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The partition function of a quantal spin system is expressed by that of the Ising model, 

on the basis of the generalized Trotter formula. Thereby the ground state of the d-dimensional 

Ising model with a transverse field is proven to be equivalent to the (d+ 1) -dimensional 

Ising model at finite temperatures. A general relationship is established between the two 

partition functions of a general quantal spin system and the corresponding Ising model with 

many-spin interactions, which yields some rigorous results on quantum systems. Some 

applications are given. 

§ 1. Introduction 

Critical phenomena in classical systems (whose Hamiltonians are described by 

scalar variables such as Ising spins) have been studied by many people since 

Onsager found the exact solution of the two-dimensional Ising model. It seems, 

however, very difficult to investigate critical phenomena in quantum systems such 

as the Heisenberg model. Although there are many perturbational calculations 

based on high temperature expansions, 1} no rigorously soluble model of quantum 

systems ·which show a phase transition at finite temperatures has been found except 

for extremely long-range interaction models!},s) 

Recently, Elliott, Pfeuty and W ood4} found numerically the equivalence of 

the ground state singularities of the d-dimensional Ising model with a transverse 

field 5}, 6} (which is the simplest quantal model) to the singularities of the ( d + 1)

dimensional Ising model. Quite recently Yanase, Takeshige and Suzuki7} have 

also confirmed numerically the above equivalence conjecture by calculating a power 

series expansion of the susceptibility up to a few more terms. 

On the other hand, the present author8} proved rigorously the equivalence 

of the two-dimensional Ising model to the ground state of the linear XY-model, 

which is described by the following Hamiltonians: 

N M 

!f{I= -Jl :E :E o~,mO~+l,m -Jz L o~,mO~,mll (1·1) 
n=l m=l 

and 
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Relationship between d-Dimensional Quantal Spin Systems 1455 

J1 

!}{XY=- I,: (Jxl5/15~+l+Jyl5/15~+l-pH15/), (1·2) 
J =1 

respectively, where {15/', 15/, 15/} are Pauli operators associated with a lattice point 

r. The equivalence of the above hvo models holds81 under the relations that 

(1· 3) 

with Ki=Jijl?T. This equivalence was proven81 by showing that !/{xy commutes 

with the transfer matrix of !f(I under the relations (1· 3). This leads to the 

follo'.ving correspondences8l of the singularities for the hvo systems: 

Ising model (d=2) XY-model (d=2, T=O) 

1
1\!f,oc (T, -Ty;s 1 M,XY oc (H, -Hy;s, 

CvoclogjT-T,j ~ Xr(Y=logjH-Hcl, (1·4) 

Xo= (T- T,)-7f1 xj_ X y = (H- H,)-7f4 . 

Here 111/Y has already been calculated explicitly by Barouch and McCoy. 91 In the 

above equivalence, the magnetic field H o£ the XY-model plays the role of the 

temperature in the Ising model. Recently Ferrell10l has also discussed asymptoti

cally the equivalence of !f( I and the one-dimensional Dirac particle. 

One of our purposes in the present paper is to investigate generally the 

relationship between d-dimensional quantal spin systems and the (d + 1) -dimensional 

Ising model and particularly to prove the equivalence of the ground state of the 

d-dimensional Ising model with a transverse field to the (d+1)-dimensional Ising 

model, which was conjectured by Elliott et aV1 and by Y anase et al. 71 The Ising 

model \vith a transverse field is described by the Hamiltonian 

(1· 5) 

where Rd denotes a lattice space in d dimensions. 

In § 2, main results are stated as theorems, whose proofs are given m the 

succeeding sections. In § 3, the generalized Trotter formula is reviewed, which 

is our keystone to prove the theorems in § 2. A proof is given in § 4 for the 

equivalence of the ground state of the d-dimensional Ising model with a transverse 

field, (1 · 5), to the ( d + 1) -dimensional Ising model by the help of the generalized 

Trotter formula. A general formulation is presented in § 5, concerning Trotter's 

representation for the partition function of some quantal spin systems. Some ex

amples are shown in § 6. A crossover effect is discussed in § 7 for the critical 

exponent of (1·5). 

§ 2. Statements and discussion 

In this section we summarize our main results. We first state Theorems 1 

and 2, which lead to Theorem 3 as a direct consequence of Theorem 1 and the 
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1456 M. Suzuki 

renormalization group theory. 1n We then present Theorems 4, 5 and 6 on the 

relationship between the partition functions and spin-correlations of d-dimensional 

quantal spin systems and those of the (d + 1) -dimensional Ising model. Theorems 

7 and 8 are derived from Theorem 4. 

Theorem 1: The ground state of the d-dimensional quanta[ system described 

by (1· 5) is equivalent to the (d + 1) -dimensional Ising model. Consequently 
we have 

a<Q>(d) =aw(d+1), {3<Q>(d) ={3w(d+1), /Q>(d) =rw(d+1), etc., (2·1) 

where a<Q>(d), {3<Q>(d) and r<Q\d) denote the critical exponents of energy deriva

tive spontaneous magnetization and susceptibility of (1· 5) in d dimensions, re
spectively, and {am (d)} denote those of the Ising model. 

This yields a proof of the conjecture by Elliott et aV>· n This theorem is 

easily extended to the following more general case. 

Theorem 2: The ground state of a d-dimensional quantal sPin system is 
equivalent to a certain (d + 1) -dimensional Ising model with many-body inter

actions. 

It should be noted that if the interaction of the relevant quantal spin system 

is of finite-range, then the corresponding Ising model is expressed by finite-range 

interactions, as will be shown in §§ 4 and 5. 

Theorem 1 leads to the following result if we accept the renormalization 

group theoryw and the equivalence11> between the ip4-theory and Ising model. 

Theorem 3: The critical exponents of the ground state of (1· 5) in dimen

sions higher than three (d>3) assume classical values, namely we have 

(2·2) 

for d>3 at the zero temperature. 

For finite temperatures, the following relationship exists: 

Theorem 4: The partition function of the d-dimensional quantal spin system 

(1· 5), ZQ <d> ( {K1}, h, r), is expressed by 

z9<dJ =lim - sinh _1 Z/d+IJ -K;1 , - log coth .L, - , ( 1 2 ) Nnf
2 

( { 1 } 1 h ) 
n-oo 2 n n 2 n n 

(2·3) 

where Ki1={3J;J> h={3fJ.H and r={3T, N denotes the number of the original 
lattice points and Z/d+l> is the partition function of the (d + 1) -dimensional 

Ising model with the interaction J;1/n in the d-dimensional hyper plane and 
with the nearest-neighbour interaction (1/2) log (coth r/n) in the (d + 1) -th direc

tion of the lattice thickness n. More explicitly we have 
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Relationship between d-Dimensional Quantal Spin Systems 1457 

It should be remarked here that this theorem does not necessarily insist that 

the critical behavior of (1· 5) at finite temperatures be the same as that of the 

(d+1)-dimensional Ising model, because a part of interaction vanishes and the 

other part diverges as the lattice thickness n goes to infinity. Furthermore, the 

above series (2 · 3) with respect to n converges uniformly and the critical behavior 

of the system for all finite n and for a finite rCT>O) shows the d-dimensional 

character according to the universality12l~J 4 l of critical exponents. Thus, we may 

assert the following statement: 

Proposition: The critical behavior of (1· 5) in d dimensions at finite tem

peratures may be the same as that of the d-dimensional Ising model. 

This yields a plausible explanation of the numerical results obtained by Yanase 

et al.7l at finite temperatures. 

Theorem 4 is easily extended to the following more general case: 

Theorem 5: The partition function of a d-dimensional quantal spin system 

is expressed by that of a certain appropriate (d + 1) -dimensional Ising model 

with Jnany-spin interactions. If the interaction of the relevant quantal spin 

system is of finite-range, then the corresponding Ising model is described by 

finite-range interaction. 

The last half part of this theorem is very useful in applying the Monte Carlo 

method to quantal spin systems on the basis of Theorem 5, as will be discussed 

later again. How to find the corresponding Ising model of finite-range interac

tions will be explained in detail in § 5. 

Spin correlations { ( oA 'u B')} are also calculated from the corresponding Ising 

model as shown in the following theorem: 

Theorem 6: Spin correlations { ( 0" A'u B')} are calculated as those of the cor

responding (d+1)-dimensional Ising model, by newly re-interpreting uA'uB' as 

an sjJin operator located in a d-dimensional hyper-plane in (d + 1) dimensions: 

(2·5) 

where &eVf+ll ( { O"i}) is the effective Hamiltonian of the corresponding ( d + 1)

dimensional Ising model and Zd+l denotes the Partition function of it. 

Theorem 4 together with the Lee-Yang theorem 15 l~JsJ on the ordinary Ising 

model leads to the following result: 

Theorem 7 (Circle theorem): All the zeros of the partition function of 

(1· 5) for ferromagnetic interactions ( Jii>O) and for T>O lie on the imagi

nary axis of the complex magnetic field H. 

This theorem is a special anisotropic limit of the more general case proven 

by Suzuki and Fisher, 19l but the present proof of Theorem 5 is slightly different 
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1458 M. Suzuki 

from the previous one, as was mentioned above. This theorem yields the analyti

city of the limiting free energy of (1· 5) \Yith ferromagnetic interactions for all 

(real) nonzero magnetic field H. Therefore, a phase transition occurs only at 

I-I= 0 in such a system, if possible. 

For the quantal spin system (1· 5), we obtain the following result with the 

compact notations: 

(2·6) 

Theorem 8 (correlation inequalities): If Jii>O, H>O and T>O, then we 

have 

and a<uA'><o. 
ar- (2 ·7) 

This has already been proven in a previous paper20l for more general situations. 

The case H = 0 of (1· 5) was proven by Gallavotti.2!) It should be, however, 

instructive to remark that Theorem 8 is derived immediately from Theorem 4 

and Griffiths inequalities22l on the ordinary Ising model. As discussed in Ref. 20), 

the above inequalities are useful in proving nonexistence of long-range order m 

(1· 5) for all nonzero temperatures in one dimension under the condition 

N 

lim {log (log N)} -l I.: nJi,i+n = 0, (2·8) 
N---'1-co n-'-'-1 

by the help of Dyson's results on the Ising model. 

§ 3. The generalized Trotter formula 

It is convenient to summarize here the generalized Trotter formula. 24 ), 161 ' 19), 251 

Namely, for bounded operators {Ai}, we have 

p 

exp ('L.: Ai) =lim fn ( {Ai}), (3 ·1) 
J=l n_,.:x. 

\vhere the n-th approximant"5l fn( {Ai}) is defined by 

(3· 2) 

Matrix elements of exp ('L.:~~~ Ai) are expressed in terms of a certain representation 

as follows: 

<al exp C'L.: A;) I a')= lim I.: <al QJI au)< au[ Q,[ a12) X 00 
• 

n~co {aij} 

X <aJ,p-JlQPlaJ,p)<al,plQJ[a,~><a2JlQ2[a,z) X •oo 

X <an-l,p-l[QP[ an-Lp)<an-l,p[ Q~[an.l)· · ·(an,p-l[ Qvl a'), (3 ° 3) 
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Relationship between d-Dimensional Quantal Spin Systems 1459 

where Qj=exp ( (1/n) Ai). We may call (3 · 3) Trotter's representation of the 

exponential operator (3 ·1). This representation is particularly useful when the 

partial exponential matrix elements {(aikiQjla;k)} can be evaluated explicitly, as 

shown in the succeeding sections. 

The above Trotter formula is easily extended to the following bounded ex

ponential hyper-operators25 ) {':Ij}: 

(3·4) 

In particular, for !}-{x with Kubo's notation26 l we have 

(3·5) 

where !JC; A= [!1{1 , A.] =!}-{jA_-A!}-{i> as was proven by the present author, 25J with 

the use of a hyper-operator norm. 

It should also be remarked that Trotter's representation (3 · 3) above is quite 

analogous to a path integral in statistical mechanics. 

§ 4. Proof of Theorems 1, 2 and 3 (equivalence) 

First we prove Theorem 1. The ground state energy Eg of (1· 5) IS expressed 

by 

Eg= lim [ -kT log Tr exp ( -!J(/cf/jkT)]. (4 ·1) 
r~o 

It IS convenient to introduce here a dimensionless parameter n defined by 

n=TjkT: (4·2) 

In taking the limit T---'>0, we consider a subset T=Tn =T / (kn), where n IS an 

integer. Thus, we have 

E 9 = -r lim l_ log Tr exp[n{I:(Jij)o/o/+ I:(/f.H)o/ + 2...: o/}J 
n->eo n r r 

rl . 11 T[ {"'(Jij) z z "'(jJ.H) z '\1 x}]n =- Im- og r exp £..J - oi Oj + £..J -- Oj + £..J Oj 
n->= n r r 

=- r lim lim- log - sinh- I: exp !lteW·m) 1 [ ( 1 2 ) Nmnj2 J 
n-'>W m-HX:l n 2 JJZ {O"ij=±l} 

(4· 3) 

and 

(4 ·4) 
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1460 M. Suzuki 

where we have used Trotter's formula (3 · 2) and the following simple relation: 

(4·5) 

with o = ± 1, o' = ± 1 and oi,k = ± 1. Thus, the ground state energy of (1· 5) in 

d dimensions is expressed by the partition function of the effective ( d + 1) -dimen

sional Ising model .'}( ~'ff'ml, in which r plays the role of temperature. Therefore, 

if T> Fe (critical point), the system is paramagnetic and if r <Fe, the system 

becomes ferromagnetic in the z-direction. This correspondence is valid for all 

finite values of m. It should be remarked that the limit n--+= can be taken for 

m fixed. Furthermore, spin correlations { ( o1zo2' .. • oPz)Q} in the ground state of 

(1· 5) are expressed by those of the corresponding (d + 1) -dimensional Ising model 

as follows: 

(4·6) 

where the right-hand side of ( 4 · 6) is a spin correlation on a d-dimensional hyper

plane vertical to the "n-direction". Thus we obtain Theorem 1. 

The above procedure is easily extended to a more general quantal spin system 

which is described by the Hamiltonian !}{ = .'}( 0 + .'}( ~> .'}( 0 being diagonal. The 

ground state energy Ea of such a system is expressed by 

Ea =lim [ -kT log Tr exp ( -3(/kT) J 
r~o 

= -r hm --log Tr exp ___ o ---1 , . { 1 [ ( 3( !}{ )]n 
n~~ n r r 

(4·7) 

where r is a typical strength of off-diagonal interactions. Using Trotter's formula 

(3 · 2), we obtain 

Ea = - r lim lim {l_ log I: exp (3feVf· ml)}, 
n---c)co m-= n {a} 

(4 ·8) 

where 

(4 ·9) 

and 

(4 ·10) 

Here aj denotes a state in a d-dimensional hyper-plane, and it diagonalizes .'}( 0 • 

Thus, (4·7) denotes the Ising model on the (d+1)-dimensional lattice. The 

equivalence of all spin correlations is also proven as before. This yields Theorem 2. 

An alternative formulation is given by applying the generalized Trotter for

mula (3 · 2) to the Hamiltonian .'}( = :Z::: .'}( (j), where .'}( (j) denotes a local inter

action such as nearest-neighbour interactions, as follows: 
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Relationship between d-Dimensional Quantal Spin Systems 1461 

Eg= -lim kT log Tr e-.J(fkT = -r lim lim_!_ log Tr[II exp(- !JCU2)Jmn. 
T-->-0 n--H::o m-~::o n J 1nT 

e 4 ·11) 

For more details, see the next section. 

Theorem 3 is almost evident from Theorem 1 and the renormalization group 

theory. 11J 

§ 5. General formulations for partition functions of quantal spin systems 

--Proof of Theorems 4, 5 and 6--

As has been seen in § § 3 and 4, it is very useful to transform quantal spm 

systems into classical e or Ising) representations. In this section we formulate 

partition functions and spin correlations of quantal spin systems in terms of Ising 

spins, on the basis of the generalized Trotter formula e3 · 2). Such transformations 

make it possible to find rigorous results of quantal systems with the use of proper

ties already known on the Ising model. 

ei) The first formulation 

We start with the following Hamiltonian composed of two parts: 

e5 ·1) 

In terms of the representation I a) diagonalizing $(0 , the partition function is express

ed as 

z = Tr e-$31 = ~~~ Tr[ exp (- ~ t)!JCo) exp (- ~ p!JC1) r 
=lim I; exp[&oeal) +!JC1ea1, a2) + ··· +&aean) +&1ean, a1)] 

n->-= {a j} 

= ~ exp !J(ef£ , 
{a;} 

where we have used Trotter's formula e3 · 2) and 

!JCeff=lim "t {3Coeaj) +&1eah aHl)} 
n_,.co J =1 

with 

e5 ·2) 

e5· 3) 

This formulation is particularly useful for the case that $( 1 is a sum of com

mutable local operators: 

!J-(1 =I; !J-(1 er) ; [3(1 er) , !JC1 er')] = 0 . e5 ·5) 
1' 

In this case !J{ 1 e a, a') is easily found to be of finite range. That 1s, vve have 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

6
/5

/1
4
5
4
/1

8
6
0
4
7
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



1462 l'vf. Suzuki 

(5·6) 

and then 

M 

(a! II Q"l a')= (a! Q~la~)<a~l Qzl a2)· · ·<a"v-1! Q,,Jia'). (5·7) 
r 

When ._g{ 1 (r) is of finite range, the matrix elements of {Q,.} are simplified as 

follows: 

(5·8) 

where I,. denotes a relevant lattice region of Q,., and o (a, a') is a Kronecker o 
function. Since Q( {ai}, {a/};jEJ,.) is a partial Boltzmann factor with finite-range 

interaction, Jil1 (a, a') is thus expressed by finite-range interactions, as is seen 

from (5·6) and (5·7). 

This formulation is easily extended to a Hamiltonian composed of many parts: 

(5·9) 

where ._g{i is a sum of commutable local operators. For example, the Heisenberg 

model can be separated into such three parts: 

2 

._g{u=-~JijSi·Sj=~!f{k; !!Co=-~JijS/S/, .j{1=-~JijS/S/, etc. 
k~o 

(5 ·10) 

Then, usmg the generalized Trotter formula, we have 

Z = Tr e-fisr = ~ exp ._g{eff , (5 ·11) 
{a Jo k} 

vYhere 

(5 ·12) 

(5 ·13) 

As before, this becomes of finite range, if ._g{k is a sum of commutable local op

erators. 

In particular, the partition function of the Hamiltonian (1· 5) is reduced as 

follows: 

Z=Tr e-~ 31 =Tr exp{~ Ki/5/a/ +h ~a/ +r ~a/} 

=Tr exp{._g{o( {a/}) +r ~a/} 

=~~~ Tr[exp(~ ._g{o)expC r ~a/) r 
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Relationship between d-Dimensional Quantal Spin Systems 1463 

=lim ~ - sinh __1 exp - ~ !}[0 ( {U j,k}) +- log coth-'--( 1 2 ) nN 12 [ 1 n 1 ( ,, ) 

n~= {ffj,k~±l} 2 n n k~l 2 n 

X~ Uj,kUj,k+l], (5 ·14) 

where we have used the relation ( 4 · 5) and N denotes the number of the original 

lattice points in d dimensions. This yields Theorem 4. f\-s is seen from the 

above derivation, !}[0 ( {a/}) may be an arbitrary Ising Hamiltonian with many-spin 

interaction. The above representation ( 5 ·14) is a special case of more general 

situations previously discussed. zol 

(ii) The second formulation 

Another slightly different formulation is given by regarding, from the begin

ning, the Hamiltonian as a sum of (local) Hamiltonians !J[(r); !}[=~,. !J[(r), and 

by applying the generalized Trotter formula (3 · 2) as follows: 

where 

and 

Z=Tre-fl!ii=lim Tr{II exp[-l_{]!J[(r)]}n 
n~= r n 

=lim ~ exp !/{elf, 
n-= {a:J} 

exp & (a, a')= <a I exp[- ~ {]!!{ (r) J fa') 

==Q({aha/};jr=lr) IIo(aha/), 
jf'ilr 

(5 ·15) 

(5 ·16) 

(5 ·17) 

as m (5 · 8). Thus, the quantal spin system is reduced to the (d + 1) -dimensional 

Ising model. Furthermore, if the interaction of !}[ is of finite range, the corre

sponding Ising model is also of finite range, as is seen from (5 ·17). This yields 

a proof of Theorem 5. 

More explicitly we study here the lattice structure of the corresponding Ising 

model !}[elf· For simplicity, we consider a quantal spin Hamiltonian with nearest 

neighbour pair interaction: 

(5 ·18) 

Correspondingly, the effective Hamiltonian !}{elf or partial Boltzmann factor Q 

defined by (5 ·17) becomes such a four-spin interaction (including pair interactions) 

as 

(5 ·19) 

The partition function is expressed by 

(5. 20) 
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1464 M. Suzuki 

1. An effective lattice of the linear chain with periodic boundary conditions 

IS represented by a checker board lattice as shown in Fig. 1. Each shaded region 

indicates a four-spin interaction or partial Boltzmann factor Qi,j;i',F· Clearly, the 

interaction of this effective Ising system is of finite range. 

2. An effective lattice of the two-dimensional (square) quantal spin system 

with periodic boundary conditions IS constructed, for example, following the 

procedures shown in Fig. 2, in which the order of partial Boltzmann factor exp 

n 

n 

Cll 

G) 
!" ® 2' ® 3' (£ 

cv 1' Cll2' ®3' 1CE 

CD 1 ® 2 ® 3 1CD 

(a) 

n 

(b) 

' 

1' 2 2' 

1' 2 2' 

(b) 

Fig. 1. Two effective lat

tices (a), (b) and (c) 

for the linear chain. 

Each shaded region 

denotes a four-spin 

interaction. 

3' 

2' 
3 

2 

5' 

4' 6' 
5 

4 6 

(c) 

Fig. 2. Orderings (a), (b) and (c) of partial Boltzmann factors for d=2: 1, 2, 3, ... ; 1', 2', 

... ; CD,®, ... ; CD',®',.... Each number denotes a partial Boltzmann factor corresponding 

to each bond in the original lattice. 

n 

n 

I 

(c) 

Fig. 3. Effective lattices (a), (b) and (c) con

structed, respectively, by the orderings (a), 

(b) and (c) in Fig. 2. Each shaded region 

denotes a four-spin interaction plus pair 

interactions. 
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Relationship between d-Dimensional Quantal Spin Systems 1465 

(( -1/n) {33{i,j) of (5 ·15) is indicated, namely 1, 2, 3, .. ·; 1', 2', 3', .. ·; 1", 2", 3", .. ·; .. ·. 

The effective lattices thus constructed are shown in Fig. 3. Each shaded region 

indicates a four-spin interaction or partial Boltzmann factor. That is, the effective 

Ising system is also described by finite-range interactions, at most, of finite range. 

In general, an effective Ising system is described by finite-range interactions, 

at most, with range z, where z is the number of the nearest neighbours of the 

original quantal system. More generally, the above statement is valid for any 

quantal spin with finite-range interactions of range b, if z is replaced by max 

(b, z), where z is the frequency of how many times each spin operator appears 

in the origianl Hamiltonian. Thus, it is concluded in general that an effective 

Ising system is described by finite-range interactions. Hence results Theorem 5. 

Theorem 6 is also easily proven by repeating the above procedure for spin cor

relations. 

The following formulae on matrix elements will be useful for practical ap

plications: 

where 

1. <6ler"x 16') = ( ~ sinh 2r) 
112 

exp [ ~ (log coth r) 66'], 

2. <6lch""IO'')=(~ sinh2hr 2 exp[~ (logcothh)M'+rr;(6-6')], 

3. <O'ieh"' I 0'') = eh" o (6, 0'') = eh" · (1 + 0'6') /2 , 

=a { (1 + XsO'iO' j) o (O'i, 0'/) o (6 j, 0' /) 

+ xlQ._:- 6iQ'/) (1- (} jO' /) - x2(0'i~O'/l (6_j_ -0' /)_} 

4 4 ' 
(5·21) 

( a= cosh Kx cosh Kv cosh Kz- sinh Kx sinh Kv sinh K., 

) X 1 = (tanh Kx- tanh Kv tanh Kz) / (1- tanh Kx tanh Kv tanh Kz), (5. 22) 

( X 2 and X 3 are cyclic with respect to x, y and z. 

As is seen from Theorem 5 and (5 · 21), the partition function of the Heisen

berg model is reduced to the Ising model with four-spin interactions. 16l, 19h21l 

§ 6. Examples 

In this section we discuss some illustrative examples. 

(i) One-dimensional Ising model with a transverse field 

The Hamil toni an of this system is described by 

• 
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1466 M. Suzuki 

M M 

..9C=-JL:o/o}+1-TL:o/; o-,lf+1=o-1. (6 ·1) 
J ~1 j ~1 

From Theorem 4, the partition function of this system is written m the form 

M M 

Z=Tr e-fi.Jc =Tr exp{K 2.:: o/oj+1 + r 2.:: o/} 
j~1 )~1 

(6 ·2) 

where K=JjkT, r=T/kT and 

[ 1 . (2r)J 1
/

2 

An = 2 smh --;; and Kn = ~ log coth (: ) . (6· 3) 

This is nothing but the Onsager problem in two dimensions. Consequently, we 

can make use of the celebrated exact solution by Onsager and Kaufman. 28 ) Thus, 

we obtain 

Z =lim An Mn X l_ (2 sinh 2Kn)}fn;2 

n--)-oo 2 

{M( n ) }f( n ) 
X II 2 cosh -r2k +II 2 sinh -r2k 

k~1 2 k~1 2 

(6·4) 

where [k IS given by 

cosh rk =cosh(~) cosh ( 2 ~)- sinh(~;) sinh ( 2 ~) cos ( ~). (6 ·5) 

For a large n, [k is simplified as follows: 

(6·6) 

Substituting this rk into (6 · 4) and taking the limit n--+co, we arnve at a new 

type of expression for the partition function of (6 ·1): 

1 [ M M • z = 2 };A (2 cosh {3r;;2k) + n (2 smh {3e2k) 

+ n (2 cosh {3e2k-1) + ft (2 sinh {3e2k-1) J (6·7) 

with ek defined by (6 · 6). In the thermodynamic limit, we obtain 

lim -log Z =- log (2 cosh {3e (q)) dq, 1 1 12" 
M~= M 2n o 

(6 ·8) 

where 

• 
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Relationship between d-Dimensional Quantal Spin Systems 1467 

s(q) = (J2+r-2JT cos qr12 • (6·9) 

This agrees with the well-known result obtained by Katsura29l and also with the 

solution for a special limit (m = 1) of the generalized XY-model investigated by 

the present author.8l The above derivation of (6 · 7) or (6 · 8) is quite interesting 

in that the partition function of a quantal system/is obtained in classical methods 

such as Pfaffian, combinatorial technique, or quarternion algebra, without diago

nalizing the relevant Hamiltonian. 

(ii) Linear Heisenberg model 

In general, we study the following anisotropic Hamiltonian 

N 

!f{= -:E (JxrJ/rJi+l+JyrJ/rJr+l+J,rJ/!Ji+l) -fl.H:E rJ/ (6 ·10) 
J ~1 

with a cyclic boundary condition U'N+l =u1• Following the general procedure pres

ented in § 5, the partition function Z is expressed by 

Z=Tr e-fi.1C =lim Zn ( {J}, H), (6 ·11) 

where the n-th approximant Zn is 

The first approximant Z1 corresponds to the "Pair-Product Model" introduced by 

the present author27l as the zeroth approximation of Kubo's systematic expansions30l 

quite different from the present systematic approximants. As was already calcu

lated in Ref. 27), Z1 ( {J}, 0), for example, is given by 

(6·13) 

with (5 ·19). This represents well the thermodynamic properties m the temper

ature region T>2J( r-JJxr-JJYr-JJ,), as was discussed in Ref. 27). It is possible 

to proceed with these approximants up to higher order. An effective Ising lattice 

is shown in Fig. 1. 

(iii) Other examples 

It will be quite interesting to study the two-dimensional Heisenberg model 

and XY-model even in the first approximant Z1 (or Pair-Product Model), because it 

is expected that the essential singular behavior is manifested even in the first 

approximanell These investigations are suggested to be performed in future. 

§ 7. Crossover effect 

As was proven in §4 (Theorem 1), the critical exponents of (1·5) atT=O 

are expressed by those of the ( d + 1) -dimensional Ising model. On the other hand, 

the critical behavior of (1· 5) for T>O may be described by those of the d-dimen

sional Ising model, as was stated in the Proposition of § 2. 
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Consequently, 

crossover effect 

T=Tc. That is, 

Jl.1. Suzuki 

it 1s expected that a 

occurs near T = 0 and 

there exists a crossover 

parameter rxr-Jyv¢ whose critical behavior 

is d-dimensional in the region I r- rc (T) I 
< r\ and ( d + 1) -dimensional in the region 

I r- rc (T) I >rx near T = 0, as shown in 

Fig. 4, similarly to the ordinary crossover 

theory.szJ~s6J 

T!J 

1 

Fig. 4. Critical line and crossover line. 

§ 8. Concluding remarks 

All the present arguments are easily extended to systems of higher spin, 

although much more complications appear. Our systematic approximants (3 · 2) 

and (3 · 4) will be convenient for numerical calculations by a high speed computer. 

Thoerem 5 and the general formulation of § 5 based on Trotter's formula make 

it possible to perform the Monte Carlo calculation of quantal spin systems 

such as the Heisenberg model and XY-model, which is now in progress. They 

are also of great use in applying the renormalization group technique, particularly 

the block spin method 3 7l~ 4 oJ to quantal spin systems, as will be reported in a 

separate paper. 

Using Theorem 5 and the generalized Trotter formula (3·2) or (3·4), it is 

possible to prove the existence of the thermodynamic limit of the generating function 

1Jf (A, t) in non-equilibrium quantal spin systems for operators bounded in the 

sense of a norm and consequently to prove the extensivity"ll' 42J of a macrovariable 

under more explicit conditions than before!3J This proof will be given elsewhere. 

Time correlation functions of quantal spin systems will be also studied in a forth

coming paper by extending the present method and using the formula (3 · 4) on 

exponential hyper-operators. 
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