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Abstract Ageing is the primary risk factor for cognitive

deterioration. Given that the cerebral blood flow (CBF) or

regulation of cerebral circulation is attenuated in the

elderly, it could be expected that ageing-induced cognitive

deterioration may be affected by a decrease in CBF as a

result of brain ischemia and energy depletion. CBF regu-

lation associated with cerebral metabolism thus likely plays

an important role in the preservation of cognitive function.

However, in some specific conditions (e.g. during exer-

cise), change in CBF does not synchronize with that of

cerebral metabolism. Our recent study demonstrated that

cognitive function was more strongly affected by changes

in cerebral metabolism than by changes in CBF during

exercise. Therefore, it remains unclear how an alteration in

CBF or its regulation affects cognitive function. In this

review, I summarize current knowledge on previous

investigations providing the possibility of an interaction

between regulation of CBF or cerebral metabolism and

cognitive function.
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Introduction

It is generally believed that risk factors for the development

of dementia include ageing, family history, low levels of

physical activity, education, and the presence of the epsilon

4 allele of the apolipoprotein E (ApoE 4) gene

[17, 27, 32, 62, 66, 75]. However, the physiological

mechanism of alteration in cognitive function remains

unknown.

Recently, some clinical investigations have highlighted

the significant contribution of cerebral and vascular dis-

eases in the development of cognitive dysfunction and

dementia [62]. It is well known that these diseases also

alter cerebral blood flow (CBF) regulation chronically. In

addition, the previous studies [1, 9, 30, 55, 69, 73, 74] in

healthy subjects demonstrated that several specific condi-

tions (e.g., exercise, hypoxia, heat stress etc.) affect cog-

nitive function with change in CBF. Under these

conditions, it could be expected that CBF and its regulation

may be a key factor in altering cognitive function. How-

ever, it remains unclear how an alteration in CBF and its

regulation affects cognitive function. First of all, I sum-

marize recent clinical and physiological investigations,

suggesting that change in CBF affects cognitive function.

Cognitive dysfunction occurs with high risk factors

for cerebral or vascular diseases

Dementia often occurs together with stroke, and the

prevalence of cognitive impairment after stroke is high,

particularly after stroke recurrence. However, the mecha-

nism linking stroke to cognitive impairment or dementia

remains unclear.

A previous study by Hennerici [20] proposed two dif-

ferent hypotheses for the mechanism of stroke-induced
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dementia. One hypothesis is that the central role of the

stroke itself is related to the development of cognitive

impairment, indicating that brain metabolic function asso-

ciated with stroke itself may interact with cognitive func-

tion. The other involves the role of stroke-related

deterioration of pre-existing systemic vascular factors,

rather than the role of the stroke alone. Indeed, it has been

suggested that vascular risk factors for cerebral or vascular

disease including hypertension, atherosclerosis, diabetes

mellitus, high cholesterol, atrial fibrillation, dyslipidemia,

smoking, obesity, and alcohol consumption are associated

with cognitive impairment [62]. Interestingly, maintaining

ideal vascular health from young adulthood to middle age

could be related to better cognitive performance later in life

[58]. These findings support the second hypothesis of

Hennerici [20] and suggest that cognitive function or the

pathogenesis of dementia may be more affected by chronic

alteration in vascular risk factors associated with cerebral

or vascular disease rather than these diseases alone.

The mechanisms of cerebral and cardiovascular

disease risk factor-induced cognitive dysfunction

or dementia

Autonomic function could be a predictor of cognitive

impairment as it is one of the fundamental homeostatic

mechanisms for regulating blood pressure and metabolic

rate [8, 61]. Indeed, abnormal autonomic function,

including parasympathetic depression and sympathetic

exacerbation, has been reported in patients with Alzhei-

mer’s disease [10]. Also, associations between autonomic

nervous system dysfunction and dementia [12, 70] or

memory impairment [65, 72] have been reported.

Beside autonomic dysfunction, the high risk factors for

cerebral or vascular disease also impair regulation of CBF.

For example, hypertension results in vascular hypertrophy

and remodeling and promotes atherosclerosis in large

cerebral arteries and lipohyalinosis in penetrating arterioles

[11, 13]. These structural vascular alterations facilitate

vascular occlusions and compromise cerebral perfusion as

well as the function of cerebral blood vessels, including

impairments in endothelium-dependent relaxation [14] and

cerebrovascular autoregulation [53]. In addition to abnor-

mal vasculature, resting CBF, metabolism, and cognitive

function are reduced in patients with hypertension [16]. On

the other hand, atherosclerosis causes irregular vessel

lumens, compression or local thickness, which alters

smooth blood flow pattern [37]. In addition, the autonomic

nervous system affects dynamic CBF regulation

[45, 52, 79]. Ogoh et al. [45, 50] have examined CBF

responses to acute hypotension with alpha (1)-adrenore-

ceptor blockade (prazosin) and strongly suggested that in

humans sympathetic neural control of the cerebral

vasculature provides dynamic functional control of CBF.

Considering this evidence, it is highly likely that alteration

in vascular risk factor-induced attenuation in CBF or dys-

function of CBF regulation is associated with cognitive

function.

An adequate global CBF is needed for an increasing

regional CBF for neural coupling to maintain brain

function; does global CBF affect regional CBF

for neural coupling?

The brain always requires a continuous supply of glucose

and oxygen from the cerebral circulation in order to

maintain brain function because its energy reserve is rela-

tively small. The close spatial and temporal relationship

between neural activity and regional CBF is termed

‘‘neurovascular coupling.’’ During synaptic activity, a

sudden increase in the demand for energy could result in a

relative lack of oxygen and glucose in the brain. Thus, it is

thought that cognitive function is determined by an ade-

quate increase in regional CBF for neural coupling.

It is well established that CBF is altered under a number of

conditions [41–43, 47, 49, 63], and the CBF responses to

physiological stress may be important to maintain brain

metabolism and function [4]. In contrast, disrupted interac-

tion between neural activity and global CBF may contribute

to brain dysfunction. Indeed, cerebrovascular dysfunction

often precedes the onset of cognitive impairment, suggesting

its role in the mechanism of dementia [22].

The increase in regional CBF in the posterior parietal

and thalamic areas is attenuated during cognitive tasks in

patients with untreated chronic hypertension [26]. Simi-

larly, the increase in regional CBF produced with a simple

motor task (hand grip or finger tapping) is attenuated in

patients with ischemic stroke [29], lacunar strokes causing

limb weakness [54], and extracranial or intracranial artery

disease [18]. Neural impairment also corresponds with the

severity of cortical ischemia [4]. Interestingly, mechanical

occlusion of both intracranial carotid arteries and one

vertebral artery decreases regional CBF response to a

simple motor task [60]. These findings indicate, thus, that

global or focal cerebral ischemia exerts profound influ-

ences on the regional CBF regulation associated with

neurovascular coupling. In patients with dementia, cere-

brovascular structure was shown to be altered; as a result,

the number of cerebral microvessels reduced, and flattened

endothelial cells and smooth muscle cell degeneration

occurred [15]. In addition, resting CBF is reduced, and the

increase in regional CBF produced due to several physio-

logical stimuli is attenuated in patients with Alzheimer’s

disease [21, 35, 76]. These findings provide the evidence

that the regulation of global CBF affects the response of

regional CBF to neural coupling.
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In patients with Alzheimer’s disease, dysregulation of

the cerebral circulation, including endothelium-dependent

responses [23], functional hyperemia [40], cerebral

autoregulation [38], and responses to vasoconstrictors [39],

occurs. The reduction in cerebral perfusion may attenuate

cerebral protein synthesis and can thus promote ischemic

lesions, which act synergistically with amyloid b-peptide
(Ab) to exacerbate the dementia [22]. An increase in Ab
levels in the neuropil (neuritic plaques) and blood vessels

(amyloid angiopathy) is a characteristic of patients with

Alzheimer’s disease [64]. Furthermore, insufficient CBF

may alter Ab trafficking across the blood–brain barrier

[80], and reduced CBF may slow down Ab clearance and

promote its accumulation in the brain. Altogether, this

previous research provides the possibility that structural

and functional alterations of the cerebral microvasculature

could affect resting CBF or regional CBF regulation and

consequently contribute to the mechanisms of brain dys-

function underlying dementia.

Alteration in CBF regulation also affects cognitive

function without high risk factors for cerebral

or vascular disease

Many previous investigations regarding high risk factors

for cerebral or vascular diseases and neural coupling pro-

vided the possibility that inadequate global CBF supply

appears to cause brain dysfunction, subsequently resulting

in dementia. Thus, it is expected that adequate CBF regu-

lation is an important physiological factor for maintaining

brain function. However, these clinical investigations could

not provide the evidence that change in CBF affects cog-

nitive function because many physiological factors modify

cognitive function chronically in patients with cerebral or

vascular disease, or dementia. In this section, I would like

to discuss the research which investigated the effect on

cognitive function of an alteration in CBF or its regulation

(i.e., cerebral metabolism) under several conditions without

any diseases. I believe that data from this research could

provide important information about the relationship

between CBF and cognitive function.

The alteration in CBF and its regulation

during several physiological stresses likely affects

cognitive function

The transient occlusion of CBF in patients with vascular

disease was shown to reversibly impair cognition [33]. This

finding suggests that an acute change in CBF modifies

cognitive function; however, this response may be specific

to these patients.

It has been reported that several physiological stresses

affect cognitive function with the alteration in CBF and its

regulation. For example, heat stress resulted in an expected

decrease in anterior CBF [48] and caused cognitive

impairment [30, 67, 69]. In addition, an oleuropein (a free

radical scavenger)-induced decrease in oxidative stress

attenuated cognitive function [1, 55]. Similarly, high-alti-

tude exposure impaired cognitive function [9, 73, 74].

These findings of previous studies likely suggest that

decrease in CBF is a key factor in determining cognitive

function during these conditions. However, under hypoxic

conditions, CBF increases acutely to preserve oxygen

delivery to the brain [41] and to modify the systemic

vascular system [28]. Hypoxia also affects other physio-

logical factors [41, 42] as is the case with cerebral or

vascular disease; thus, the relationship between the CBF

response and cognitive function during hypoxia remains

controversial. It remains difficult to identify the direct

effect of change in CBF on cognitive function because

studies on healthy individuals have not manipulated

changes in CBF. However, these findings provide the

possibility that acute alteration in CBF may affect cogni-

tive function even without risk factors for cerebral or

vascular disease.

An isolated change in CBF by manipulating cerebral

perfusion does not affect cognitive function

With this in mind, we recently for the first time examined

the effect of an isolated change in CBF on cognitive

function in humans by manipulating CBF [51]. During

dynamic exercise at mild to moderate intensity, increases

in cerebral metabolism or cerebral neural activity

[24, 42, 43] are paralleled by transient increases in CBF

[19, 44, 46, 63]. Indeed, cognitive function improves

during a single bout of moderate exercise [3, 34]. In

contrast, during prolonged dynamic exercise, CBF grad-

ually decreases toward resting values, and this is associ-

ated with hyperventilation [46]. Thus, in this study, we

hypothesized that cognitive function is impaired in

response to a decrease in CBF during prolonged exercise,

and it can be restored with an artificial increase in CBF.

However, in contrast to our hypothesis, cognitive function

has been found to improve during prolonged exercise

despite a decrease in CBF [51]. In addition, unexpectedly,

an isolated change (hypercapnia-induced increase) in CBF

by manipulating cerebral perfusion did not affect cogni-

tive function at rest or during exercise (Fig. 1). These

findings suggest that exercise-induced improvement in

cognitive function is not simply due to change in global

CBF. Thus, these findings suggest that another factor

modified by exercise, rather than change in CBF, affects

cognitive function. However, the mechanism of exercise-

induced improvement in cognitive function remains

unknown.

J Physiol Sci (2017) 67:345–351 347

123



Cerebral metabolism may be important

for determining cognitive function, rather

than change in CBF

Prolonged exercise [49, 51] or exercise under mild normo-

baric hypoxia induced a decrease in cerebral oxygenation [2]

but these conditions did not impair cognitive function in

healthy young subjects. These findings suggest that with

respect to cognitive function, an alteration in CBF with

decreased oxygen delivery to the brain may not correspond

to cerebral metabolism or cognitive function. Indeed, pre-

vious studies demonstrated that during heavy exercise,

compensatory increases in the uptake (arterial-venous dif-

ference) of lactate, glucose, and oxygen support the elevation

of brain neural activity andmetabolismwhen CBF decreases

[24]. Considering that increases in brain neural activity and

metabolism are not consistent with increases in CBF [36],

cognitive functionmay be affected by extensive activation of

motor and sensory systems due to the higher-order function

of the prefrontal cortex, rather than by cerebral perfusion

during exercise. On the other hand, more recently, we have

demonstrated that cognitive function during exercise may be

related to change in blood lactate concentration [71]. In our

study, prolonged exercise improved cognitive function, but

repeated (2nd) prolonged exercise attenuated this cognitive

improvement alongwith a lack of blood lactate accumulation

(Fig. 2). This finding indicates that neuro-humoral and

metabolite responses, rather than a change in CBF, are

associated with cognitive function during and after exercise.

Moreover, another previous study [25] demonstrated

that cognitive function is associated with type of food

intake. Cognitive function decline throughout the morning

is significantly reduced following intake of a low glycemic

index cereal as compared with that of a high glycemic

index cereal. These findings suggest that even an acute

change in cerebral metabolism associated with food intake

may affect cognitive function.

It also has been reported that intravenously or intrana-

sally administered insulin improves cognitive function

(memory) in patients with dementia [7, 56, 57]. Insulin

resistance is linked to an increased risk for both Alzhei-

mer’s disease [6, 77] and cognitive decline [77, 78].

Although the mechanistic relationship between insulin

resistance and cognitive decline remains unclear, it has

been reported that insulin signaling is linked to neuro-

transmission [68] and is impaired in the postmortem brain

of individuals with Alzheimer’s disease [31]. However,

some previous studies did not show the beneficial effects of

insulin on Alzheimer’s disease; insulin’s therapeutic

effects may not improve cognitive function in

apolipoprotein E (APOE) e4 carriers [59]. Furthermore, the

relationship between circulating insulin, cognition, and

brain structure may differ between individuals with normal

cognition and Alzheimer’s disease [5]. However, regarding

therapy for preventing the acceleration of cognitive dys-

function in patients with dementia, control of their cerebral

metabolism (via exercise, diet, administered insulin, and so

on) may be important.

Summary

Clinical research provides the possibility that impaired

CBF and its regulation causes cognitive dysfunction or

dementia. On the other hand, some previous studies in

healthy individuals demonstrated that cognitive function is

associated with acute change in CBF during some physi-

ological stresses. However, our recent study demonstrated

acute change in CBF did not affect cognitive function.

Cerebral metabolism may be an important physiological

Fig. 1 Despite a decrease in the mean blood flow velocity in the

middle cerebral artery (MCA Vmean), the reaction time of the Stroop

test gradually decreased during prolonged exercise (50 min), indicat-

ing that cognitive function improves. In addition, the hypercapnia-

induced increase in MCA Vmean did not alter the reaction time at rest

or during exercise [51] (Modified from Ogoh et al., Physiol Rep,

2014)
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factor that determines cognitive function rather than CBF,

although it is also affected by acute or chronic change in

CBF. However, we do not have any evidence regarding the

physiological mechanism of onset of dementia or cognitive

dysfunction from previous investigations. Thus, further

studies are needed to identify the relationships between

cerebral metabolism, CBF, its regulation, and cognitive

function in order to prevent cognitive dysfunction or

dementia.
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