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The prevalence of Helicobacter pylori (H. pylori) infection has exceeded 50%

worldwide, and it is considered a high-risk factor for chronic gastritis, peptic

ulcer, gastric adenocarcinoma, gastroesophageal reflux disease and functional

dyspepsia. H. pylori drug resistance is a common problem worldwide. In recent

years, the relationship between H. pylori infection and gastrointestinal

microecology has received much attention. H. pylori infection changes the

structure and composition of gastrointestinal microflora by regulating the

gastrointestinal microecological environment, local pH value, cytokines and

antimicrobial peptides, and immune response and then plays a crucial role in the

occurrence and development of digestive system tumors, liver metabolism and

extragastrointestinal diseases. The quadruple strategy of H. pylori eradication

can also aggravate gastrointestinal microflora disorder. However, probiotics can

reduce intestinal flora changes and imbalances through different mechanisms,

thus enhancing the efficacy of H. pylori eradication therapy and reducing

adverse reactions caused by eradication therapy. Therefore, this paper reviews

the relationship between H. pylori infection and gastrointestinal microecology

and its clinical application, providing a basis for clinical treatment.
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1 Introduction

H. pylori is a microaerophilic gram-negative bacillus that colonizes the surface of the

human gastric epithelium. It has a spiral-curved shape and flagella, which are available

for motility (Warren and Marshall, 1983). It is considered a high-risk factor for chronic

gastritis, peptic ulcer, gastric adenocarcinoma, gastric mucosa-associated lymphoid tissue

lymphoma, gastroesophageal reflux disease and functional dyspepsia (Manabe et al.,
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2022; Zavros and Merchant, 2022). An epidemiological survey

shows that the H. pylori infection rate has exceeded 50%

worldwide, the infection rate in developed countries is

approximately 30%, and it can be as high as 80% in

developing countries (Jiang et al., 2021). The average H. pylori

infection rate in China was 40% in the period 2015-2019 (Ren

et al., 2022). The infection rate ofH. pylori is related to economic

situation, living conditions, sanitary conditions and living habits,

occupation and quality of drinking water. It has a higher

infection rate in situations of poor economic conditions,

crowded living, poor sanitary conditions and bad living habits.

In different populations, H. pylori is observed throughout life in

the absence of appropriate treatment, and spontaneous clearance

of the infection is very rare (Saito et al., 2021).

The stomach is now thought to contain more than 100

species of bacter ia , and Streptococcus , Prevote l la ,

Porphyromonas, Neisseria and Haemophilus are the dominant

bacterial genera in the gastric mucosa, accounting for 70.5% of

the total amount (Chen et al., 2021). Slightly different from the

bacterial flora of gastric mucosa, the main bacteria in gastric

juice of healthy people are ranked from high to low in

abundance: Firmicutes, Proteobacteria, Bacteroides and

Actinobacteria, among which Streptococcus and Rod-like

bacteria of firmicutes; Helicobacter, Haemophilus and Neisseria

of Proteobacteria; Prevotella of Bacteroidetes; and Roche,

Actinomycetes and Micrococcus of Actinomycetes are the most

widely distributed. The composition of the bacteria in the

stomach is different from that in the mouth and throat, which

suggested that the bacteria in the stomach were not migratory

from upper regions. The gastric flora is affected by many factors.

Compared with the intestinal flora, the gastric flora is

characterized by low density, low specificity, poor stability and

high fluctuation. According to previous research results, great

differences were observed in the weight and number of bacteria

in the gastric microecosystem of healthy adults, which might be

due to the different influencing factors, such as regional span,

cultural difference, dietary habit difference, etc. (Stewart et al.,

2020). These differences may also be related to the age and sex of

the population being studied, the method of testing the samples,

the use of antibiotics, and whether other diseases were present.

The number of gut microbes is extremely large and includes

bacteria, archaea, fungi, viruses, etc. These microorganisms

colonize the gut after a series of complex processes, form

relatively stable communities, and interact with the host to

form a unity with a mutually beneficial symbiotic relationship.

The gut microbial genome contains approximately 3.3×106

nonrepetitive genes, which is 150 times the number of genes

in the human genome and considered the second genome of the

human body. Harmful bacteria, opportunistic pathogens and

probiotics are the three main flora in the gut. More than 99% of

intestinal microorganisms are anaerobic bacteria, mainly

including Firmicutes , Bacteroidetes , Proteobacteria,

Act inobacter ia , Fusobacter ium, Verrucobacter ium,
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Cyanobacteria and Spirochetes, the most important of which

are Firmicutes (50% to 70%) and Bacteroidetes (10% to 30%)

(Lensu and Pekkala, 2021). Its function is closely related to

human health and not only affects the nutrient supply and

energy balance but also participates in immune defense,

endocrine regulation, barrier function maintenance, inhibition

of pathogen colonization and many other physiological

processes (Ruch and Engel, 2017). To identify the core

composition pattern of human gut microbiota in a healthy

state, Arumugam et al. proposed the concept of “enterotype”

and believed that the composition of human gut microbiota

could be divided into three types: “Enterotype 1” was mostly

Bacteroides, “Enterotype 2” was mostly Prevotella, and

“Enterotype 3” is mostly Ruminococcus (Arumugam et al.,

2011). The three types represent three different symbiotic

relationships between gut flora and the host and commonly do

not change based on differences in race, sex, age, body weight,

and health status. Once any kind of bacteria in the intestinal

tract exceeds the normal range and reaches a certain pathogenic

dose or changes in species and locations, etc., it will lead to

dysbiosis. In recent years, studies have found that dysbiosis of

intestinal flora may cause systemic lupus erythematosus,

rheumatoid arthritis, diabetes, obesity, autism, multiple

sclerosis and other extraintestinal system diseases as well as

intestinal system diseases, such as inflammatory bowel disease

and colon cancer (Jackson and Theiss, 2020; Scheithauer et al.,

2020; Tomofuji et al., 2022).

H. pylori infection can affect the gastrointestinal

microecological environment, leading to disruption of

biological barriers and bacterial translocation, which plays a

common role in the occurrence and development of diseases

(Lapidot et al., 2021) (Figure 1). In addition, H. pylori drug

resistance is a common problem worldwide (Kuo et al., 2021).

Probiotics can be divided into single strains and mixed strains,

and probiotics represents the general term for beneficial bacteria

living in the intestinal tract. They play an important role in the

eradication of H. pylori, which also provides new ideas for

the treatment of H. pylori infection. Therefore, this paper

reviews the relationship between H. pylori infection and

gastrointestinal microecology and the effect of their interaction

on diseases to provide a basis for clinical treatment.

2 Effects of H. pylori infection on
gastrointestinal microecology
and diseases

2.1 H. pylori infection and
gastric microecology

H. pylori dominates gastric mucosa-associated flora, and

excessive proliferation of H. pylori may interfere with the gastric

microecological environment, resulting in microecological
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disorders and inflammatory reactions, resulting in disordered

gastric microflora and the occurrence of diseases. Studies have

shown that H. pylori significantly reduces the diversity of the

microbiota in the stomach. The changes in the proportion and

genus level of each phylum are mainly manifested in increases in

the relative abundance of Proteobacteria and Spirochetes but

decreases in the abundance of Actinomycetes, Bacteroides,

Clostridium and Firmicutes in the gastric mucosa. The relative

abundance of Proteobacteria in the gastric juice increases, while

t h e r e l a t i v e abundanc e o f Dip l o co c cu s , Ci l i um ,

Propionibacterium, Clostridium, Actinomycetes, Veron Coccus,

Haemophilus, Streptococcus and Prevotella decrease. (Bakhti and

Latifi-Navid, 2021). At the genus level, Helicobacter and

Haemophilus increase while Rosette decreases (Duan et al.,

2022). This phenomenon further shows that H. pylori has

advantages over other flora. It is not clear why H. pylori

infection changes the gastric microecology, although possible

reasons have been postulated (Cheok et al., 2021): H. pylori

changes the gastric microenvironment, and the ammonia and

bicarbonate produced by decomposing urea can also serve as

substrates for other microbial communities; H. pylori infection

induces the regulation of the H+/K+-ATPase D subunit

promoter by the Nuclear Factor- Kappa B (NF-kB) P50

homologous dimer, which downregulates the expression of

H+/K+-ATPase mRNA, and inhibits gastric acid secretion,

thereby increasing gastric pH and creating favorable

conditions for the colonization of other microorganisms; H.

pylori can induce the production of cytokines and antimicrobial

peptides, thereby leading to chronic gastritis and inhibiting other

local microorganisms; H. pylori may directly alter the mucosal

barrier by changing the expression of gastric mucin; H. pylori

can alter the lifestyle and dietary patterns of its subjects;H. pylori

can develop T regulatory-mediated tolerance to other bacterium,
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and suppress the effector T-cell responses (Sung et al., 2020;

Marginean et al., 2021).

Recent research and practice have shown that H. pylori

infection is the main cause of the occurrence and development

of chronic gastritis, peptic ulcer, gastric cancer and other

digestive diseases. The specific mechanism is still not

completely clear, but changes in gastric microecology may be a

main reason. H. pylori infection affects Th1-related IgG2

immune response, Interleukin (IL)-1b, IL-17 and Reg III g
transcription levels in the stomach and reactive oxygen species

(ROS) levels by gastric flora, promoting the occurrence of

superficial gastritis, atrophic gastritis, intestinal metaplasia and

gastric intraepithelial neoplasia (Doulberis et al., 2021; Araujo

et al., 2022). H. pylori infection promotes the occurrence of

gastric cancer by regulating gastric flora (Figure 2). The next

generation gene profile analysis of gastric microbiome

composition showed that compared with the gastric

microbiome of patients with chronic gastritis, gastric cancer

patients had a microbiome imbalance characterized by lower

diversity, lower H. pylori abundance and higher genotoxicity

(Ferreira et al., 2018). Chronic H. pylori infection results in

decreased gastric acid secretion, and non-H. pylori microbiota

overgrowth promotes gastric mucosa malignancy by promoting

inflammation, stimulating cell proliferation, changing stem cell

dynamics and transforming nitrate into n-nitrosamine. In

gastric cancer, the microbiota promotes nitrite reduction, and

acidic nitrite can kill other bacteria. Nitrate can be used as an

energy source and can change the gastric microbiota, causing

ecological disorder. N-nitroso compounds formed during nitrite

metabolism are important carcinogens. In addition, they release

DNA-damaging reactive oxygen species and nitrogen (they are

effective mutagens), continuously aggravating the gastric

mucosal inflammatory response, accelerating the progression
FIGURE 1

Effects of H. pylori infection on gastrointestinal microecology and diseases.
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of gastric precancerous lesions, and promoting the occurrence of

gastric adenocarcinoma (Sheweita and Alsamghan, 2020). H.

pylori infection increased Escherichia coli, Lactobacillus, nitrate

reductase bacteria, L. coleohominis and Spirobacter nitroso in

gastric cancer and played a role in nitrite metabolism. Other

bacteria, such as Clostridium, Hemophilus, Staphylococcus and

Neisseria, may also be involved in the formation of these

compounds (Engstrand and Graham, 2020; Liu et al., 2021). In

addition, genomic DNA of Pseudomonas can be transferred into

human somatic cells through some mechanism, thus

upregulating proto-oncogene expression and promoting the

occurrence of gastric adenocarcinoma (Rodrigues et al., 2019).

Lactobacillus can promote immune tolerance and provide a

platform for the colonization of other carcinogenic bacteria

(Chen et al., 2021).
2.2 H. pylori infection and
intestinal microecology

Studies have shown that H. pylori infection can not only

affect the gastric microecology but also change the intestinal

flora. The relationship between H. pylori infection and intestinal

microecology is still not clear, and the conclusions in the

literature are controversial (Fujimori, 2021). A study on

children showed that the abundance and diversity of

gastrointestinal flora were higher in children without H. pylori

infection, among which Proteobacteria, Bacteroides, Clostridium,

etc., were more abundant (Llorca et al., 2017). However, another

study found that compared with uninfected children, H. pylori-

positive children had an increased number of intestinal flora,
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such as Proteus, Clostridium, Firmicutes, and Prevotella

(Kakiuchi et al., 2021). Lu found that the diversity of intestinal

flora in H. pylori-infected patients was higher, in which the

abundance of Alistipes and Enterobacter cloacae increased and

the abundance of Lachnoclostridium decreased. H. pylori

infection changes the balance of intestinal microecology (He

et al., 2019). Researchers analyzed human feces and found that

the diversity and complexity of the intestinal flora of H. pylori-

infected patients were higher, in which Vibrio succiniformis,

Rhododendron spp., Enterococci spp., and Rikenbacteriaceae spp.

increased and the abundance of Candida glabrata and

unclassified fungi improved (Dash et al., 2019). The

underlying reason may be that H. pylori infection leads to the

initiation of the mucosal coimmunity response as well as

changes in gastric acid and gastrin secretion, resulting in an

increase in gastric pH, weakening the gastric acid barrier, and

simultaneously affecting intestinal pH, which in turn promotes

changes in intestinal flora (Iino and Shimoyama, 2021).H. pylori

infection may also change the distal intestinal flora through

mucosal co-immune response by cytotoxin-associated gene A

(CagA), Vacuolating cytotoxin A (VacA), which impairs cell

polarity and affects host signaling pathways, thereby altering

immune phenotypes and promoting inflammation (He

et al., 2022).

An imbalance in H. pylori-related intestinal flora can lead to

the occurrence of nonalcoholic fatty liver disease (NAFLD),

colorectal adenoma, irritable bowel syndrome and small

intestinal ulcer, and the mechanism may be that H. pylori

invades the intestinal mucosa to increase intestinal

permeability and leads to an imbalance of intestinal flora,

which facilitates the entry of bacterial endotoxins into the liver
FIGURE 2

H. pylori infection promotes the occurrence of gastric cancer by regulating gastric flora.
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through the portal vein, thereby promoting intestinal

inflammation (Santos et al., 2020; Fujimori, 2021). It also

affects the absorption of iron and vitamin B12 in the intestinal

tract and the metabolic process of carbohydrates and amino

acids in the host (Santos et al., 2020). H. pylori infection can

increase Eubacterium, Bacteroides coprophilus, E.biforme and

decrease Firmicutes, which are related to high density

lipoprotein (HDL)/low density lipoprotein (LDL) ratio

(Martin-Nunez et al., 2020). Meanwhile, H. pylori infection

can affect the balance of gastrointestinal hormones such as

leptin, ghrelin and gastrin, and alter the fermentation of non-

digestible carbohydrates, the generation of short-chain fatty

acids (SCFAs) and glucagon-like peptide-1 (GLP-1) through

intestinal flora and may be involved in the occurrence of

metabolic diseases such as insulin resistance, and type 2

diabetes (Martin-Nunez et al., 2021; Hu et al., 2022). In

addit ion, H. pylori infect ion affects the intest inal

microecosystem and can also lead to diseases of the

extraintestinal system. H. pylori-induced changes in intestinal

microflora were often accompanied by changes in immune-

related gene expression in multiple organs. Changes in gut

microecology and microenvironment caused by H. pylori

infection (e.g., bacterial diversity and changes in gastric pH)

affect the expression of some immune-related genes in the host,

and changes in lung-related gene expression may be caused by

H. pylori infection which promoting cumulative changes in

immune and/or inflammatory responses. These changes can

also be observed at distant sites in host organisms, and other

members of the genus Helicobacter exhibit similar effects. For

example, the natural colonization of liver Helicobacter pylori in

the digestive tract of mice can lead to the transformation of

intestinal microbiota, resulting in subclinical inflammation and

severe immune damage (Li et al., 2020). Other studies found that

intestinal flora disorders caused by H. pylori colonization can

also play a protective role in some diseases through immune

regulation, such as asthma, inflammatory enteritis, and multiple

sclerosis (Borbet et al., 2019). Early H. pylori infection-induced

changes in the microenvironment affect the expression of some

immune-related genes in the host and then affect the local and

even systemic immune system. The effect of H. pylori on the

immune system is closely related to changes in gastric

physiology and microflora and the occurrence and

development of extragastric diseases. H. pylori affects the

adaptive immune response by interfering with antigen

presentation and T-cell response regulation through

microecological imbalance, which plays an important role in

the prevention of extragastric immune and inflammatory

diseases (such as childhood asthma and allergies) and

metabolic disorders (Zuo et al., 2021). H. pylori can regulate

the levels of Treg cells and cytokines such as IL-10 and

transforming growth factor b (TGF-b) in the lung through

intestinal flora, prevent or regulate the Th2 response to

allergens, and induce the allergen-specific immune response to
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immune tolerance transition. This prevents the development of

asthma and other allergic diseases (Borbet et al., 2019). In

addition, Tricorniaceae can reduce the colonization of

Clostridium difficile and reduce the occurrence of intestinal

inflammation (Castro-Fernandez et al., 2019). From the

influence of H. pylori on disease, we can see that H. pylori has

a complex effect on the host.
2.3 H. pylori eradication
gastrointestinal microecology

Presently, a consensus report on the management of H.

pylori infection recommends the use of quadruple therapy

consisting of proton pump inhibitor (PPI), bismuth and two

antibacterial drugs for 10 or 14 days (Liou et al., 2020). However,

H. pylori eradication quadruple therapy has a certain impact on

gastrointestinal flora (Guo et al., 2020). The powerful acid-

suppressing effect of PPI can not only reduce the removal

effect of exogenous bacteria in food by gastric acid and weaken

the body’s own natural barrier but also weaken the body’s

digestive function (Li et al., 2017). However, macromolecular

nutrients that are not fully digested may promote the growth of

pathogenic bacteria after entering the intestinal tract, which has

a significant impact on the composition of the flora. In addition,

PPI can also reduce the viscosity of gastric mucus, prolong

gastric emptying time, and then induce the destruction of gastric

microecological balance, resulting in a significant decrease in the

abundance and diversity of commensal bacteria and increasing

the growth of harmful bacteria such as Motococcaceae,

Oxidobacteriaceae and Sphingobacteriaceae, Streptococcaceae,

Veronococcaceae , Ruminococcaceae , Microococcaceae ,

Flavobacteriaceae and Enterococcaceae, thus resulting in

osteoporosis, electrolyte imbalance, small intestinal bacterial

overgrowth and Clostridium difficile infection (Le Bastard

et al., 2021). Individuals with small intestinal bacterial

overgrowth have no obvious symptoms in a short period of

time, but bacterial overgrowth can lead to excessive fermentation

of carbohydrates in the intestinal lumen and reduced absorption

of iron, vitamin B12 and fat, which can lead to sequelae, such as

abdominal distension in the later stage (Weitsman et al., 2022).

In addition, the long-term use of antibiotics is another

important cause of gastrointestinal flora imbalance, damaging

the gastrointestinal flora biological barrier, chemical barrier and

immune barrier. The breakdown of the biological barrier manifests

as a reduction in the number of antibiotic-sensitive bacteria and an

increase in the number of drug-resistant bacteria. Then, the latter

becomes the dominant flora. Therefore, it destroys the

colonization ability of normal symbiotic flora, and exogenous

pathogenic bacteria are more likely to invade the body (Zhou

et al., 2021). Bacteroidetes, Bifidobacterium, Clostridium,

Enterobacteriaceae and Lactobacillus are the most susceptible

flora, and opportunistic pathogens such as Escherichia coli,
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Proteus, Morganella, Serratia, Streptococcus, Shigella, Klebsiella

pneumoniae, etc., increase and replace the above normal flora to

become the dominant flora. SCFA producing bacteria such as

Lachnospiraceae, Ruminococcaceae, Eubacteriacea, Bacteroides,

Faecalibacterium, Roseburia, Phascolarctobacterium also decrease

with the short-term of the antibiotic treatment (Guillemard et al.,

2021). The destruction of the chemical barrier can cause the

intestinal microbiota to produce the enzyme cytochromatin

(P450), which affects the oxidative metabolism of food and oral

drugs (Jonaitis et al., 2020). Disruption of the immune barrier can

affect gastrointestinal antigen presentation and innate immunity.

The degree of influence of antibiotics on gastrointestinal

microecology is related to various factors, such as types, doses,

courses of treatment, routes of administration, and microbial

resistance. The extensive and unreasonable application of

antibiotics is the main reason for the increase in H. pylori drug

resistance and the failure of eradication therapy (Megraud et al.,

2021). Antimicrobial-associated gastrointestinal flora imbalance

can cause a variety of clinical manifestations. The most common

adverse reactions include diarrhea, nausea, vomiting, abdominal

distension, and abdominal pain, which can increase the risk of the

interruption and failure of treatment and occurrence of drug-

resistant strains. Antimicrobial-associated gastrointestinal

dysbiosis may also affect the long-term prognosis of the disease.

The recovery time of gastrointestinal flora after antibiotics was also

related to the type of antibiotics, and multiflora could recover to

the level before treatment within 4 weeks; however, in some

patients, the microbiota was in an “irritable” state for a long

time after treatment, and it could take up to 4 years to fully recover

to pretreatment levels (Jakobsson et al., 2010; Suzuki et al., 2021).

At present, there is still a lack of sufficient clinical evidence for the
Frontiers in Cellular and Infection Microbiology 06
effects of different H. pylori eradication regimens on

gastrointestinal microecology. A good experimental design and

standardized operation are the keys to obtain reliable research data.
3 Effect of intestinal probiotics on H.
pylori eradication

Intestinal probiotics are the general term for the original

beneficial bacteria in the gut. Common probiotics include (1)

Lactobacillus: L. helveticus, L. acidophilus, L. brevis, L. casei, L.

johnsonii, L. rhamnosus, etc.; (2) Bifidobacterium; (3)

Streptococcus: Streptococcus thermophilus, Streptococcus

faecalis, Lactococcus, Streptococcus intermedia, etc.; and (4)

yeast bacteria. Studies have shown that probiotic preparations

combined with antibiotics can effectively relieve the clinical

symptoms of patients with H. pylori infection, improve the

effect of H. pylori eradication and reduce the incidence of

adverse drug reactions (Baral et al., 2021) (Figure 3).

Commonly used probiotic preparations in the clinic include L.

acidophilus, Bacillus licheniformis, Bifidobacterium triple viable

bacteria, Bacillus subtilis dual viable bacteria and Saccharomyces

boulardii (Lu et al., 2022).
3.1 Probiotics improve the H. pylori
radical cure effect

The compound L. acidophilus tablet is a compound tablet

composed of four kinds of bacterial powder, including the

Chinese strain L. acidophilus, Japanese strain L. acidophilus,
FIGURE 3

Mechanism by which probiotics improve the eradication rate of H. pylori..
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Streptococcus faecalis and B. subtilis, and it represents a kind of

intestinal flora adjustment drug (Ji et al., 2018). The main

mechanism of its influence on H. pylori is mainly as follows: it

secretes bacteriocin, lactic acid, hydrogen peroxide and other

substances with antibacterial effects, inhibits the proliferation

and growth process of H. pylori, and plays a role in eliminating

H. pylori; it secretes some active substances against bacterial

adhesion, leading to a decrease in the adhesion index ofH. pylori

to gastric epithelial adenocarcinoma cells; and it upregulates the

expression level of small intestinal mucosal binding proteins,

indirectly promoting the recovery of gastric mucosal

permeability; and it inhibits the release of inflammatory

factors, thereby inhibiting its pathogenicity (Takagi et al.,

2016; Ji et al., 2018). Compound L. acidophilus combined with

quadruple therapy improves the eradication rate and reduces the

incidence of adverse reactions compared with quadruple therapy

alone and can serve as a rescue regimen in cases of treatment

failure (Karbalaei and Keikha, 2021).

B. licheniformis can treat bacteria by prompting the body to

produce antibacterial active substances and kill pathogenic

bacteria. After entering the digestive tract, B. licheniformis has

an antagonistic effect on the pathogenic bacteria in the

gastrointestinal tract while promoting the growth of beneficial

flora to regulate the flora of the digestive tract. In addition, B.

licheniformis can also cause a hypoxic environment in the

digestive tract, which is conducive to the growth of anaerobic

bacteria (Asaka et al., 2014). These two effects can not only

regulate the function of the gastrointestinal tract but also

improve adverse reactions during the treatment process,

thereby preventing and treating gastrointestinal diseases (Feng

et al., 2022). Therefore, the use of B. licheniformis to intervene in

H. pylori eradication has played a positive role in the treatment.

Bifidobacterium triple viable bacteria is a live bacterial

preparation made of three probiotics in an appropriate

proportion. It is mainly composed of Bifidobacterium. The

three together form a combined flora that can grow under

different conditions. After entering the gastrointestinal tract,

Bifidobacterium triple viable bacteria can reduce the pH value of

the lesions, inhibit the growth of harmful bacteria, promote the

reproduction of beneficial bacteria, and adjust the balance of the

body flora (Di Pierro et al., 2020). Bifidobacterium triple viable

bacterial capsules reduce the incidence of adverse reactions in

the treatment of H. pylori-related gastritis and peptic gastric

ulcer, and the clinical efficacy and eradication rates of gastritis

and ulcers are significantly better than those of traditional

therapies (Koretz, 2018).

B. subtilis dual live bacteria are composed of two probiotics,

mainly B. subtilis, which can stimulate the release of active

bacteria, such as Candidatus Soleaferrea, increase the activity of

the body’s own beneficial bacteria, improve the immune

function of the intestinal tract, and inhibit the reproduction of

pathogens in the intestinal tract, such as Lachnospiraceae,

Ruminiclostridium, Lachnospiraceae and Oxalobacter, thereby
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regulating intestinal flora (Zou et al., 2022). B. subtilis dual viable

bacteria combined with quadruple therapy can improve the

eradication rate of H. pylori and reduce adverse reactions.

Saccharomyces boulardii is a nonpathogenic yeast with

natural resistance to antibacterial drugs, gastric acid and

pepsin. It can have antibacterial and anti-inflammatory

activities by inhibiting NF-kB from entering the nucleus and

can stimulate the mucosal epithelium to secrete secretory IgA

(sIgA), thus enhancing the body’s innate immune defense

(Zhang et al., 2020).
3.2 Mechanism by which probiotics
improve the eradication rate of H. pylori

3.2.1 SCFAs and bacteriocins
Studies have shown that probiotics and their metabolites can

inhibit or kill H. pylori (Ge and Zheng, 2012). The substances

that probiotics inhibit the growth of H. pylori mainly include

SCFAs and bacteriocins (Xu et al., 2021). SCFAs, such as formic

acid, acetic acid, propionic acid, butyric acid, and lactic acid, are

produced by probiotics metabolizing carbohydrates. They

inhibit the colonization and growth of H. pylori in the gastric

mucosa by weakening urease activity, reducing the pH value in

the stomach, and changing the form of H. pylori (Keikha and

Karbalaei, 2021). Bacteriocin is a bactericidal or bacteriostatic

substance produced by bacteria that exhibits a narrow activity

inhibition spectrum for species of closely related strains. Studies

have found that L. formus, B. subtilis, L. roche, Enterococcus

faecalis, B. subtilis and Bifidobacterium can all release bacteriocin

with anti-H. pylori activity, such as nisin from Streptococcus

lactis, Amicoumacin A, Reuterin, etc., and their anti-H. pylori

effects depend on the type and number of bacterial strains, which

may be related to the diversity of clinical trials (Gotteland et al.,

2006). The specific mechanism of bacteriocin: the bacteriocin

nisin can kill H. pylori under the coordination of citric acid,

similar to most bacteriocins. Nisin molecules are positively

charged, containing three lysines at locus 12, 22 and 34 and

one histidine at locus 31, which is advantageous for electrostatic

and hydrophobic interactions with the cell membrane, inserting

into the membrane formation, and can lead to cell autolysis and

death (Liang et al., 2022). In addition, probiotics can produce

substances with a broad spectrum of antibacterial effects, such as

hydrogen peroxide, which can resist H. priori infection.

3.2.2 Competitive adhesion
Researchers studied the effect of Lactobacillus on H. pylori

adhesion to gastric adenocarcinoma cells, detected the number

of H. pylori adhering to gastric adenocarcinoma cells –AGS and

MKN45 cells by urease test, and found that both live and dead

Lactobacillus could adhere to AGS cells and MKN45 cells in

large quantities, significantly reducing the adhesion density ofH.

pylori, although the inhibitory ability of dead bacteria was lower
frontiersin.org

https://doi.org/10.3389/fcimb.2022.938608
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Xu et al. 10.3389/fcimb.2022.938608
than that of live bacteria (Rokka et al., 2008; Takeda et al., 2017).

Lactobacillus can bind to a variety of pathogenic bacterial

receptors and inhibit the adhesion of pathogenic bacteria to

gastric mucosa epithelial cells (Song et al., 2019; Lee et al., 2020).

It is speculated that the nonspecific blocking of receptor sites by

Lactobacillusmay be the mechanism of its inhibition ofH. pylori.

Gastric epithelial cells haveH. pylori-specific adhesion receptors,

such as glycolipid receptor gangliotetracylsphingol and sulfatide.

These studies showed that L. reuteri and H. pylori have common

glycolipid specificity, which can secret adhesion factors and

competitively inhibit the adhesion of H. pylori by binding to

the binding site of gastric mucosal epithelial cells.

3.2.3 Inhibiting the inflammatory response to
H. pylori infection

Probiotics can produce a cellular immune response in

gastrointestinal mucosa, especially stimulating the activation

and proliferation of CD4+ and CD8+ cells in the mucosa

propr i a , i nc r ea s ing the produc t i on o f s e c r e to ry

immunoglobulin A, reducing intestinal permeability,

promoting the proliferation of epithelial cells, accelerating the

regeneration of mucosal repair, and strengthening the role of the

mucosal barrier. H. pylori stimulates gastric epithelial cells to

secrete IL-8, mediating the initial cytokine responses and

resulting in neutrophil and monocyte migration to the mucous

membrane. Some probiotics have been shown to inhibit CagA

protein expression and reduce the H. pylori-induced secretion of

IL-8 by gastric mucosa epithelial cells, thus inhibiting the

inflammatory responses (He et al., 2022). In addition to IL-8,

H. pylori infection can also stimulate epithelial cells to produce a

number of other inflammatory mediators, such as tumor

necrosis factor a, inducible nitric oxide synthase, and

cyclooxygenase-2, while probiotics block nuclear transport of

the NF-kB signaling pathway by increasing the expression of

cytokine signal transduct ion inhibi tors , act ivat ing

transcriptional activators and inactivating janus kinase (JAK)

to upregulate the expression of suppressor of cytokine signal

transduction 2 (SOCS2) or SOCS3 and activate signal

transducerand activator of transcription 1 (STAT-1) and

STAT-3 inactivation protein tyrosine kinase 2 (JAK2), thereby

inhibiting the inflammatory response caused by H. pylori

infection and inhibiting inflammation (Lee et al., 2010; Song

et al., 2019). More research is needed because controversy

remains about the underlying mechanism as it may be

independent of STAT signaling (Sarajlic et al., 2020).

3.2.4 Strengthening mucosal, biological and
chemical barriers to prevent H. pylori
colonization

Probiotics can indirectly promote the recovery of gastric

mucosal permeability, maintain the integrity of the mucosa,

prevent the invasion of pathogenic bacteria, including H. pylori,

and strengthen the mucosal barrier. Probiotics interact closely
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with mucosal epithelial cells to occupy the mucosal surface and

improve the defense ability of epithelial cells, thus forming a

biological barrier (Chakravarty and Gaur, 2019). Active

substances, such as metabolites of probiotics, including small

molecule acids, hydrogen peroxide and bacteritin, can kill

pathogenic bacteria, including H. pylori, and prevent the

colonization and invasion of pathogenic bacteria and

opportunistic pathogens, forming a chemical barrier.

3.2.5 Reducing adverse reactions and
improving patient compliance

Probiotic preparations can alleviate adverse reactions, such

as taste disturbance, diarrhea, nausea, abdominal pain and

constipation caused by antibiotics and significantly improving

the compliance of patients with H. pylori eradication therapy,

thereby increasing the H. pylori eradication rate (Zagari et al.,

2018). Treatment compliance is an important factor in the

success of H. pylori eradication (Nyssen et al., 2021). However,

previous studies showed that probiotic preparations had the risk

of systemic infection, as long-term use of B. subtilis carried the

risk of cholangitis. Additionally, excessive immune stimulation

in susceptible individuals may be induced, as the use of

Saccharomyces cerevisiae and Saccharomyces boulardii

improved the risk of fungalemia in patients with prolonged

antibiotics or venous catheterization deleterious metabolic

activities (Doron and Snydman, 2015). Therefore, careful

consideration should be given to the clinical application of

probiotics to patients with severe underlying diseases, low

immuni ty , long- t e rm ant ib io t i c use , and cent ra l

venous catheterization.
4 Discussion

In conclusion, H. pylori infection can change the structure

and composition of gastrointestinal flora by regulating the local

microenvironment, local pH value, cytokines and antimicrobial

peptides, and immune response and then play a role in the

occurrence and development of digestive system tumors, liver

metabolism and extragastrointestinal diseases. The quadruple

regimen of H. pylori eradication can aggravate gastrointestinal

microflora disorder. Probiotics can reduce the change and

imbalance of intestinal flora and improve the eradication rate

of H. pylori. However there are still many challenges in this field.

(1) The influence of H. pylori infection on gastrointestinal

microecology is still controversial, and opposite conclusions

have been obtained, which may be related to the infection

time, host health status, age of research subjects, number of

research samples, methods of sampling and detection, analysis

from different phyla levels of gastrointestinal flora and other

factors. (2) H. pylori eradication can restore the gastric acid

barrier to a certain extent and then restore the balance of

intestinal flora. At the same time, oral administration of large
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doses of antibiotics and PPIs can easily disrupt the normal

symbiosis between the intestinal flora and the host, thereby

weakening the protective effect of the biological barrier.

Secondary changes in the intestinal flora after eradication may

be related to the adverse reactions associated with eradication

therapy and the recurrence of infection after eradication.

However, it has not been determined whether H. pylori

eradication causes long-term changes in intestinal flora. (3)

The mechanism of H. pylori and gastrointestinal microecology

in specific diseases and the causal relationship between H. pylori

and diseases remain unclear. Different subtypes of gastric cancer

are identified according to different types of ecological disorders,

and personalized probiotic adjuvant therapy is developed.

Future research should focus on analyzing bacterial imbalance

in the oral cavity and stool as a noninvasive diagnostic marker

and preventing and treating gastritis cancer by intervening with

bacterial flora and studying its specific mechanism in nutrition,

immunity, metabolism, signaling pathway and other aspects and

the mechanism of interaction between H. pylori and other

gastrointestinal microorganisms in gastric diseases. (4) Many

studies have shown that probiotic adjuvant therapy can reduce

changes and imbalances in the intestinal flora caused by

eradication therapy, including antibiotics and PPIs, thus

enhancing the efficacy of eradication therapy and reducing its

adverse reactions. During H. pylori eradication therapy,

probiotics as adjuvants can be used as follows: Try not to

choose probiotics containing Enterococcus are more likely to

develop resistance and resistance genes can be easily passed toH.

pylori and other pathogenic bacteria by plasmids, which affects

H. pylori eradication therapy; 2-4 weeks may be the optimal time

to use probiotics; the time interval of probiotic and standard

antibiotic treatments must be selected carefully so that probiotics

can better colonize and play a role. However, homogeneity is

difficult to control in research on the relationship between

probiotics and effect of H. pylori eradication treatment because

many factors need to be considered, such as the types of

probiotics, dosage forms, types of eradication drugs, courses of
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treatment, and regional differences. It is necessary to carry out

large-scale multicenter clinical studies to effectively improve the

eradication rate of H. pylori and reduce the incidence of

adverse reactions.
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