More pertinent for the current experiment is the value of 
a* obtained with a single value of M for all runs. These are also m 
shown in Table III for the single "best" value M = 7.8. For that 

21 -1 case the geometric mean value of a* is 1.14x10 sec . This value m 
is uncertain to within a factor of about 2.5. 
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DISCUSSION OF RESULTS 

In order to test the model described above, tests were made 
on 316 Stainless Steel of two levels of stress that differed by 
a factor of about thirty. The material was fully plastic at the 
upper stress level and was entirely anelastic at the lower stress 
level. 

The principal feature of the model that was under test was 
the E-element. This non-linear frictional term is characterized 
by the rate constant a* and a stress exponent M. Both ranges of 
data were fit quite well over a broad range of strain rate with 

21 -1 M = 7.8. The best values of a* were 1.65x10 sec for the high m 
21 stress data and 1.14x10 for the low stress data. These agree 

quite well within the experimental uncertainty. 
The interpretation of the high stress data offered by our 

(7) model is very similar to that made by Gupta and Li with respect 
to low homologous temperature tests of several bcc metals and 
alloys. Gupta and Li characterized the results of their load re
laxation tests substantially as we have done in Equation (12) above. 
What we have called o in our model is equivalent to the internal 

a ^ stress o. in their treatment. Furthermore, both treatments assoc-l 

iate the principal effective flow stress (our a,) with dislocation 
glide resistance. 

Our model goes beyond that of Gupta and Li in providing a 
mechanism whereby the essentially dissipative strain hardening bar
rier stress o* is reflected as dislocation pile-up back stress o 
operating directly on the gliding dislocations. A corollary of 
our model is then the low stress anelastic behavior. 

Because of the considerably greater range of strain rate ex-
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plored in our experiment, the test of the model could be more 
stringent. 

Thus our results are not only consistent with the Gupta and 
Li treatment but also provide support for a more detailed model. 

Although a power law seems to hold well over a broad strain 
rate range at a single temperature, we have no confidence in the 
universality of such a representation. Measurements of a* and M 
at other temperatures are necessary to settle this question. Such 
investigations are in fact now in progress. 
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TABLE I 
Best Fit Parameters for 

Stress-Strain Rate Curves of Figure 3 

Accumulated ^ 
Curve Tensile Strain ° 
Number (per cent) (MN/m ) 

1 2 0 . 7 5 6 3 7 . 8 

2 2 1 . 4 9 6 4 6 . 4 

3 2 2 . 6 9 6 6 0 . 0 

M = 7.8; M = 1.01xl05MN/m2; a* = 1.65xl021sec-1 
m ' 
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TABIE II 
Experimental Data and Values of the 

Calculated Grain Boundary Anelastic Parameters 

Initial 
Stress 
MN/m

2 

Ao 

MN/m' 

Aa 
gb M 

gb 

MN/m' 

gb 

sec -1 

8.78 
43.36 
21.08 
38.4 

34.58 
-34.54 
17.32 

-17.24 

30.83x10 -5 

27.52x10 
15.92x10 
14.30x10 

-5 
-5 

1.42x10* 
1.25x10" 
1.08x10' 
1.21x10" 

13.25 
11.00 
11.10 
11.95 

TABLE III 
Experimental Data and Values of the 

Calculated Gram Matrix Anelastic Parameters 

Initial 
Stress 
MN/m

2 

Ao 

MN/m' 

Aa" 
m M 

m 

MN/m' 

m 

sec 

M a* 
m 
for 

M=7. 8 

sec -1 

8.78 
43.36 
21.08 
38.4 

34.58 35.5x10
 5 0.97xl0

5 5.4 xlO20 7.86 
■34.54 33.5x10 
17.32 18.0x10 

-5 

-17.24 16.0x10 

-5 
-5 

1.03xl0
5 9.68xl0

2
° 7.69 

0.96xl0
5 5.1 xlO20 7.80 
5 20 

1.07x10 7.4 xlO 7.51 

3.7x10 
1.9x10 
5.1x10 
4.7x10 

20 
21 
20 
21 
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FIGURE CAPTIONS 

Figure 1: A schematic rheological diagram representing -Hart's 
model of the constitutive relations for metal grain 
matrix non-elastic flow. Element 1 is Hookean, ele
ment 2 is a thermal activation element associated with 
plastic deformation and element 3 is a non-linear 
viscous element. 

Figure 2: A schematic graph of stress vs. strain rate for 
transient-free flow at low homologous temperature. 
The observed flow stress o, as shown by the upper curve, 
is the sum of stresses represented by the two lower 
curves, of o and o... a f 

Figure 3: loglf.o vs. log, E data obtained from room temperature 
load relaxation experiments at several plastic strain 

, levels. The curves are calculated by using Equations 
1-4 and 7, with the parameters in Table I. 

Figure 4: Logarithm of the magnitude of the anelastic strain rate 
plotted against the difference between the saturation and 
current anelastic strain. The time shown is the elapsed 

s time after the stress change. The value of (a -a) de-
g 

creases with increasing time. The value of a in this 
figure is the sum of the saturation anelastic strains 
of the grain boundary and the grain matrix, and it is 
calculated from the two anelastic moduli. 

Figure 5: Logarithm of the magnitude of the grain boundary 
anelastic strain rate plotted against time after stress 
change. The slope and the ordinate intercept yield the para-
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meters in Equation (20). 
Figure 6: Loading and unloading experimental data of grain matrix 

anelastic strain as a function of time after stress 
change. The uncertainty in the strain is of the order 
of 3 x 10 . The curves shown are calculated 
from Equation (21). 
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