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Occurrence of chalkiness in rice is attributed to genetic and environmental factors, especially high temperature (HT). The HT
induces heat stress, which in turn compromises many grain qualities, especially transparency. Chalkiness in rice is commonly
studied together with other quality traits such as amylose content, gel consistency, and protein storage. In addition to the
fundamental QTLs, some other QTLs have been identified which accelerate chalkiness occurrence under HT condition. In this
review, some of the relatively stable chalkiness, amylose content, and gel consistency related QTLs have been presented well.
Genetically, HT effect on chalkiness is explained by the location of certain chalkiness gene in the vicinity of high-temperature-
responsive genes. With regard to stable QTL distribution and availability of potential material resources, there is still feasibility to
find out novel stable QTLs related to chalkiness under HT condition. A better understanding of those achievements is essential to
develop new rice varieties with a reduced chalky grain percentage. Therefore, we propose the pyramiding of relatively stable and

nonallelic QTLs controlling low chalkiness endosperm into adaptable rice varieties as pragmatic approach to mitigate HT effect.

1. Introduction

Rice (Oryza sativa L.) is an important cereal crop worldwide.
It is the staple food for more than half of the world’s
population [1]. Development of quality rice varieties has
been the principle objective throughout the history of plant
breeding. A priority issue in many rice-producing areas of the
world along with improvements in the standard of living, the
demand for superior grain quality is increasing day by day
[2-4]. Rice grain quality is a complex characteristic including
many components such as appearance, cooking qualities, and
eating qualities. Among these properties, consumers often
pay most attention to the appearance [5, 6]. Several genetic
and environmental factors were shown to influence rice grain

appearance, which is usually evaluated as percentage of grains
with chalkiness (PGWCQC) [7].

Chalkiness is reported to occur not only under the
complex genetic network regulation [8] but also under the
effects of environmental factors, especially heat stress [9, 10].
Generally, different rice cultivars show different PGWC [11].
Studies showed the rice grain quality traits to be polygenic,
while many quantitative trait loci (QTLs) associated with
grain quality have been identified in rice [12-14]. Although
several QTLs of rice grain appearance quality were detected,
itis still difficult to fully use these QTLs in rice gene pyramid-
ing breeding. Furthermore, the genetic basis of appearance
quality traits is explained by many QTLs with various effects
in different environments [15]. In addition, their phenotypic
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FIGURE 1: Principal environmental causal factors and the mechanism pathways of the chalkiness formation in rice. Up arrows designate
upregulation of the starch synthase genes and down arrows designate downregulation of synthase starch genes. Yellow box constituted the
causal factor of the chalkiness formation, the purple boxes are the major physiological processes involved in endosperm formation, the light
blue represents the regulatory pathways resulting in chalkiness formation, and red box is chalkiness formation. Source: Chen et al. [25].

expression is generally affected by pleiotropic effects of genes
for nontarget traits [16].

Frequently heat stress occurs concurrently with salinity
and drought stresses, which disturb cellular homeostasis
and hamper plant growth and developmental process [17-
20]. Heat stress was identified as a major inducible factor
of chalkiness formation in rice. Expression of heat shock
proteins (HSPs) was mentioned as basic metabolic defense
in response to heat stress in the plants and other organisms
[21, 22] However, ectopic expression of a single heat stress
tolerance gene could not completely resolve harmful stress
effects on the plant due to the complexity of this trait [21].
Scientists are still concerned about this problem; therefore,
they reiterated that efforts are needed to overcome heat
stress effect [23, 24]. In this review, the mechanism/pathways
of heat stress to cause chalkiness formation in grain are
presented. Moreover, genetic approach towards offering a
solution for reducing stress effect is also illustrated in Per-
spectives: Pyramiding of Nonallelic Stable QTLs Controlling
Low Chalkiness Formation under HT Condition in Rice.

2. Rice Grain Quality

HT affects both grain yield and quality in rice. Rice quality
is an important character that influences its consumption
rate, thus enhancing its production. Therefore, the improve-
ment of grain quality becomes a second major concern in
rice breeding program after yield. In rice, HT has been
reported to reduce grain seed size and yield [29] while also
affecting endosperm quality [30]. Rice consumers recognize

that different areas produce differing qualities of the rice
grain [31-37]. Grain quality is a complex character that
is determined by milling recovery, appearance, cooking,
eating, and nutritional qualities [38]. Genetic and environ-
mental factors have been reported to influence physical-
biochemical properties of grain endosperm [38] as illustrated
in this review (Figure 1(a)). Among the grain quality traits,
endosperm appearance (chalkiness) remained a principal
factor that determines market value of the rice grain. These
quality traits are interrelated in that any change in appearance
is likely to affect the milling and cooking properties.

3. Chalkiness in Rice

Chalkiness is an undesirable trait that negatively affects
milling, cooking, eating, and grain appearance and represents
a major problem in many rice-producing areas of the world
[10, 39-41]. Rice consumers and producers express lack of
interest in rice varieties with high degree of chalky grain. For
example, chalkiness was reported to have negative influence
on farmers’ preference for rice varieties cultivated in Ghana
[42]. The percentage of chalkiness in rice grain is an index that
determines the appearance quality. Chalky grains were found
to contain a lower density of starch granules as compared to
vitreous ones [43]. So, for improving the milling and cooking
quality, rice endosperm should be free from chalkiness.
Different types of chalkiness such as white core, white back,
and white belly were reported to be present in the endosperm
of rice grain [38].
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3.1. Genetic Factors Responsible for Chalkiness Formation in
Rice. Chalkiness is an endosperm related quality trait and
its inheritance was reported to be controlled by triploid
endosperm genotype, diploid maternal genotype, and any
additional cytoplasm factors [44-46]. Currently, more than
84 QTLs were reported to be associated with different types
of chalkiness in rice [11, 12, 38, 47-49]. Wan et al. [11] detected
22 QTLs for appearance quality traits in recombinant inbred
lines and chromosome segment substitution lines. Zheng et
al. [50] found a total of 10 genomic regions with one major
QTL on chromosome 7 which had large effects on rice grain
shape and milling quality traits. The same has been observed
consistently in several related rice populations. Hao et al.
[3] identified 10 QTLs responsible for rice grain quality and
eight QTLs responsible for physicochemical traits with one
major QTL on chromosome 8 responsible for the percentage
of chalky rice grains in a population of chromosome segment
substitution lines. For example, Chalk5 was found as a major
QTL encoding a vacuolar H+-translocating pyrophosphatase
which determines chalkiness formation in rice [51]. OsP-
PDKB and starch synthase IIla (SSIIla) genes were found
to have pleiotropic effects on white-core endosperm [52-54]
indicating the relevance of these genes on endosperm forma-
tion in rice. The gene OsPPDKB controls the carbon flow into
starch and lipid biosynthesis during grain filling [52], while
the gene SSIIla interferes with amylopectin chain elongation
[53]. Soluble starch synthase (SSS), starch branching enzyme
(SBE), and starch debranching enzyme (DBE) also coordinate
their actions for starch biosynthesis (Figure 1(b)). All these
genes may interact to produce endosperm; thus disturbance
in one function among them could cause metabolic dysfunc-
tion and chalkiness formation in plant. However, most of
these genetic factors genes/QTLs were not detected under
heat stress condition. It is quite obvious to only attribute
endosperm appearance to the genetic factors, since rice
varieties exhibit different endosperm quality under normal
rice growing condition. Zheng et al. [55] used transparent
endosperm variety Koshihikari (popular Japonica rice variety
cultivated in Japan) and opaque endosperm variety Kasalath
(indica variety possessing poor eating and cooking quality) to
detect a percentage of grains with chalkiness QTL (PGWC)
in rice. Tan et al. [7] detected white-belly chalkiness related
QTL in recombinant inbreed lines (RILs) population derived
from rice varieties Zhenshan 97 and Minghui 63. Bian et
al. [14] identified 2 QTLs on rice chromosome one, which
were related to percentage of grains with chalkiness by using
introgression lines (ILs) population derived from rice vari-
eties Sasanishiki and Habataki. Some of relatively stable QTLs
controlling endosperm quality (chalkiness or opacity) in rice
are listed in Table 1. At the same time, we have presented some
QTLs related to amylose content and gel consistency, which
are other grain characteristics often evaluated concomitantly
with chalkiness (Tables 2 and 3).

3.2. High Temperature Induces Heat Stress That Affects Grain
Quality in Rice. 'The global surface temperature is estimated
to have increased between 1.8°C and 4°C over the 21st century
[56]. Therefore, during the 40th session of the IPCC held
in Paris, global warming is expected to be limited to 2°C

by 2015 [57]. The gradual increase of the global temperature
is thought to induce heat stress and generate reactive oxygen
species in the plant [58]. This oxidative stress causes changes
in plant metabolism and further compromises the yield and
grain quality. Heat stress is a metabolic dysfunction imposed
by higher temperature to the plant organism via biochemical,
molecular, and physiological means, which affects cellular
and whole-plant developmental process, which results in low
crop yield and quality production.

It has been documented that warmer weather during
ripening reduces heading rice percentage, deteriorating grain
appearance, and worsens palatability due to chalkiness in
rice grains [47, 59, 60]. Tashiro and Wardlaw [61] observed
that temperatures higher than 26°C could easily cause chalky
appearance and a reduction in grain weight. Okada et al.
[62] have established the model for the multiple effects of
temperature and radiation during the rice ripening period.
They reported that an increase in temperature has a negative
effect on rice grain quality, whereas an increase in radiation
has a positive effect. In addition, these authors indicated that
at temperature less than 21°C, most rice quality showed a high
percentage of first-grade rice across the range of radiation,
but at each temperature higher than 21°C, the decline of
rice quality at lower radiation levels becomes increasingly
pronounced. In conclusion, Okada et al. [62] stated that the
sensitivity of rice quality to insufficient radiation increases as
temperature increases. Tsukimori [63] reported that chalky
grains increase sharply in number when the mean daily
minimum temperature for 20 days after heading exceeds
23°C. Lanning et al. [9] have also confirmed the negative
influence of night temperature on grain quality. Lyman et al.
[64] reported that an increase of 1°C in average growing sea-
son temperature affects significantly the chalky and broken
kernels rate in rice. High temperatures during grain filling
process affect starch and protein storage, which result in a
loosely parked starch granule deposition and thus increase
chalky grains formation (Figure 1(b)). For example, Zakaria
et al. [65] mentioned that higher temperature reduces the
amount of large mature amyloplasts in the endosperm and
increases the number of small immature ones. Yamakawa et
al. [26] indicated that high temperature impairs grain filling
by inhibiting the deposition of storage materials such as
starch and protein in rice. This statement was supported by
Gao et al. [66] who revealed that heat stress is responsible for
the variation of amylose and protein contents in rice. So, it
is understandable that heat stress reduces grain filling, which
results in grain quality damage.

Morita and Nakano [67] have also reported that the
occurrence of chalky grains under high temperatures is
attributable mainly to the inhibition of starch accumulation.
Moreover, these authors pointed out that the daily mean
temperatures exceeding 26°C during the grain-filling period
have caused chalkiness in the grains of Japonica cultivars. Lur
etal. [68] described that cumulative temperature above 26°C
within 15 days after heading can be regarded as an index of
the extent of chalky grains. Wakamatsu et al. [69, 70] not only
revealed that the ratios of white-back (WB) and basal-white
(BW) grains increased when the average temperature during
ripening exceeds 27°C but also noted the great variation in
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chalky grains ratio among Japonica rice cultivars under high-
temperature conditions. Tsubone et al. [71] and Wakamatsu
et al. [69, 70] indicated that the ratio of WB and BW grains
increases if average air temperature during ripening exceeds
27°C. Wakamatsu et al. [72] reported that shading treatment
mitigated the occurrence of WB in rice. Wada et al. [73] have
detected some chalkiness related QTLs when air temperature
exceeds 27°C (Table 4).

Afterwards, Liu et al. [74] indicated that heat stress
affects the principal biological functions of grain endosperm
formation such as carbohydrate synthesis, proteins forma-
tion/degradation, redox homeostasis, and cell defense (Fig-
ure 1(b))

Yamakawa et al. [26, 27] have conducted a transcriptome
analysis and elucidated the molecular mechanism respon-
sible for grain chalkiness and high-temperature-responsive
genes. They observed that expression of genes controlling
synthesis of starch and storage proteins was decreased by
high temperature, while the expression of the genes related
to starch decomposition and heat stress response were
increased (Figure 2). To elucidate, Yamakawa et al. [27]
have compared the chromosomal location of certain high-
temperature-responsive genes to that of grain chalkiness
QTLs. These authors found that some high-temperature-
responsive genes are located in the vicinity of QTLs deter-
mining grain chalkiness. Thus, Yamakawa et al. [27] have
localized several starch/carbohydrate-metabolizing enzyme

genes on chromosome 8, especially AGPS2 (ADP-glucose
pyrophosphorylase 2) between RM3181 and RM3689, which
covered inner region of HT-sensitive QTLgWBS controlling
chalkiness (white-back) in rice. Taken together, it appears
that endosperm formation is a result of interaction between
environment and genetic factors. For that reason, Lyman et
al. [64] described HT as an important factor that determines
the quantity and market value of milled rice. Heat stress
regulates starch synthase enzymes activities in the plant. The
effect of drought and temperature on expression of starch
biosynthesis-related genes, such as GBSS, SBEs, and BEIIb,
and amylases can directly or indirectly influence chalkiness
formation in rice as mentioned by Chen et al. [25]. It can
be preceded by reduction in activity of GBSS, SBEs, and
BEIIb, while that of amylases increases [26, 75-78]. Heat
stress was found to decrease prolamin content in rice due to
the reduction in expression of its encoded genes, Prol and
Pro2 [26, 38, 79]. It is clear that HT is one of the principal
factors that induce chalkiness.

But, in order to mitigate effects of heat stress, plants
need to restore metabolic damage by deploying appropriate
metabolic pathways against oxidative stress. In this case,
plants activate stress-responsive genes and generate antioxi-
dant metabolites or heat shock protein (HSP) to reduce the
harmful effects of heat [28, 80]. The HSPs were grouped
into five families based on their molecular weights, HSP100s,
HSP90s, HSP70s, HSP60s, and sHSPs, which have different
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degrees of performance across rice varieties [81]. Due to
variant allelic interaction between living organisms, plants
are different in terms of response to abiotic and biotic stress.
While heat stress acts in complex manner, which affects
simultaneously different metabolic pathways in plants, they
need multiple responsive factors to restore damage caused by
stress. Therefore, manipulation of multiple genes to overcome
stress effect could be more reliable. Breeding efforts should
then be directed to enhance metabolic defenses in plants
in order to prevent damage caused by heat stress which
eventually hampers the quality of rice produced.

3.3. QTLs Associated with Chalkiness under HT Condition.
In previous studies, some chalkiness induced QTLs were
screened out under high temperature condition in rice.
These QTLs accelerate formation of chalkiness under HT
condition. In this case, Kobayashi et al. [47] detected QTLs
for white-back chalkiness on rice chromosomes 3, 4, and
6 by using recombinant inbred lines (RILs) derived from
a cross between two strains of rice, heat stress-tolerant
strain (Koshijiwase) and heat stress-sensitive strain (Chiy-
onishiki). In addition, Tabata et al. [60] identified QTLs
for white-back chalkiness on chromosomes 1, 2, and 8 in
RILs populations derived from a cross between heat stress-
tolerant variety (Hanaechizen) and heat stress-sensitive vari-
ety (Niigatawase). Wada et al. [73] have identified 6 QTLs for
white-back grains and basal-white grains on chromosomes 1,
2, 3, 8, and 12 under heat stress condition between two strains
of rice: heat-tolerant variety (Chikushi 52) and heat stress-
sensitive variety (Tsukushiroman). The QTL allele gWBS8
from Chikushi 52 variety was indicated to be important for
improving grain quality under heat stress conditions [73].
Some stable HT induced chalkiness related QTLs are also
mentioned in this review (Table 4). Moreover, various ther-
motolerant QTLs that were not directly related to chalkiness
have been also identified in rice [30, 82-84]. For example,
4 QTLs that maintained proper rice amylose content at
high temperature were detected from Indica rice variety 9311
(Table 2). Moreover, these QTLs were supposed to be essential
for breeding heat-stable grain in rice [84]. These QTLs could
constitute a potential genetic resource to improve this trait in
rice.

3.4. Thermotolerant QTLs Unrelated to Chalkiness. A rice
spotted leaf gene Spl7 which encoded a transcription factor
protein was mapped in Japanese rice cultivar Norin 8 as a
heat stress-tolerant gene [85]. Heat tolerance QTL (qHT4)
located on the chromosome region C1100-R1783 of the rice
variety Kasalath was found to be stable over different envi-
ronments [86]. The rice gene OsHsfA2e, a member of the heat
stress transcription factors, when introduced into Arabidopsis
line R04333 increased tolerance to heat stress. This gene
was found to be useful in molecular breeding for stress
tolerance improvement in crops [87]. High root activity and
antioxidative defenses were reported as heat tolerance traits
in indica rice cultivars Shuanggui and Huanghuazhan [30].
The reduced accumulation of ROS in leaf was observed in
aus rice cultivar Nagina 22 under 40°C heat conditions [83].
Recently, major quantitative trait locus (OgTTI) with higher

BioMed Research International

thermotolerance has been identified in African rice O.
glaberrima accession CGl4. This gene encodes a2 subunit
of the 26S proteasome, which protects cells from heat stress
through more efficient elimination of cytotoxic denatured
proteins. This gene was demonstrated to have more effective
maintenance of heat-response processes than its counterparts
(OsTT1) in O. sativa [88]. These QTLs may also constitute a
genetic reservoir to improve indirectly this trait in rice.

4. Genetic Approaches to Reduce Heat Stress
Effect on Plant

Zou et al. [89] proposed a combination of transcriptomic,
proteomic, and metabolomic approaches to characterize reg-
ulation network in response to heat stress in rice. Moreover,
stress tolerance in plant was reported to be dependable on
expression of heat stress-tolerant genes [90]. Due to the com-
plex mechanism pathways underlying heat stress occurrence
in rice, exploitation of different thermotolerant germplasms
could be crucial to reduce stress effect. Since there are allelic
or nonallelic relations between rice varieties for multiple
traits, crossing the rice varieties with nonallelic relationship
for heat tolerance could help to gather in one recipient plant
different heat tolerance related genes. Pyramiding the nonal-
lelic heat tolerance QTLs is regarded more accurate to allevi-
ate chalkiness problem under heat stress. This suggests that
plant thermotolerance ability could be enhanced by breeding
efforts, even though it is a complicated and complex trait.

5. Perspectives: Pyramiding of Nonallelic
Stable QTLs Controlling Low Chalkiness
Formation under HT Condition in Rice

It is clear that the gradual increase of the global warming
affects not only grain yield but also the quality of rice. It
is worth noting that an increase of temperature during the
growing season of rice can accelerate the formation of the
chalkiness phenomenon. Numerous studies have shed light
on the genetic mechanism that regulates the heat stress
response in rice. In general, many cultivated rice varieties
were selected as potential donor parents of stress-tolerant
QTLs (Asian rice varieties such as Kasalath, Chikushi 52,
Hanaechizen, and Koshijiwase and African rice accession
CGl4). However, up to date, no rice variety was certified to
be completely tolerant to an increasing world temperature,
so breeders are still concerned about the heat stress issue
in rice production. Detection and insertion of de novo heat
tolerance gene into a given rice germplasm could some-
what alleviate heat stress effects on the endosperm but not
truly possible definitely due to their complex metabolism
pathways. Chalkiness occurrence depends on multiple genes,
of which expression pathways are poorly understood. The
expressions of chalkiness related genes were described to be
affected under heat stress condition. Meanwhile, some heat-
responsive genes and the QTLs related to starch metabolism,
protein storage, and chalkiness were documented to be colo-
cated in rice genome assets of QTLs. Expression of heat stress-
responsive genes increases, while that of starch metabolism
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stable QTLs reported in rice. (c) Proportion of each of quality trait related QTLs as compared with the total 4 rice quality related QTLs studied
(diagram showing the percentage of each type of QTLs among the 4 stable grain quality QTLs studied).

and protein storage decreased under high-temperature con-
dition as highlighted in Figure 1(b). We speculated that this
opposite expression pattern might be coordinated by an
upstream regulator, which acts in heat response and carbo-
hydrates/protein synthesis pathways under high-temperature
condition. Otherwise, this may be due to genetic interac-
tions (gene-gene, gene-protein, and protein-protein) between
high-temperature responsive genes and QTLs related to
starch metabolism, protein storage, and chalkiness formation.
It appears that the disturbance of metabolic function begins
when internal plant temperature exceeds 27°C (Figure 2).
However, more studies will be needed to verify and clar-
ify this statement. These sets of QTLs, including heat-
responsive QTLs, starch-metabolizing QTLs, and chalkiness

related QTLs, were distributed throughout rice genome [27].
For this reason, modifying expression of a single QTL is
unlikely to modify a whole regulatory mechanism that is
involved in chalkiness formation. It is understandable that
the collection and combination of different nonallelic heat-
tolerant QTLs would be a prerequisite for restoring the
abnormal genetic interactions between heat stress-responsive
and starch-metabolizing QTLs. In this review, the detection
of chalkiness and HT induced chalkiness related QTLs is
demonstrated to be increasing over the time, while the evolu-
tion of the amylose content and gel consistency related QTLs
is slowed, meaning that chalkiness problem is very important
and still remains incompletely solved. In this review, chromo-
some covering analysis of some stable HT induced chalkiness
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related QTLs is an example of the hope for finding new QTLs
given that some chromosomes (5, 7 10, and 11) are not yet fully
explored and exploited (Figure 3). However, this requires the
collection and screening of different rice germplasm without
neglecting the available HT-tolerant varieties. This review
demonstrates the possibility to still identify novel QTLs,
which can be useful in alleviating the chalkiness problem.
Therefore, we propose a pragmatic genetic approach like
assembly of germplasm with considerable heat tolerance abil-
ity and the pyramiding of these QTLs into adaptable rice vari-
eties (Figure 4). The current approach involves exploiting the
synergic heat tolerance effects of these sets of QTLs. Richard
[91] and Hasanuzzaman et al. [92] reported that gene pyra-
miding could improve traits whose controlling gene has been

identified or not identified. Gene pyramiding via marker-
assisted selection can be proposed as a potentially good
method due to its effectiveness to combat the chalkiness issue.

Reduction in percentage of chalkiness can ensure pro-
duction of rice grains with good quality. This review pre-
sented genetic and enzymatic factors that are associated with
chalkiness formation. Moreover, the colocalization of high-
temperature-responsive QTLs and that of chalkiness and
starch metabolism offer explanations for deterioration of the
grain endosperm under heat stress condition. For this reason,
we propose pyramiding of stable nonallelic thermoresistant
QTLs associated with low chalky rate into one rice variety
as a solution to reduce chalky grain formation rates in rice.
Furthermore, we suggest subsequent research studies to be
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conducted which can unlock knowledge to better understand
genetic interactions that exist between high-temperature-
responsive QTLs and those controlling chalkiness or starch
metabolism.
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