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Abstract
The recently-introduced technique of detrended fluctuation analysis (DFA)
for heart-rate variability appears to yield improved prognostic power in
cardiovascular disease through calculation of the fractal scaling exponent α.
However, the physiological meaning of α remains unclear. In DFA, the signal
is segmented into lengths from 4 to 64 beats. For each segmentation length (n),
the individual segments are cumulated, detrended and the sum of the squares
(F 2) of residuals calculated. α is the slope of log(F ) against log(n). We
show mathematical equivalence between α calculated by DFA and by a novel
alternative method using frequency-weighted power spectra.

We showF 2 (and thusα) can be obtained from a frequency-weighted power
spectrum without DFA. To do this, we cumulate and detrend the Taylor series
of individual Fourier components. F 2 is found to depend on the relationship
between the signal period and segment length. F 2 can therefore be expressed in
terms of frequency-weighted power spectra. From this, theα coefficient of DFA
can then be described in power-spectral terms, which facilitates exploration of
its physiological basis. We confirm these findings using samples from 20
healthy volunteers and 40 patients with heart failure.

Keywords: heart-rate variability, fractal scaling, detrended fluctuation
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Nomenclature

A amplitude of Fourier component of signal
D residual after cumulation and detrending
F 2 mean of squares of residuals
N length of data set in samples
P(f ) power spectrum of the signal
R coefficient combining all the coefficients of �u

a,b slope and intercept of least-squares regression line
f frequency of signal component, in cycles per second
f 4
s the sampling frequency, in samples per second

k constant of integration
n length of analysis segment in samples
p integer indexing terms within Taylor series expansion
u integer indexing terms within series expansion of squared residual
rp fraction of the pth term of the Taylor series expansion of a single frequency

component remaining after cumulation and detrending
� length of analysis segment, in radians at the frequency of the signal component

(=ωn)
α slope of log–log plot of F and n
δ sample distance from the central sample in an analysis segment
τ sample number
ω angular frequency of signal component, in radians per second (=2πf )
ωs angular frequency of sampling, in radians per second (=2πfs)

1. Introduction

Measurement of heart-rate variability (HRV) is a technique of growing importance for
assessing risk in patients with cardiovascular disease. Extensive experience has been
accumulated regarding the diagnostic and prognostic value of spectral analysis to quantify
components of heart-rate variability (Pagani et al 1986, Malliani et al 1991, Task Force
1996, La Rovere et al 1997, 1998). Conventional spectral analysis protocols based on
Fourier or autoregressive spectral estimates recognize distinct standardized frequency ranges.
Specifically, these are the respiratory (‘high frequency’, HF) band from 0.15 to 0.45 Hz, the
blood-pressure-mediated (‘low frequency’, LF) band from 0.05 to 0.15 Hz and the ‘very low
frequency’ (VLF) band which may arise by several mechanisms including periodic breathing
(Mortara et al 1997, Francis et al 2000) that occurs in some patients with chronic heart failure.

Recently, a new approach to heart-rate variability, detrended fluctuation analysis (DFA),
has been introduced, arising from fractal analytical techniques (Peng et al 1995, Ho et al
1997). In this approach, values α1 and α2 (said to be fractal scaling exponents) are calculated
using a short-term frequency range (4–16 heart beats for α1) and a longer range (16–64
heartbeats for α2). These measures, particularly α1, have been found to have prognostic
power for patients with chronic heart failure (Ho et al 1997). Further work has suggested
that measurement of α1 may give greater prognostic power than assessment of conventional
spectral measures (Huikuri et al 2000, Pikkujamsa et al 1999, Perkiomaki et al 2001).
4 In this analysis we index the elements of the data series by sample number, which allows maximum generality,

since it does not limit the interpretation to RR interval series. If a slightly simpler format, restricted to RR interval
series, is required, fs can be taken as 1 and the data series is then addressed by beat number (=sample number).
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This DFA approach to heart-rate variability analysis suffers from uncertainty about the
meaning of the α coefficients that are obtained. A great deal is known about how physiological
processes influence heart rate and thus generate spectral components in heart-rate variability,
but it is unclear precisely which aspects of this physiology affect the DFA indices. Without
such understanding there is no guidance for interpreting the observed empirical relations
between certain values seen on DFA and higher mortality.

We develop an analysis of theα values for DFA in terms of conventional spectral measures
whose relationship to physiology is widely recognized and well validated. A series of
mathematical steps is presented which shows the close link between these DFA α values
(said to be fractal measures) and conventional power-spectral ratios. We then verify this
analysis by determining the agreement between DFA α values and modified power-spectral
measures, using physiological data. Ultimately this mathematical analysis will enable us to
explain what the DFA indices mean in physiological terms and to speculate rationally on why
they may show prognostic value in patients with cardiac disease.

1.1. Detrended fluctuation analysis

Detrended fluctuation analysis is a procedure which generates α, which is presented in the
clinical literature as a measure of fractal scaling behaviour. This assumption arises from the
steps involved in DFA, which evaluate how the amplitude of fluctuations in a signal depends
on the scale over which they are measured.

For DFA, the R–R interval sequence is divided into equal, non-overlapping segments.
In each segment, the data are first cumulated, and then detrended by subtraction of the least
squares linear regression line. The squares of the cumulated, detrended data points (residuals)
are then averaged over the whole data set and the square root of the mean residual found. This
gives a value of the fluctuation (F ) of the time series for the given segment length.

This operation is performed for divisions of the data into segment lengths of between 4
and 400 data points. The α value is obtained as the slope of the linear regression line through
a log–log plot of the sums of the squares of the residuals against the segment length, between
defined values of segment length. For example, α1 is calculated over the range of segment
lengths between 4 and 16 data points.

2. Analysis of detrended fluctuation analysis in Fourier terms

We aim to obtain F 2 (and therefore α) in terms of the power spectrum of the signal. We start
with a single harmonic component of the signal, and examine the effect of cumulation and
detrending on a Taylor series expansion for differing segmentation lengths. We show how the
squared residuals depend upon segment length, and how this differs according to whether the
signal period is shorter or longer than the segment length. We then show, for any segment
length, how the combination of the squared residual terms (i.e. F 2) can be expressed as a
frequency-weighted power spectrum. This yields α without DFA.

Finally, we observe that an approximate analytical expression for α can be obtained from
the analytical expression for F 2.

We start by expressing the chain of operations on the signal used for the DFA
mathematically, for a single harmonic component of the signal.

2.1. Behaviour of single harmonic component on detrended fluctuation analysis

Consider a single harmonic (Fourier) component of a time series:

S(t) = A cos(ωt).
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(We present the argument here for a cosine component; a similar process is valid for sine
functions, hence the argument may be extended to signals of arbitrary phase.)

2.2. Cumulation

The integrated function I (τ ), over a data segment from time τ 0 to τ , is

I (τ ) =
∫ t=τ

t=τ0

S(t) dt = (A/ω) sin(ωτ) + k (1)

where k = −(A/ω) sin(ωτ 0).
Cumulation of discrete time series is a similar process, but introduces a factor of ωs which

is 2πfs , where fs is the sampling frequency. This is because higher sampling rates result in
greater cumulative totals.

C(τ) = ωsI (τ ) = A
ωs

ω
sin(ωτ + δ) + ωsk.

2.3. Detrending

The Taylor series expansion for the function C(τ + δ) about a particular value of ωτ , is given
by:

C(τ + δ) = A
ωs

ω

∞∑
p=0

(
(−1)

p

2
δp

p! sin(ωτ) for even p

(−1)
p−1

2
δp

p! cos(ωτ) for odd p

)
+ ωsk (2)

where p is an integer. To detrend C(τ + δ), its least squares regression line is subtracted:

D(τ + δ) = C(τ + δ)− a(τ + δ)− b. (3)

This process removes both the mean value (b) and a linear slope (a).
Linear detrending ofC(τ) removes the sin(ωτ ) + δcos(ωτ ) terms, together with additional

constant and linear contributions arising from the higher order terms in δ. The odd terms in
(2) contribute to the linear component a(τ + δ) in equation (3), while the even terms contribute
to the constant b in equation (3). Also removed is the constant of integration, corresponding
to k in equation (1). Linear detrending is therefore equivalent to multiplying each term in
the Taylor series expansion by an associated factor r. Hence the signal in the cumulated and
detrended segment becomes

D(τ + δ) = A
ωs

ω

∞∑
p=0

(
rp(−1)

p

2
δp

p! sin(ωτ) for even p

rp(−1)
p−1

2
δp

p! cos(ωτ) for odd p

)
(4)

where rp = p

p+1 for p even; rp = p−1
p+2 for p odd.

The factor rp is derived by comparing the mean of the integral of the product of δp over
the region −δ/2 to +δ/2 with that of the mean of the integral of the product of the detrended
functions over the same region. They are different for odd and even values of p because
detrending is equivalent to simply removing the mean from even-powered terms in δ and a
linear slope from odd-powered terms in δ.

2.4. Mean-squared residuals

Squaring the expression in equation (4) gives the squared residuals:
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D2(τ + δ) =
(
A
ωs

ω

)2

×




sin2(ωτ)
∑∞
p1=0

∑∞
p2=0(−1)

p1+p2
2 −1 p1p2

(p1+1)(p2+1)
δp1+p2

p1!p2! for p1, p2 even

+ cos2(ωτ)
∑∞
p1=1

∑∞
p2=1(−1)

p1+p2
2

(p1−1)(p2−1)
(p1+2)(p2+2)

δp1+p2

p1!p2! for p1, p2 odd

+ sin(ωτ) cos(ωτ)
∑∞
p1=0

∑∞
p2=1(−1)

p1+p2−1
2

p1(p2−1)
(p1+1)(p2+2)

δ
p1+p2−1

2

p1!p2!

for p1 even,

p2 odd

+ sin(ωτ) cos(ωτ)
∑∞
p1=1

∑∞
p2=0(−1)

p1+p2−1
2

(p1−1)p2

(p1+2)(p2+1)
δ
p1+p2−1

2

p1!p2!
for p1 odd,
p2 even



.

(5)

A segment of length n samples covers a phase angle of� radians, where�= nω. This is from
sample number ω{τ − n/2} to ω{τ + n/2}. The mean-square residual over this segment is

D2 = 1

�

∫ δ=�
2

δ=−�
2

D2(τ + δ) dδ.

Integrating with respect to δ is equivalent to summing terms of the following form, where
u = p1+p2 and Ru is a coefficient combining all the coefficients of δu arising from equation (5):

Ru

�

∫ δ=�
2

δ=−�
2

δu dδ.

The integration yields Ru�
u

2u(u + 1) . Taking the mean-square residual over the whole data set is
equivalent to multiplying each power term in �, considered constant, by the mean of its
associated oscillatory term.

The oscillatory terms sin2(ωτ), sin(ωτ) cos(ωτ) and cos2(ωτ ) oscillate at twice the
frequency of sin(ωτ ). The odd values of u are associated with the sin(ωτ ) cos(ωτ ) oscillatory
terms whose means tend to 0 when averaged over the whole data set, and therefore for odd u,
the Ru�

u

2u(u+1) term can be neglected.

The even values of u are associated with the sin2(ωτ ) and cos2(ωτ ) oscillatory terms
which tend to 1

2 over the whole data set, irrespective of the value of ω, provided that the data
set contains at least half a period of the component in ωτ . Hence

D2 ≈ 1

2

(
A
ωs

ω

)2 ∞∑
u=0

(
Ru�

u

2u(u+1) for even u

0 for odd u

)
.

It is useful to observe that since only the even values of u are relevant, and the mean and linear
trends are removed (corresponding to u = 0 and 2 because of squaring), the summing term
effectively begins at u = 4. Moreover, since� = nω, this expression is equivalent to

D2 = 1

2

(
A
ωs

ω

)2 ∞∑
u=4

Ru

(u + 1)

(nω
2

)u
(6)

with u restricted to even values.
In a segment of length �, the behaviour of the residual sum of squares is dependent on

whether the segment is longer or shorter than one cycle of the oscillation.

2.5. Residual sum of squares with segment (�) shorter than one cycle

If the segment is short in comparison to a cycle, then nω is always small, so the residuals after
detrending are dominated by the term (nω)4 so that equation (6) becomes

D2 ≈ 1

2

(
A
ωs

ω

)2 R4

5

(nω
2

)4
.
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Since from equation (5), R4 is 2
(2+1)

2
(2+1)

1
2!2! = 1

9 . This allows (6) to be simplified to

D2 ≈ ω2
s A

2ω2

1440
n4. (7)

We tested this 4th-power relationship numerically in MatlabTM (figures 1 and 2) in order to
demonstrate the effect of the length of the segment window upon the cumulation, detrending
and ultimately the mean-squared residual of a Fourier component of the signal. Figure 1
demonstrates the effect of changing the segment length (at constant signal frequency) or signal
frequency (at constant segment length) at each stage of the process. When the frequency is
halved the mean-squared residual falls by a factor of 4; when the segment length is doubled
the mean-squared residual is found to increase by a factor of 16.

2.6. Residual sum of squares with segment (�) longer than one cycle

Now consider the residuals when � is large, i.e. greater than one cycle. As the number of
cycles of the sinusoid in the interval � increases, the trend approaches zero. In this case, the
residuals, after detrending, approximate to the sinusoid itself. The mean-squared residual is
simply the mean-square value of the cumulated sinusoid weighted by a frequency-dependent
factor (introduced by the original cumulation process) and by the sampling frequency.

D2 ≈ 1

2

(
A
ωs

ω

)2
. (8)

2.7. Overall dependence of residual sum of squares on segment length

In figure 2 we show the dependence of the mean-squared residual upon the segment length
across a wide range of segment lengths. This confirms, for low n, the predominant fourth-
power relationship betweenD2 and n, predicted in equation (7) and shown in the figure by the
oblique line. It also confirms, for higher values of n, the independence of D2 from segment
length, as shown by the horizontal line arising from equation (8). The transition between the
two regions would require a large increase in number of terms within the Taylor series without
significant increase in fidelity.

2.8. Multiple spectral components

A general signal is a linear combination (with spectrum P(f )) of Fourier components whose
contribution to P(f ) at each frequency is simply A2. Since they are orthogonal functions
the cross-products of the Fourier components are all zero, the overall residual sum of squares
of the complete signal (F 2) is equal to the sum of the contributions D2 from each Fourier
componentA2 as shown in equations (7) and (8).

The nature of the contribution at any frequency depends upon whether its wavelength is
shorter or longer than the segment length n, as shown above. Therefore, for any given segment
length, n, high-frequency components (f > 1/n) contribute from their plateau regions as
described by equation (8). Meanwhile low-frequency components (f < 1/n) contribute from
their quartic region as described by equation (7). Thus, writing in terms of f = ω/2π ,

F 2(n) = ω2
s n

4

1440

∫ 1/n

1/N
(2πf )2P(f ) df +

ω2
s

2

∫ 1

1/n

P (f )

(2πf )2
df

= ω2
s

8π2

[
cn4

∫ 1/n

1/N
f 2P(f ) df +

∫ 1

1/n

P (f )

f 2
df

]
(9)

where c = π4/45.
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Figure 1. Panel (a) shows a sinusoid of 1000 samples with frequency of 1/300 cycles/sample
in segments of n = 10. In panel (b) the frequency is changed to 1/600 cycles/sample, while in
panel (c) the segment length instead is increased to n = 20. In each panel, the first row shows the
raw data, the second the effect of cumulation, the third the effect of detrending and the fourth the
mean-squared residual in each segment and (superimposed as a horizontal line) the mean-squared
residual over the whole data set.
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Figure 2. Dependence of D2, the mean-squared residual, upon the segment length. A signal
consisting of a sinusoid with ω = 0.12 (corresponding to a period of approximately 52 samples)

undergoes detrended fluctuation analysis. The mean-squared residualD2 is shown as a curve, with
the quartic approximation for small n shown as an oblique line and the constant approximation for
large n shown as a horizontal line. The value of n corresponding to the period of oscillation of the
signal is marked with an arrow.

2.9. Calculation of alpha

The fractal correlation value α is given by the slope of log F against log n. In classical DFA,
α is measured over a range of n, but by generalization α can be defined at any n; thus

α = d[log10 F(n)]

d[log10(n)]
.

Using the chain rule

α = 1

2

dF 2(n)

dn

n

F 2(n)
. (10)

In order to evaluate (10), we first require an analytical form for dF 2(n)

dn . We can derive this from
our expression for F 2 but must observe the limitations of our single-Taylor-term expansions.
As shown in figure 2, our expression gives a good estimate of the slope of F 2 against n, except
for in the region of the discontinuity in our piecewise approximation. Thus, when taking the
derivative of our expression for F 2,

dF 2(n)

dn
= ω2

s

8π2

[
4cn3

∫ 1/n

1/N
f 2P(f ) df − (c− 1)P

(
1

n

)]
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the term (c−1)P
(

1
n

)
arises from this artefactual slope discontinuity and should be disregarded

for the purpose of determining α. Thus,

α(n, f ) = 2

1 +
∫ 1

1/n
1

(nf )2
P (f ) df

c
∫ 1/n

1/N (nf )
2P (f ) df

.

This shows that the ‘fractal correlation coefficient’, α, can be expressed in terms of the
frequency-weighted power spectrum of the signal.

2.10. Interpreting alpha directly from the frequency-weighted power spectrum

The term ρ =
∫ 1

1/n
1

(nf )2
P (f ) df

c
∫ 1/n

1/N (nf )
2P (f ) df

can be considered to be a modified HF/LF ratio, where the LF

part of the spectrum is weighted by in proportion to f 2 and the HF part in proportion to 1/f 2.
The (nf )2 terms result in the weighting being 1 at the junction frequency between the two
integrals.

Thus

α(f ) = 2

1 + ρ
.

The value of α becomes <1 when the LF spectrum predominates and >1 when HF
predominates. At the extremes, ρ zero and infinity, α becomes 2 and 0, respectively. When
ρ = 1, α = 1.

The values α1 and α2 are obtained as a regression line through the values of α over two
distinct ranges of n. For example (Ho et al 1997) α1 has been based on n from 4 to 16 and
α2 on n from 16 to 64. The quantity α1 can, therefore, simply be considered as a way of
expressing a weighted normalized HF/LF ratio and α2 a weighted normalized LF/VLF ratio.

3. Experimental validation of the spectral approach to α

3.1. Data acquisition

To compare the different approaches to assessing α, we used the data previously obtained for
clinical research purposes in 20 healthy volunteers and 40 patients with chronic heart failure.
The subjects had been studied in standardized conditions. Each subject had undergone a
10 min recording of heart rate while seated (Francis et al 2000). The ECG was acquired from
a limb lead, with a well-defined QRS complex, which was usually lead II. In a small number
of cases, when a clear R wave was not present in lead II, lead I or lead III was used. The ECG
signal was sampled at 1000 Hz using an analogue-to-digital converter (National Instruments,
USA) and data acquisition software (Labview R©, National Instruments, USA). RR intervals
were subsequently determined automatically by custom software in MatlabTM and transients
due to ectopy corrected by linear interpolation with previous and following beats.

3.2. Calculation of alpha

To test the hypothesis that F 2 and α can be calculated directly from the power spectrum
without DFA, we developed a computer algorithm to implement the steps for standard DFA
and for frequency-weighted spectral analysis (equation (9)).

For the frequency-weighted spectral analysis to calculate α, RR intervals were retained at
one sample/beat in accordance with standard practice for DFA, and therefore in those power
spectra, the unit of frequency is cycles/beat rather than cycles s−1 (Hz).
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3.2.1. Calculating alpha by standard DFA. Figure 3 (left panel) shows the standard
calculation of fractal scaling exponentsα1,DFA and α2,DFA by DFA. The time-series R–R interval
sequence is divided into equal, non-overlapping segments of length n. In each segment, the
data are first cumulated and then detrended by subtraction of the least-squares linear regression
line. The root-mean-square residual value over the whole data set (FDFA) is then calculated.
This operation is performed for divisions of the data into segment lengths (n) of between 4
and 400 data points and the root-mean-square residual FDFA recorded for each n. Then α is
calculated as the regression slope of the log–log plot of FDFA against n. Specifically, α1,DFA is
calculated over the range n = 4 to n = 16 and α2,DFA between n = 16 and n = 64.

3.2.2. Calculating alpha by frequency-weighted spectral analysis. We calculated the Fourier
spectrum of the data using the (unwindowed) discrete Fourier transform function (‘fft’) of
MATLAB (Mathworks Inc, Natick, MA, USA). We then used equation (9) to yield F 2

spectral

from which we could obtain values of α (which we denote by α1,spectral and α2,spectral) as
the regression slope of log F 2

spectral(n) against log n, using the frequency-weighted power
spectrum without the need for DFA (figure 3, right panel).

3.3. Results

The correlation, calculated by the Pearson product-moment method, between the DFA and
frequency-weighted spectral methods of measuring α1 was 0.98 ( p < 0.0001), with SDD
0.06. For α2, the correlation between the methods was 0.93 ( p < 0.0001), with SDD 0.9.
Moreover in each case the slope of the regression relationship was 0.99. Figure 4 shows these
relationships, with healthy volunteers represented by open circles and patients by filled circles.

4. Discussion

We have now shown how the α obtained from DFA, which has been described as a measure
of fractal complexity, can be obtained instead from the power spectrum. Second, we have
experimentally observed, in patients and healthy volunteers, a strong agreement between
α as measured by the conventional DFA method and as measured by our newly introduced
frequency-weighted power-spectral approach. Third, we have drawn an analogy betweenαand
conventionalpower-spectral ratios. These observations have implications for the physiological
and clinical interpretation of α and its prognostic associations, for the concept of α as a unique
measure of fractal properties, and for the future development of techniques in heart-rate
variability.

4.1. Physiological interpretation of α

Our analysis reveals that the fractal scaling property of heart-rate variability obtained by DFA
known as α actually can be obtained via conventional Fourier analysis (equation (9), figure 3)
with good concordance (figure 4).

The realization that α1 and α2 are related to conventional LF/HF and VLF/LF ratios,
respectively enables parallels to be drawn between the apparent fractal properties and
physiological processes as conventionally described in power-spectral terms. This opens
the way for understanding the physiological meaning of α by its relationship to conventional
spectral measures, with their well-established links to physiological processes.

Physiological understanding of heart-rate variability is frequently expressed in terms of
the frequency spectrum, specifically the powers in the HF, LF and VLF bands (or the ratios
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Figure 3. Comparison of calculation of α by DFA and frequency-weighted spectral analysis. In
DFA (left) the raw data (a) is cumulated and detrended (b) and then repeatedly approximated by
piecewise linear regression with straight segments of length n heartbeats. For each n, F is defined
as the root mean square of the residuals (shaded grey). Examples are given for n = 166 (c) and
n = 60 (d). α is the slope of the log–log plot (e) of F against n. The right panels show calculation
of α by frequency-weighted power-spectral analysis. The power spectrum (g) is multiplied
by the weighting (h), which favours the frequency of interest and decreases proportionally to
frequency-squared in both directions. The product, (i), is F 2, from which α is calculated ( j) via
a log(F )–log(n) plot.
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Figure 4. Correlation between methods 1 (DFA) and 2 (frequency-weighted spectral analysis) for
α1 (left panel) and α2 (right panel). Healthy volunteers (n = 20) are represented by open circles
and heart failure patients (n = 40) by filled circles.

of these powers). The HF/LF spectral ratio has been used for many years in clinical papers
as an expression of the ‘balance’ between sympathetic and vagal activity (Task Force 1996).
However, it has been observed that there is little evidence for this interpretation for the HF/LF
ratio (Eckberg 1997). The actual neurological mechanisms responsible are likely to be much
more complex (Malpas 1998). Notwithstanding this doubt about the precise meaning of this
ratio, it is widely quoted and well discussed and forms the basis for many studies in heart-rate
variability.

The α values of DFA, which corresponds to frequency-weighted spectral power ratios,
differ in several ways (described below).

Nevertheless, there are some similarities between the α values of DFA and conventional
power-spectral ratios (figure 5). First, to calculate α1 the boundary frequency separating
weighted L from weighted H ranges from 1/16 (≈0.06) to 1/4 (=0.25) cycles/beat. The
conventional HF/LF spectral ratio has its boundary at 0.15 cycles s−1. Likewise α2 has its
boundary between 1/64 (≈0.02) and 1/16 (≈0.06) cycles/beat, while conventional LF/VLF
has its boundary at 0.04 cycles s−1. α ∼ 2

/(
1 + weighted H

weighted L

)
translates very roughly into

unweighted spectral terms as

α1 ∼ 2

1 + HF power
LF power

α2 ∼ 2

1 + LF power
VLF power

(11)

4.2. Explanation for prognostic value of α

Early workers on fractal α in chronic heart failure and healthy volunteers displayed on a
two-dimensional grid (Ho et al 1997) the probability of diagnosis of heart failure given any
combination of α1 and α2. They observed that normal subjects were clustered at the higher
part of the α1 range and at the lower part of the α2 range. The other three quadrants (lower α1

or higher α2 or both) contained principally patients with chronic heart failure. At that time,
no explanation was available for this. We can now offer an explanation in spectral terms. In
heart failure, some patients have a decrease in the LF/HF ratio (especially when the disease
is advanced), and therefore the 2

/(
1 + HF

LF

)
ratio may be depressed in these individuals. It is

therefore not surprising that α1 (which resembles the latter) is lower (Lopera et al 2001) in
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Figure 5. Left panels: from raw data (a), the power spectrum (b) is calculated and multiplied
by a ‘frequency-weighting’ function (c) to yield weighted L and weighted H components (d). α

can be estimated as the average value of 2
/(

1 + weighted H
weighted L

)
while the weighting-function’s centre

frequency is moved through the range of 1/4–1/16 (for α1) or 1/16–1/64 (for α2). Right panels:

the ‘ordinary’ power-spectral ratio 2
/(

1 + HF
LF

)
will behave similarly to α1, but differs in several

details.

patients with severe heart failure than in normals. Heart failure (especially when severe)
is also frequently associated with periodic breathing, which can generate corresponding
VLF rhythms in heart rate (Mortara et al 1997, Francis et al 2000). This, alone or in
association with the reduced LF, may increase VLF/LF and thus the 2

/(
1 + LF

VLF

)
ratio

and α2.



398 K Willson et al

Since there is a great deal of overlap in the values of α between patients and healthy
subjects, the α values are not well suited to distinguishing between these two groups
(i.e. diagnosis) especially when the disease is mild and stable (as in our patients). In contrast,
other workers have demonstrated that the α values are effective in identifying risk of
mortality within a group of subjects who are already diagnosed with heart failure (i.e.
prognosis). This distinction, although appearing paradoxical, has been observed by others
(Saermark et al 2000). Part of the explanation may be the many sources of heart-rate
variability that exist. When a patient develops heart failure, the majority of the effects
of these influences decrease, but some new phenomena can arise. For example, periodic
breathing is known to be able to generate very-low-frequency rhythms in heart rate. Thus
VLF rhythms can be an adverse prognostic marker within groups of patients with heart
failure, while having no pathological significance when they arise from normal mechanisms in
healthy subjects.

4.3. Doubt over α as an independent index of heart-rate variability

We have demonstrated, experimentally, a highly significant association between α and spectral
measures and developed a mathematical argument for their equivalence.

We propose, therefore, that α should not be considered a unique cardiovascular indicator
in a separate ‘fractal’ class from conventional power-spectral analysis, because it has a clear
and comprehensible grounding in spectral analysis.

The question then arises as to how DFA has been able to provide an apparently
improved diagnostic and prognostic role for α when compared with conventional spectral
measures. Understanding the differences between these methods allows us to propose a
rational mechanism for this prognostic capacity of measurements of fractal complexity.

4.4. Differences between α and conventional spectral analysis

Hitherto published measurement of α standardizes oscillation periods in heartbeats rather than
in seconds as in conventional spectral analysis. The time-based approach, with interpolation
and resampling applied to the HRV signal, prior to frequency-domain analysis, has become
conventional in spectral analysis. The first presentation of DFA in HRV analysis used beat
space, and therefore this approach has become the convention for DFA. A priori, it is not
obvious which approach is better.

These differing conventions lead to differing sensitivities to changes in mean heart rate.
For example, α1, in all patients, refers to the ratio of powers of oscillations whose periods
are longer or shorter than approximately eight heartbeats. In contrast, the conventional
LF/HF ratio applies to oscillations in fixed frequency ranges, within which the number of
heartbeats per cycle depends upon the mean heart rate. Therefore in tachycardia, α addresses a
higher frequency region of the power spectrum, and differences in heart rate between subjects
may be enough to generate differences in measured α, even if there is no alteration in the
actual modulation of heart rate. Older subjects and patients with diseases may have such
an increase in mean heart rate (Kaplan et al 1991, Yeragani et al 1997, Lotric et al 2000,
Tsuji et al 1996).

Conventional power-spectral ratios give equal weighting to all frequencies within these
ranges. In contrast, α strongly favours frequencies close to the centre of the range of interest,
with frequencies in the outskirts (in either direction) de-emphasized. For example, α1 can be
conceptualized as the average of the ratio of the shaded areas in figure 5(d) as the cut-off is
moved from 4 to 16. By inspection, the logarithmic mid-point of this range is 8. Thus, α is
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approximately equal to the ratio of the shaded areas when the cut-off is at eight heartbeats per
cycle, and frequencies far from this region are markedly de-emphasized. Thus, for example,
even if the heart rate is 72 beats per minute so that 1/8 cycle per beat equals 0.150 Hz,
calculation of α1 will never precisely coincide with the LF/HF ratio.

4.5. Study limitations

To process our experimental data, we used the simple discrete Fourier transformation (without
windowing). Had any of the available alternative and more elaborate techniques (Task Force
1996, Kay and Marple 1981) been applied, the results may have been quantitatively different.
Time-domain windowing results in the frequency domain response of the window being
convolved with that of the signal in the resultant Fourier domain spectrum. Changing the
shape of the time domain window redistributes energy between the main beam and the side
lobes of the frequency-domain window function. Autoregressive models, if used, are likely to
give spectral estimates that vary from those using Fourier transforms, and are sensitive to the
order of the model chosen (Christini et al 1995, Lotric et al 2000). Moreover, if the signal is
nonstationary (as all clinical data are to some extent), then the peaks in the power spectrum
will in general be flattened with power moving from the peak frequency to the surrounding
frequencies.

In general, the values of α are likely to be unaffected, and correspondence between
the weighted spectral ratio and DFA is likely to persist if the alternative technique of spectral
analysis maintains the overall distribution of power between regions of the spectrum. However,
the precise effect on the individual spectra would have to be established on a case-by-case
basis.

There are limitations to the low-frequency sensitivity of spectral methods. Oscillations
longer than 400 beats will not be resolved correctly with data segments of 400 beats.
Fortunately much of the prognostic value in heart-rate variability seems to lie at frequencies
much higher than this. Analysis over periods of 400 beats gives at least six times the minimum
data length to detect oscillations of period 64 beats (Lotric et al 2000).

In our study, the patients with chronic heart failure were in a relatively mild and stable
state (living at home) as distinct from the patients used by Ho et al (1997), who were acutely
unwell and studied during an acute emergency admission to hospital.

5. Conclusions

We have shown, by considering the effect of the constituent operations of the DFA process
upon a Taylor series expansion of the Fourier components of the signal, the equivalence
between DFA and a new frequency-weighted form of power-spectral ratio. The α variable,
calculated by DFA, of heart rate has recently been identified to have diagnostic and prognostic
value in cardiovascular disease. Because of the steps involved in DFA, it has been described
as a fractal measure, by implication different in nature from conventional spectral analyses.
We can now see that α is intimately related to conventional spectral analysis and cannot any
longer be considered to be in a different class of measurements. We have then experimentally
verified a close correspondence between α as measured by DFA and an equivalent to α derived
by frequency-weighted spectral analysis.

We can, therefore, now specify the differences between DFA and conventional spectral
analysis:
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1. The frequency ranges for DFA are fixed in cycles/beat whereas for conventional spectral
analysis they are fixed in cycles s−1 (Hz). The relationship between these depends on
heart rate.

2. α frequency-weights power spectra favour the centre frequency, de-emphasizing others in
proportion to frequency-squared in both directions while conventional spectral analysis
gives equal weight to all frequencies within its band of interest.

It now becomes clear why α1 is low and α2 sometimes high in patients with chronic
heart failure, and why such abnormalities might in general predict poor prognosis. Heart
failure is characterized by a decrease in the LF/HF ratio (an adverse prognostic marker) and
therefore in the 2

/(
1 + HF

LF

)
ratio, so that α1 (which is an indirect measure of the latter) is

lower. Heart failure is also frequently associated with periodic breathing which can generate
corresponding VLF rhythms in heart rate (Mortara et al 1997, Francis et al 2000). This,
alone or in association with the reduced LF, may increase VLF/LF and thus the 2

/(
1 + LF

VLF

)
ratio and α2.

Awareness of both the essential equivalence of (and the subtle distinctions between)
DFA α and conventional spectral measures may now make it possible to identify which
of these distinctions are responsible for the apparent improved prognostic power available
in α.
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