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Relationship between gross primary production and chlorophyll

content in crops: Implications for the synoptic monitoring of

vegetation productivity

Anatoly A. Gitelson,1,2 Andrés Viña,1,3 Shashi B. Verma,2 Donald C. Rundquist,1,2

Timothy J. Arkebauer,4 Galina Keydan,1 Bryan Leavitt,1 Veronica Ciganda,1,4

George G. Burba,2,5 and Andrew E. Suyker2

Received 24 March 2005; revised 25 July 2005; accepted 26 September 2005; published 1 March 2006.

[1] Accurate estimation of spatially distributed CO2 fluxes is of great importance for
regional and global studies of carbon balance. We applied a recently developed technique
for remote estimation of crop chlorophyll content to assess gross primary production
(GPP). The technique is based on reflectance in two spectral channels: the near-infrared
and either the green or the red-edge. We have found that in irrigated and rainfed crops
(maize and soybean), midday GPP is closely related to total crop chlorophyll content. The
technique provided accurate estimations of midday GPP in both crops under rainfed and
irrigated conditions with root mean square error of GPP estimation of less than 0.3 mg
CO2/m

2s in maize (GPP ranged from 0 to 3.1 mg CO2/m
2s) and less than 0.2 mg CO2/m

2s
in soybean (GPP ranged from 0 to 1.8 mg CO2/m

2s). Validation using an independent
data set for irrigated and rainfed maize showed robustness of the technique; RMSE of GPP
prediction was less than 0.27 mg CO2/m

2s.

Citation: Gitelson, A. A., A. Viña, S. B. Verma, D. C. Rundquist, T. J. Arkebauer, G. Keydan, B. Leavitt, V. Ciganda, G. G. Burba,

and A. E. Suyker (2006), Relationship between gross primary production and chlorophyll content in crops: Implications for the

synoptic monitoring of vegetation productivity, J. Geophys. Res., 111, D08S11, doi:10.1029/2005JD006017.

1. Introduction

[2] The importance of studying vegetation dynamics has
been recognized for decades [e.g., Box, 1978; Lieth, 1975].
A key driver has been the interest in understanding the
patterns of terrestrial vegetation productivity and its rela-
tionships with global biogeochemical cycles of carbon and
nitrogen [Cao and Woodward, 1998; Dixon et al., 1994;
Lieth, 1975; Myneni et al., 1997, 2001; Schimel, 1998].
Vegetation productivity is the basis of all the biospheric
functions on the land surface (excluding the very small
contribution by chemosynthetic autotrophic organisms), and
is simply defined as the production of organic matter
through photosynthesis. The total amount of organic matter
produced through photosynthesis is termed gross photosyn-
thesis, and if expressed as the integral of the organic matter

produced by all the individual plants in a defined area per
unit of time, is termed gross primary productivity (GPP).
[3] The vegetation productivity has been assessed

through the use of micrometeorological approaches, by
means of studying whole-community gas exchange [e.g.,
Verma, 1990]. Micrometeorological methods measure the
entire net carbon flux between the land surface and the
atmosphere, or what is called net ecosystem carbon dioxide
exchange (NEE). Many field studies in different ecosystems
across the globe have used tower-based eddy covariance
techniques to provide information on seasonal dynamics
and interannual variation of NEE [e.g., Baldocchi, 2003,
and references therein; Flanagan et al., 2002; Suyker et al.,
2003; Verma et al., 2005].
[4] Numerous studies have estimated GPP and daytime

ecosystem respiration (Re) from NEE data [e.g., Biscoe et
al., 1975; Falge et al., 2002; Gilmanov et al., 2003; Suyker
et al., 2005; Turner et al., 2003]. Measurements of NEE
were used to calculate GPP as (GPP = 0 during night):

GPP ¼ NEE� Re ð1Þ

where CO2 uptake is positive and CO2 release is
negative. Daytime Re is estimated by adjusting nighttime
NEE to daytime temperature [e.g., Falge et al., 2002].
However, the NEE and GPP data are representative of
only a small footprint area, and scaling up beyond the
footprint to an entire region is challenging [Wofsy and
Harriss, 2002].
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[5] Remote sensing is the technology by which the
electromagnetic energy emitted or reflected by the Earth’s
surface is recorded by sensors on the ground, aircraft and
spacecraft. The synoptic view provided by imaging sensors
makes remote sensing an attractive and powerful tool for
studying vegetation productivity, at scales ranging from
local to global. Given that vegetation productivity is directly
related to the interaction of solar radiation with the plant
canopy [Knipling, 1970], remote sensing techniques can be
used to measure vegetation productivity. Since December
1999 the U.S. National Aeronautics and Space Administra-
tion (NASA) Earth Observing System (EOS) produces a
regular global estimate of net primary production (NPP) for
the entire globe [e.g., Running et al., 2000, 2004]. This
estimate is based on the original logic of Monteith [1972,
1977], who suggested that the GPP of stress-free (i.e., well
watered and fertilized) annual crops, was linearly related to
the amount of photosynthetically active radiation they
absorbed, following the expression:

GPP / e� SAPAR ð2Þ

Where SAPAR is absorbed photosynthetically active
radiation integrated over a time period, and e is light use
efficiency (LUE) or the efficiency of the conversion of
absorbed light into aboveground biomass. Several studies
[Asrar et al., 1992; Sellers, 1985, 1987; Sellers et al., 1992]
found that under specified canopy reflectance properties,
APAR can be estimated remotely, using the Normalized
Difference Vegetation Index (NDVI, the difference between
reflectance (R) in the near-infrared (NIR) and red spectral
regions, normalized by their sum: (RNIR � Rred)/(RNIR +
Rred)), through the expression:

fAPAR ¼ APAR=PAR / NDVI ð3Þ

Where PAR is the incident photosynthetically active
radiation and fAPAR is the fraction of PAR absorbed by
the vegetation. Ruimy et al. [1994] underscored the fact that
the linear relationship between fAPAR and NDVI is an
approximation, and it is only valid during the growing
stage. In fact, a comparison of models revealed that the
NDVI-derived APAR is significantly lower than an
independently modeled APAR by a consistent global
discrepancy of 28% [Ruimy et al., 1999]. A likely
explanation for this is that a significant decrease in the
sensitivity of NDVI is observed when fAPAR exceeds 0.7
[Asrar et al., 1984, 1992; Goward and Huemmrich, 1992;
Roujean and Breon, 1995; Walter-Shea et al., 1997; Viña
and Gitelson, 2005]. Therefore one of the main problems of
the remote assessment of GPP is caused by the uncertainty
of the NDVI/fAPAR relationship, which is normally
assumed to be linear [e.g., Running et al., 2000].
[6] Although photosynthetic rates have been shown to

respond linearly to APAR in annual crops, curvilinear
relationships have been observed in other vegetation types
[Ruimy et al., 1995; Turner et al., 2003]. Nevertheless, near-
linear relationships can be forced, if the time interval is
extended [Ruimy et al., 1995]. According to Monteith
[1972], LUE is a relatively conservative value among plant
formations of the same metabolic type. However, it can vary
with phenological stage, climatic condition, temperature,

and water stress [e.g., Jarvis and Leverenz, 1983]. Therefore
the uncertainty of the estimation of terrestrial GPP with
Monteith’s logic might be considerable, when no informa-
tion about factors influencing LUE is introduced.
[7] Running et al. [2000] used biome-constant values

of LUE in the BIOME-BGC model to produce the
NASA-EOS Global NPP product, and LUE variability was
parameterized by the use of a look-up table that integrates
biome-specific edaphic and climatic characteristics. These
values of LUE were then modified with functions driven by
surface temperature and vapor pressure deficit obtained from
coarse resolution satellite-based weather data [Running
et al., 2004]. Other studies have shown that LUE variability
is species-specific rather than biome-specific [e.g., Ahl et al.,
2004], which further complicates the parameterization of
LUE in regional to global models of GPP and NPP.
[8] Rahman et al. [2004] suggested that to accurately

estimate CO2 fluxes of terrestrial vegetation it is necessary
to take into account the changes in LUE. They produced a
‘‘continuous field’’ LUE retrieved from satellite data, using
the photochemical reflectance index (PRI) as a proxy of
LUE [e.g., Gamon et al., 1992], without referring to look-up
tables or predetermined biome/community-specific LUE
values. PRI is defined as:

PRI ¼ R531 � R570ð Þ= R531 þ R570ð Þ ð4Þ

Where R531 and R570 are reflectances at 531 nm 570 nm,
respectively. Several studies have shown the linear relation-
ship between PRI and LUE in different vegetation types
[e.g., Nichol et al., 2000, 2002]. However, Barton and
North [2001] showed that PRI was most sensitive to
changes in leaf area index (LAI), and concluded that the
potential use of this index to predict LUE will require an
independent estimate of LAI.
[9] While the above mentioned approaches provide ways

for the synoptic estimation of vegetation productivity in
different ecosystems, an accurate synoptic estimation is still
elusive. Thus new approaches are needed. In this study, we
propose a new remote technique to estimate midday GPP in
crops that builds upon Monteith’s logic. However, it does
not depend on the NDVI/fAPAR linearity assumption, and
it does not depend on the constancy, preestablished vari-
ability or biome/species specificity of LUE. The approach is
based on the remote estimation of crop chlorophyll content
(Chl). Since long- or medium-term changes in canopy Chl
are related to crop phenology, canopy stresses and photo-
synthetic capacity of the vegetation [e.g., Ustin et al., 1998;
Zarco-Tejada et al., 2002], it can also be related to GPP. It
was found that canopy level Chl may appear to be the
community property most relevant for the prediction of
productivity [Whittaker and Marks, 1975; Dawson et al.,
2003]. The specific objectives of this study were: (1) to
evaluate existing remote sensing techniques for the estima-
tion of GPP (retrieved from measured NEE through a tower-
based eddy covariance technique) in irrigated and rainfed
maize and soybean; (2) to establish the relationship between
GPP and crop Chl in maize and soybean; and (3) to test the
accuracy and robustness of a remote sensing technique,
developed for canopy Chl retrieval, in the remote estimation
of GPP in crops. We concentrated our efforts in the remote
estimation of GPP in crops, because they are the most
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pervasive anthropogenic biome. Relatively simple in vege-
tation structure, crops play an important role in the global
cycles of carbon, water, and nutrients as well as influencing
local and regional weather.

2. Methods

[10] The study sites are located at the University of
Nebraska-Lincoln Agricultural Research and Development
Center near Mead, Nebraska, U.S.A. The first two sites
(here denoted as sites 1 and 2, respectively) are 65-ha fields
equipped with center pivot irrigation systems. The third site
(denoted as site 3) is of approximately the same size, but
relies entirely on rainfall. All three sites were uniformly
tilled prior to the initiation of the research program. Since
the initiation of the study, all sites have been under no till.
Site 1 is under continuous maize, while sites 2 and 3 are
under maize-soybean rotation (Table 1). Prior to initiation of
the study, the irrigated sites (1 and 2) had a 10-year history
of maize-soybean rotation under no till. The rainfed site (3)
had a variable cropping history of primarily wheat, soybean,
oats, and maize grown in 2 to 4 ha plots with tillage.

2.1. CO2 Flux

[11] Micrometeorological eddy covariance data collection
began on 25 May 2001 at sites 1 and 2, and on 13 June
2001, at site 3. To have sufficient upwind fetch (in all
directions), eddy covariance sensors were mounted at 3 m
above the ground while the canopy was shorter than 1 m,
and later moved to a height of 6.2 m until harvest (details
are given by Suyker et al. [2004]). The study sites repre-
sented approximately 90–95% of the flux footprint during
daytime and 70–90% during nighttime [e.g., Schuepp et al.,
1990]. Daily midday NEE values were computed by inte-
grating the CO2 fluxes collected by the eddy covariance
tower from 1000 to 1500 LT.
[12] Eddy covariance measurements of fluxes of CO2,

water vapor, sensible heat, and momentum were made using
the following sensors: an omnidirectional 3-D sonic ane-
mometer (Model R3: Gill Instruments Ltd., Lymington,
UK), a closed path infrared CO2/H2O gas analyzing system
(Model LI6262: LI-COR Inc., Lincoln, Nebraska), and an
open-path infrared CO2/H2O gas analyzing system (Model
LI7500: LI-COR Inc., Lincoln, Nebraska). Hourly averaged
fluxes were calculated. Fluxes were corrected for inadequate
sensor frequency response (Moore [1986], Massman
[1991], Suyker and Verma [1993], in conjunction with
cospectra calculated from this study), and adjusted for the
variation in air density due to the transfer of water vapor
[e.g., Webb et al., 1980]. More details of the measurements
and calculations are given elsewhere [Suyker et al., 2004].
[13] Daytime estimates of Re were obtained from the

night CO2 exchange temperature relationship [e.g., Falge

et al., 2002; Xu and Baldocchi, 2003]. To minimize prob-
lems related to insufficient turbulent mixing at night,
following an analysis similar to Barford et al. [2001], we
selected a threshold mean wind speed (U) of 2.5 m s�1

(corresponding to a friction velocity, u* of 0.25 m s�1,
approximately). For U < 2.5 m s�1, data were filled in using
biweekly CO2 exchange temperature relationships from
windier conditions. The midday GPP (in mg CO2/m

2s,
hereafter mg/m2s) was then obtained by subtracting
midday Re (from 1000 to 1500 LT) from midday NEE
as in equation (1).

2.2. Leaf Area Index

[14] Within each site, six small (20 m � 20 m) plot areas
were established for detailed process level studies. Six
locations per site were selected using fuzzy k-means clus-
tering [Minasny and McBratney, 2003] applied to seven
layers of previously collected, spatially dense information
(elevation, soil type, electric conductivity, soil organic
matter content, digital aerial photography and 4 years of
yield map data). The resulting intensive measurement zones
(IMZs) represent all major occurrences of soil and crop
production zones within each site.
[15] Plant populations were determined for each IMZ. On

each sampling date, plants from a 1 m length of either of
two rows within each IMZ were collected and the total
number of plants recorded. Collection rows were alternated
on successive dates to minimize edge effects on subsequent
plant growth. Plants were transported on ice to the labora-
tory. In the lab, plants were dissected into green leaves, dead
leaves, stems, and reproductive organs. The leaves were
processed through an area meter (Model LI-3100, LI-COR,
Inc., Lincoln, Nebraska) and the leaf area per plant was
determined. For each IMZ, the total and green leaf area per
plant was multiplied by the plant population (number of
plants/m2) to obtain total and Green LAI. The data at the six
IMZs were area-weighted averaged to obtain a site-level
value. Standard deviations of the destructive sampling of
LAI ranged from 0.05 m2/m2 at the beginning of the growing
season (day of the year (DOY) 163) to 0.48 m2/m2 before the
peak of maximum LAI (around DOY 180).

2.3. Absorbed PAR

[16] Daily measurements of fAPAR were obtained using
the following procedure: Incoming PAR (PARinc) was
measured with point quantum sensors (LI-190, LI-COR
Inc., Lincoln, Nebraska) pointing to the sky, and placed 6
m above the surface. PAR reflected by the canopy and soil
(PARout) was measured with point quantum sensors point-
ing downward, and placed 6 m above the ground. PAR
transmitted through the canopy (PARtran) was measured
with line quantum sensors (LI-191, LI-COR Inc., Lincoln,
Nebraska) placed at about 2 cm above the ground, looking
upward; and PAR reflected by the soil (PARsoil) was
measured with line quantum sensors placed about 12 cm
above the ground, looking downward. Absorbed PAR
(APAR) was calculated as [Goward and Huemmrich, 1992]:

APAR ¼ PARinc � PARout � PARtrans þ PARsoil ð5Þ

The fractional absorbed PAR (fAPAR) was calculated as
APAR/PARinc.

Table 1. Crops and Their Management in Sites 1, 2 and 3 in 2001,

2002, and 2003

Years 2001 2002 2003

Site 1 irrigated maize irrigated maize irrigated maize
Site 2 irrigated maize irrigated soybean irrigated maize
Site 3 rainfed maize rainfed soybean rainfed maize
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2.4. Leaf Chl Content

[17] Biweekly spectral reflectance measurements (in the
range 400 to 900 nm) of upper canopy leaves (Chlupper)
were carried out in situ using an Ocean Optics USB2000
radiometer, equipped with a leaf clip (details given by Viña
et al. [2004] and Gitelson et al. [2005]). Total leaf chloro-
phyll content was retrieved from reflectance spectra using a
nondestructive technique [Gitelson et al., 2003a]. Reflec-
tance in the red edge spectral band between 700 and 720 nm
and in the NIR between 760 and 800 nm, were used in the
model Chl = a � [(RNIR/Rred edge) � 1] [Gitelson et al.,
2003a]. To calibrate the model, total leaf Chl content was
measured analytically in the lab and the coefficient a was
determined. For both species in the range of total Chl from
2.44 through 918 mg/m2, coefficient a was 330.6 mg/m2,
and a coefficient of determination (r2) of the linear relation-
ship between Chl and the model [(RNIR/Rred edge) � 1] was
0.95. Root Mean Square Error (RMSE) of leaf Chl retrieval
from reflectance measurements in both species was less than
60 mg/m2.

2.5. Total Canopy Chl Content

[18] Total Chl in the canopy was estimated as Chlest =
Chlupper � (green LAI), where Chlupper is leaf Chl content in
upper canopy leaves. To test whether Chlupper is represen-
tative of the entire canopy Chl, we compared Chlest with
measured total Chl content in the canopy (Chlmeas). To find
Chlmeas, Chl content of all leaves (Chli

leaf) of 22 maize and
14 soybean plants were retrieved from reflectance measure-
ments using the nondestructive technique described earlier.
Areas of each of these leaves (Si

leaf) were measured with an
area meter (Model LI-3100A, LI-COR, Inc., Lincoln,
Nebraska). Total Chl in the entire plant, expressed as the
amount of Chl per unit of ground Sg (i.e., g/m2) was
calculated as Chlmeas = S

n
i¼1 (Chli

leaf � Si
leaf)/Sg, where n

is total number of leaves in each plant. The measured and
estimated (by the model [(RNIR/Rred edge) � 1]) total Chl in
the canopy were closely related: the RMSE of Chl estima-
tion was 0.31 g/m2 for maize (in the range of Chl from
0.03 to 4.33 g/m2) and 0.15 g/m2 (Chl ranged from 0.02 to
2.15 g/m2) for soybean. This suggests that total Chl in the
canopy can be accurately estimated using the product of green
LAI and Chl in upper canopy leaves [Gitelson et al., 2005].

2.6. Crop Reflectance

[19] Spectral measurements at the canopy/community
level were made using hyperspectral radiometers mounted
on ‘‘Goliath,’’ an all-terrain sensor platform [Rundquist et
al., 2004]. A dual-fiber optic system, with two intercali-
brated Ocean Optics USB2000 radiometers, was used to
collect radiometric data in the range 400–900 nm with a
spectral resolution of about 1.5 nm. Radiometer 1, equipped
with a 25� field-of-view optical fiber was pointed down-
ward to measure the upwelling radiance of the crop (Ll

crop).
The position of the radiometer above the canopy was kept
constant throughout the growing season (i.e., around 5.4 m),
yielding a sampling area with a diameter of around 5 m.
Radiometer 2, equipped with an optical fiber and cosine
diffuser (yielding a hemispherical field of view), was
pointed upward to simultaneously measure incident irradi-
ance (El

inc). The intercalibration of the radiometers was
accomplished, in order to match their transfer functions,

by measuring the upwelling radiance (Ll
cal) of a white

Spectralon (Labshere, Inc., North Sutton, New Hampshire)
reflectance standard simultaneously with incident irradiance
(El

cal). To mitigate the impact of solar elevation on radiom-
eter intercalibration, the anisotropic reflectance from the
calibration target was corrected in accord with Jackson et al.
[1992]. Percent reflectance (Rl) was computed as:

Rl ¼ L
crop
l

=Einc
l

� �

� Ecal
l
=Lcal

l

� �

� 100� Rcal
l

ð6Þ

where Ll
crop and El

inc are the outputs of the downward
(upwelling radiance of crop) and upward (incident irradi-
ance) pointing instruments, respectively; Rl

cal is the
reflectance of the Spectralon panel linearly interpolated to
match the band centers of each radiometer; Ll

cal is the output
of the downward looking instrument when measuring the
upwelling irradiance of the Spectralon panel; El

cal is the
output of the upward pointing instrument measuring
incident irradiance during the time of calibration by means
of the Spectralon panel. Ll

crop, El
inc, Ll

cal and El
cal are in

digital numbers per second, corrected for the instruments’
dark current. Sensors were configured to take fifteen
simultaneous upwelling radiance and downwelling irradi-
ance measurements, which were internally averaged and
stored as a single data file. Radiometric data were collected
close to solar noon (between 1100 and 1500 LT), when
changes in solar zenith angle were minimal. The two
radiometers were intercalibrated immediately before and
immediately after measurements in each site.
[20] Our ultimate goal was to eliminate the need to use a

calibration panel after each reflectance measurement and to
avoid errors due to atmospheric variability during data
collection. The use of two intercalibrated hyperspectral
radiometers allows simultaneous measurement of downwel-
ling irradiance and upwelling target radiance. Therefore it is
possible to compute the radiance reflectance of a target
during times when the incident radiation is highly variable.
Such situations are difficult, if not impossible, when using
one radiometer and measuring a reference panel after each
target scan. The dual-fiber approach results in rapid mea-
surement and minimal error due to variation in irradiation
condition [Rundquist et al., 2004]. A critical issue with
regard to the dual-fiber approach is that the transfer func-
tions (the ratio of the optical signal at the output of the
system (in digital numbers) to the optical signal that is
launched into the system) of both radiometers must be
identical. We tested our Ocean Optics instruments under
laboratory and field conditions; over a 4-hour period the
standard deviations of the ratio of the two transfer functions
did not exceed 0.004 (details given by Dall’Olmo and
Gitelson [2005]).
[21] Spectral reflectance measurements at canopy level

were carried out from June until October in 2001 growing
season (18 measurement campaigns), and from May until
October in 2002 and 2003 (31 and 34 measurement cam-
paigns in 2002 and 2003, respectively). Reflectance mea-
surements were made within an area of �0.8 ha for each of
the three sites. A total of 36 points within these areas were
sampled per measurement date and site, and the median was
calculated. Since eddy covariance measurements represent
GPP of the entire site, while reflectance data were sampled
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in specific areas of the site, a test of site homogeneity was
needed to assess if the reflectance sampling areas were
representative of the entire site. For this, we used imagery
acquired during the 2002 growing season (on 21 June, 27

June, 12 July, 15 July, 7 September, and 17 September) by
an AISA (Oulu, Finland) hyperspectral imaging system,
programmed to acquire 35 spectral bands between 400 and
900 nm. Measurements were carried out from an altitude of
�1000 m, providing a spatial resolution �3 m/pixel. Green
LAI was calculated as [(R840–870/R700–710) � 1] [Gitelson
et al., 2003b] for each of these images, and the values from
the entire sites and from the spectral reflectance sampling
areas were compared on a per site and date basis, using a
two-sample T-test, after checking for variance homogeneity.
Site average values of this index that are significantly
different from those of the spectral reflectance sampling
areas would mean that the spectral sampling areas are not
representative of the sites, and thus an overestimation or
underestimation of the remote GPP estimate might occur.
With the exception of site 3 on 7 September 2002 (which
showed a statistically significant underestimation of the
green LAI in the reflectance sampling area, as compared
to the entire site), no statistically significant differences
were obtained (Table 2). Therefore the spectral reflectances
for the sampled areas were representative of the entire site.

2.7. Calibration and Validation of the Models

[22] Canopy spectral reflectance data were used to estab-
lish a new approach to assess remotely the GPP of crops.
Daily midday GPP values (measured between 1000 and
1500 LT) were used in the analysis (Figure 1). This
approach was tested by means of regression analysis.
Models between remotely sensed reflectances and GPP
were developed and calibrated for irrigated and rainfed
maize using data acquired during the 2001 and 2002
growing seasons, 78 samples, and irrigated and rainfed
soybean using data acquired in 2002, 58 samples

Table 2. T-Test Values and Their Respective P-Values for the

Comparison of Means of the Index (RNIR/RRed-edge � 1) Calculated

From Reflectance Data Acquired by the AISA System During the

2002 Growing Season, Within the Reflectance Sampling Areas and

the Entire Sites

Date T-Test P-Value

Irrigated Maize (Site 1)
21 June 2002 0.757 0.462a

27 June 2002 0.913 0.377
12 July 2002 1.299 0.215
15 July 2002 2.012 0.06
7 September 2002 1.159 0.266
17 September 2002 1.628 0.126

Irrigated Soybean (Site 2)
21 June 2002 0.283 0.781
27 June 2002 0.185 0.856
12 July 2002 0.556 0.587
15 July 2002 0.615 0.549
7 September 2002 �0.283 0.781
17 September 2002 �0.709 0.490

Rainfed Soybean (Site 3)
21 June 2002 �0.451 0.671a

27 June 2002 0.059 0.955a

12 July 2002 �0.211 0.836
15 July 2002 �1.846 0.092
7 September 2002 �3.222 0.008b

17 September 2002 �2.081 0.083a

aTwo-sample T-test assuming unequal variances.
bStatistically significant difference.

Figure 1. Diurnal variation of GPP in (a) maize and
(b) soybean for selected days of the year (DOY) during the
growing season. The midday GPP used in this study is
highlighted.

Figure 2. Temporal progression of measured midday GPP
(solid line) and incident PAR (dotted line) in irrigated
(a) maize and (b) soybean sites during the 2002 growing
season.
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(Table 1). The RMSE of GPP estimation by the developed
models for each species was obtained. Then calibrated
models for GPP estimation were inverted and validated
for irrigated and rainfed maize using spectral reflectance
and GPP data collected during the growing season of 2003,
(97 samples, Table 1). To provide the context for the
approach described in this study, other existing models for
GPP assessment were also tested in order to evaluate their
accuracy of GPP estimation and compare them to the
models developed in this study.

3. Results and Discussion

[23] Temporal progressions of midday GPP as well as
incident PAR during the growing season are shown for
irrigated maize (Figure 2a) and irrigated soybean
(Figure 2b). The temporal variability of GPP along the
growing season contains two types of variation: a low
frequency variation (day-to-day), which relates to both
phenological development and long-term stresses, and a
high frequency variation (diurnal), which relates mostly to
changes in radiation conditions but also to short-term
stresses.
[24] To evaluate the assumption that a constant LUE

holds for the crops studied, we analyzed the relationship
between GPP and APAR calculated as the product of
fAPAR and PAR and plotted versus GPP (Figure 3). For
both maize and soybean, the behavior of GPP versus APAR
was different at three distinctive phenological stages. Dur-

Figure 3. Midday GPP plotted versus absorbed photo-
synthetically active radiation (APAR) calculated as APAR =
fAPAR � PAR for (a) irrigated and two rainfed maize in
2001–2002 (Table 1) and (b) irrigated and rainfed soybean
site in 2002.

Figure 4. Temporal variability of canopy light use efficiency (LUE) of irrigated and rainfed maize and
soybean. LUE is expressed as the ratio of weekly sums of midday (1000–1500 LT) GPP and absorbed
PAR.
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ing the vegetative stage, GPP was almost linearly related
with APAR. In contrast, no clear relationship was observed
during the reproductive stage. During senescence, the
relationship between GPP and APAR was also close to
linear, but with a much higher slope than that observed
during the vegetative stage. Therefore, although there was
a nearly linear relationship between GPP and APAR
during some time periods, the nature of this relationship
changes with the phenological stage of the crop, suggest-
ing that LUE of the crops studied changes along the
growing season.
[25] To further examine this matter, we calculated weekly

LUE as: LUE = GPP/(fAPAR*PAR), and plotted it versus
day of the year (DOY, Figure 4). LUE showed considerable
variation during the growing season. During the vegetative
stage it increased until reaching maximal values in the
middle of the growing season (around 0.002 mg/mmol for
maize and 0.0015 mg/mmol for soybean). During the
reproductive stage, LUE of irrigated maize remained almost
invariable for about 30 days and then declined sharply
during senescence. In rainfed maize, a conspicuous decline
of LUE can be seen in the middle of growing season that
related to a period of moisture stress (see for details Suyker
et al. [2005]). Then, in the reproductive stage LUE gradu-
ally decreased, and it dropped sharply during senescence.
As in maize, LUE of irrigated soybean did not show a high
variation during the middle of the growing season, while in
rainfed soybean it increased gradually reaching maximum
around DOY 240 and dropped conspicuously just after
reaching maximal values.
[26] We also examined the relationship between GPP and

the product of NDVI and PAR (Figure 5), i.e., the NDVI
was used as a proxy of fAPAR [e.g., Sellers et al., 1992;
Ruimy et al., 1994; Running et al., 2000]. For both species
there was large dispersion of points around the best fit
function, which is reflected in the high RMSE values of
GPP estimation: 0.43 mg/m2s for maize and 0.3 mg/m2s for
soybean. These results show that in the crops studied LUE
varied significantly during the growing season and this
variation has to be taken into consideration in any algorithm
for the remote estimation of GPP.

[27] To test the efficiency of PRI as a proxy of LUE in
crops, we calculated a scaled PRI (as suggested by Rahman
et al. [2004]) as sPRI = (1 + PRI)/2 and plotted GPP as a
function of the product PAR � NDVI � sPRI (Figure 6).
For both species, the parabolic relationships between GPP
and PAR � NDVI � sPRI were slightly better than that
between GPP and PAR � NDVI: for maize RMSE was
0.39 mg/m2s (versus 0.43 mg/m2s for PAR � NDVI) and
for soybean RMSE was 0.29 mg/m2s (versus 0.30 mg/m2s
for PAR � NDVI). However, no major improvement was
observed. Our results showed the difficulty in using this
index at a scale larger than the leaf. Similar results showing
no relationships for PRI versus LUE at canopy level have
been reported previously [Carter, 1998; Gamon et al., 1992;
Methy, 2000; Barton and North, 2001]. Methy [2000]
suggested that it is due to a relatively small reflectance
signal and significant confounding effects such as physio-
logical and structural heterogeneity of leaves in the field of
view of the radiometer and the possibly changing structure
of the canopy. Thus sPRI cannot be used as a proxy of LUE
in maize and soybean, and new approaches are needed to
accurately estimate GPP in crops.
[28] Following Monteith’s logic, GPP is a function of the

amount of PAR absorbed by the canopy (APAR) and the
capacity of the leaves to export or utilize the product of
photosynthesis (i.e., LUE). The product of APAR and LUE
depends on the amount and distribution of photosynthetic
biomass, thus of chlorophyll content and leaf physiology
[Sellers et al., 1992]. Therefore both APAR and LUE are
closely related to the amount of chlorophyll in the canopy.
Low frequency (day-to-day) variation in GPP is associated
with crop phenological stage and physiological status. It has
been shown also that this low frequency variation in GPP is
closely related to green LAI in maize [Suyker et al., 2004,
2005]. Our approach to estimate GPP remotely is based on
the hypothesis that total canopy chlorophyll content (total
Chl) in crops relates closely to the low frequency variation
of GPP.
[29] To test this hypothesis, we calculated total Chl

content in both crops and plotted the relationship between
measured GPP and the product of PAR and total Chl

Figure 5. Midday GPP plotted versus the NDVI � PAR
for irrigated and rainfed maize in 2001–2002 (Table 1) and
irrigated and rainfed soybean in 2002.

Figure 6. Midday GPP plotted versus the NDVI � sPRI �
PAR for irrigated and rainfed maize in 2001–2002 (Table 1)
and irrigated and rainfed soybean in 2002.
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(Figure 7). The best fit function for this relationship was
GPP = 3.04(1 � e�0.0003Chl�PAR). The product of total Chl
and PAR explained more than 98% of GPP variation in both
irrigated and rainfed maize and soybean. Thus a procedure
for assessing remotely GPP of crops may be imple-
mented through the estimation of total canopy chloro-
phyll content.
[30] Changes in leaf Chl content induce large differences

in canopy reflectance. However, these changes are masked
and/or confounded by other factors (e.g., canopy architec-
ture, Chl distribution within the canopy, LAI, soil back-
ground) that also affect canopy reflectance. Therefore
remote Chl retrieval at canopy level is complicated and
challenging. Recently, a conceptual model of the form
[R(l1)

�1 � R(l2)
�1] � R(l3), where R(l) is reflectance

in three spectral bands (l1, l2 and l3), has been developed
for pigment retrieval from reflectance spectra [Gitelson et
al., 2001, 2002, 2003a]. To assess Chl content in crops, this
model was spectrally tuned to find the optimal positions of
l1, l2 and l3, in accord with the optical properties of the
crops. Optimal positions of spectral bands for the remote
estimation of total Chl content in maize and soybean
canopies were found in either the green (540–560 nm) or
the red edge (700–730 nm) ranges for l1, and in the near
infrared range (beyond 750 nm) for l2 = l3 [Gitelson et al.,
2005]. Taking into account that the product (total Chl) �
PAR is closely related to GPP (Figure 7), we hypothesized
that:

GPP / PAR� R�1
green � R�1

NIR

� �

� RNIR ¼ RNIR=Rgreen�1
� �

� PAR

ð7Þ

GPP / PAR� R�1
red edge � R�1

NIR

� �

� RNIR

¼ RNIR=Rred edge�1
� �

� PAR ð8Þ

The approach was tested and the models were calibrated for
irrigated and rainfed maize using data from the 2001

through 2002 growing seasons and irrigated and rainfed
soybean in 2002 (Table 1). Reflectance in the green (545–
565 nm) and NIR (840–870 nm) discrete bands of the
MODIS system, and the red edge (703.75–713.75 nm) and
NIR (750–757.5 nm) bands of the MERIS system were
simulated and used in the analyses. Both models were
closely related to GPP in maize and soybean (Figure 8).
RMSE of GPP estimation by the model (RNIR/Rgreen � 1)
was 0.3 mg/m2s in maize (GPP from 0 to 3.089 mg/m2s)
and 0.2 mg/m2s in soybean (GPP from 0 to 1.8 mg/m2s).
The precision of the model (RNIR/Rred edge � 1) was higher:
RMSE of GPP estimation was 0.27 mg/m2s in maize and
0.15 mg/m2s in soybean. Both models provided a more
precise estimation of GPP than NDVI � PAR and NDVI �
sPRI � PAR (Table 3); RMSE of GPP estimation by
developed models (equations (7) and (8)) was at least 43%
lower than that by NDVI � PAR.
[31] It is important to note that both models constitute a

measure of total Chl content in crops. The coefficient of
determination of the linear relationships (RNIR/Rred edge � 1)
versus total Chl and (RNIR/Rgreen � 1) versus total Chl was
0.92 for maize and 0.94 for soybean [Gitelson et al., 2005]
while relationships between GPP and models (equations (7)
and (8)) were non linear (Figure 8) with larger scattering of
points from best fit functions. This is understandable,

Figure 7. Midday GPP versus the product of PAR and
total chlorophyll content in the irrigated and rainfed maize
and soybean crops in 2001–2003 (Table 1).

Figure 8. Relationships between midday GPP and (a)
[(RNIR/Rgreen) � 1] � PAR and (b) [(RNIR/Rred edge) � 1] �
PAR for irrigated and rainfed maize in 2001–2002 and
soybean in 2002 (Table 1). Reflectance in the green (545–
565 nm) and NIR (840–870 nm) discrete bands of the
MODIS system and the red edge (703.75–713.75 nm) and
NIR (750–757.5 nm) bands of the MERIS system were
simulated and used in the analyses.
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considering that GPP is affected also by short-term envi-
ronmental stresses. If these stresses affect canopy Chl
content, the models (equations (7) and (8)) describe it quite
accurately. If these short-term stresses do not affect Chl
content, the models fail to detect them.
[32] In addition, GPP depends on the composition of

incident irradiation (the ratio of diffuse to direct light). At
a given incident light, the GPP in maize is around 40%
higher during cloudy conditions [Suyker et al., 2004].
Canopy reflectance also depends on atmospheric condi-
tions. When a cloud obscures the sun, the proportion of
incoming diffuse radiation increases relative to the incom-
ing direct component; both the spectral quality and the
angular distribution of the incoming radiation are affected.
Canopy radiance is altered because of its angular anisotropy
and, more importantly, because of the partial or complete
removal of shadows formed by vegetation [e.g., Colwell,
1974]. Removing a 10% shadow component causes an
increase in canopy reflectance of approximately 5% in the
NIR and 8% in the green and the red edge; removing a 20%
shadow component causes an increase in reflectance of 8%
in the NIR and 15% in the green and red edge [Gitelson et
al., 2003c]. Thus the equations (7) and (8) underestimated
GPP under cloudy conditions. Our reflectance mea-
surements were carried out in both clear skies and in cloudy
conditions. Therefore these factors affected the relationship
GPP versus total canopy Chl and caused scattering of the
points from the best fit function.
[33] As with canopy chlorophyll content estimation

[Gitelson et al., 2005], in the simulated discrete spectral
ranges of MODIS and MERIS space-borne sensors, the
calibration coefficients of both models (equations (7) and
(8)) remained species-specific; slopes of the relationships
‘‘GPP versus model’’ for maize and soybean were signifi-
cantly different (Figure 8). This behavior is understandable
taking into account the contrasting canopy architectures and
leaf structures of maize and soybean: (1) Soybean has a
heliotropic leaf angle distribution while the leaf angle
distribution in maize is hemispherical and (2) chlorophyll
content in the adaxial surface of soybean leaves is higher
than that in maize leaves, for the same total leaf Chl. Thus,
for the same total Chl in the canopy, RNIR

maize < RNIR
soybean and

soybean has lower reflectance in the visible spectrum. This
causes higher model values (thus higher GPP estimations)
for soybean than for maize. Therefore we attempted to find
a spectral range where the model is non-species-specific. As
in the case of canopy chlorophyll content [Gitelson et al.,

2005], it has been found in the range 720–740 nm and
840–870 nm. The calibration parameters of the model:

GPP / PAR� R�1
720�740 � R�1

840�870

� �

� R840�870

¼ R840�870=R720�740�1ð Þ � PAR ð9Þ

showed no statistically significant differences between
maize and soybean (Figure 9) and the model is able to
estimate GPP in both species with a RMSE of less than
0.30 mg/m2s, which is at least 30% lower than that provided
by NDVI � PAR and NDVI � sPRI � PAR (Table 3). Thus
this model can be used with a unique set of calibration
coefficients under a mixed pixel scenario (including such
contrasting canopy types as maize and soybean).
[34] While a statistically significant effect of crop type

(i.e., maize and soybean) was found in the regression
analyses performed (with the exception of equation (9)),
no significant effect of water treatment (i.e., irrigated versus
rainfed) was observed. This is an advantage of our ap-
proach; that is, our technique accurately estimates GPP
independent of the type of treatment.

Table 3. Calibration of the Models for GPP Estimation for Irrigated and Rainfed Maize in 2001–2002 (Table 1) and Irrigated and

Rainfed Soybean in 2002a

Model

Maize Soybean

Equation RMSE Equation RMSE

x = NDVI GPP = 6e�7x2 + 0.0007x 0.43 GPP = 3e�7x2 + 0.0005x 0.30
x = NDVI � PRI GPP = 2e�6x2 + 0.0017x 0.39 GPP = 1e�6x2 + 0.0011x 0.29
x = equation (7) GPP = 6.6(1 � e�0.000032x) 0.30 GPP = 2.47(1 � e�0.000063x) 0.20
x = equation (8) GPP = 3.21(1 � e�0.0002x) 0.27 GPP = 1.83(1 � e�0.0002x) 0.15
x = equation (9) GPP = 0.0013x 0.30 GPP = 0.0013x 0.30

aMidday GPP ranged from 0 to 3.1 mg/m2s in maize and from 0 to 1.8 mg/m2s in soybean. Root Mean Square Error (RMSE) of GPP estimation
in mg/m2s. Note that the calibration coefficients of both models (equations (7) and (8)) as well as NDVI � PAR and NDVI � sPRI � PAR remain
species-specific (Figures 5, 6, and 8), while best fit function GPP versus (R840 – 870/R720 – 740 � 1) � PAR (equation (9) and Figure 9) showed no
statistically significant differences between maize and soybean.

Figure 9. Midday GPP versus the model (RNIR/
R720–740nm � 1) � PAR plotted for irrigated and rainfed
maize in 2001–2002 (Table 1) and irrigated and rainfed
soybean in 2002. The model is able to accurately estimate
GPP in both maize and soybean. No statistically significant
differences (p < 0.001) were obtained between regression
parameters of maize and soybean.
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[35] Validation of the developed models (equations (7)–
(9)) as well as NDVI � PAR and NDVI � sPRI � PAR for
GPP prediction in maize was performed using an indepen-
dent data set obtained in 2003 (97 samples, two irrigated
sites and one rainfed site: Table 1). These data were used to
predict GPP in maize using the models calibrated with data
obtained in 2001 and 2002 (Table 3). Then, the predicted
GPP values were compared with those actually measured in
the 2003 growing season and the results of the comparison
are shown in Figures 10 and 11. As with model calibration
(Table 3), the model (RNIR/Rred edge � 1) was superior in
predicting midday GPP, but all three developed models
(equations (7), (8), and (9)) were much more accurate in
the estimation of GPP in the whole range of its variation
than either the NDVI � PAR or the NDVI � sPRI � PAR.

4. Conclusions

[36] Chlorophyll content in irrigated and rainfed maize
and soybean is closely related to midday gross primary
production. A conceptual model, originally developed for
pigment concentration retrieval in leaves and spectrally
tuned for the remote estimation of chlorophyll content in
crops [Gitelson et al., 2005], was successfully applied for
the retrieval of midday gross primary production in irri-
gated and rainfed soybean, at field level. This new
technique is solely based on remotely sensed data, and
provides a robust estimation of midday gross primary
production in crops.
[37] Given the substantial improvement in the accuracy of

midday gross primary production estimation by the models
developed in this study, as compared to the currently used
methods, it is worthwhile to fully explore the efficacy of
these techniques over different crops, at different sites, and

through remote as opposed to proximal spectral sensors.
Further validation of this technique over other crops and
vegetation types is required using the green and NIR bands
of satellite-based systems such as MODIS, Landsat TM and
ETM, and Hyperion (on board EO-1 satellite) as well as the
red-edge and NIR bands of satellite systems such as MERIS
and Hyperion. With further validation (using data from
already established FluxNet and SpecNet sites), this tech-
nique may be found useful in a variety of terrestrial
ecosystems. The end result may be an inexpensive yet
accurate tool for estimating midday GPP.
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