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Relationship between LiDAR-derived forest canopy height and Landsat

images

CRISTINA PASCUAL*†, ANTONIO GARCÍA-ABRIL†,

WARREN B. COHEN‡ and SUSANA MARTÍN-FERNÁNDEZ†

†E.T.S.I. Montes, Technical University of Madrid (UPM), Ciudad Universitaria s.n.,

28040 Madrid, Spain

‡Forestry Sciences Laboratory, Pacific Northwest Research Station, USDA Forest

Service, 3200 SW Jefferson Way, Corvallis, OR 97311, USA

The mean and standard deviation (SD) of light detection and ranging (LiDAR)-

derived canopy height are related to forest structure. However, LiDAR data typi-

cally cover a limited area and have a high economic cost compared with satellite

optical imagery. Optical images may be required to extrapolate LiDAR height

measurements across a broad landscape. Different spectral indices were obtained

from three Landsat scenes. The mean, median, SD and coefficient of variation (CV)

of LiDAR canopy height measurements were calculated in 30-m square blocks

corresponding with Landsat Enhanced Thematic Mapper Plus (ETMþ) pixels.

Correlation and forward stepwise regression analysis was applied to these data

sets. Mean and median LiDAR height versus normalized difference vegetation

index (NDVI), normalized difference moisture index (NDMI), normalized burn

ratio (NBR) and wetness Tasseled Cap showed the best correlation coefficients

(R2 ranging between -0.62 and -0.76). Nineteen regression models were obtained

(R2
¼ 0.65–0.70). These results show that LiDAR-derived canopy height may be

associated with Landsat spectral indices. This approach is of interest in sustainable

forest management, although further research is required to improve accuracy.

1. Introduction

Forest canopy structure and forest stand attributes are increasingly recognized as

being of theoretical and practical importance in understanding and managing forest

ecosystems. As the primary attribute of vertical structure, canopy height is essential

information for many forest management activities and is a crucial parameter in

models of ecosystem processes (Franklin et al. 2002, Sexton et al. 2009). Forest studies

require a great deal of field effort and time. Consequently, remote sensing techniques

and statistical modelling have been advanced to assist in forest surveys.

In the past decade, light detection and ranging (LiDAR) data have proved to be

extremely useful in the three-dimensional (3D) characterization of forest canopy

and the estimation of forest attributes (Lefsky et al. 2002, Hyyppa et al. 2008).

Specifically, mean and standard deviation (SD) of LiDAR-derived height can be used

to synthesize the 3Ddistribution of canopy structure. Zimble et al. (2003) used LiDAR-

derived tree height variances to distinguish between single-storey and multi-storey

forest classes. Lefsky et al. (2005a) showed that mean height and height variability

derived from LiDAR data are strongly related to stand structure and they consider
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these variables to represent the same kind of enhancement that the TasseledCap indices

(Crist andCicone 1984) represent for optical remote sensing. Pascual et al. (2008) found

that mean, median and SD of canopy height derived from LiDAR could be used to

distinguish horizontally heterogeneous forest structure types in Pinus sylvestris

L. stands.

Laser scanners provide detailed information on the vertical distribution of forest

canopy structure (Hyyppa et al. 2008), but over a limited area and at a high economic

cost. Landsat data provide useful structural information in the horizontal plane and

are muchmore readily available (Cohen and Spies 1992). Therefore, the integration of

optical remote sensing imagery and LiDAR data provides opportunities to fully

characterize forest canopy attributes and dynamics over large areas (Wulder et al.

2007). There have been several studies on this subject.

Hudak et al. (2002) developed spatial extrapolation of LiDAR data over Landsat

Enhanced Thematic Mapper Plus (ETMþ) images. Koukoulas and Blackburn (2000)

developed a method for extracting the locations of treetops from LiDAR data and

colour aerial photographs. Similarly, Popescu and Wynne (2004) fused LiDAR and

4-m multi-spectral Airborne Terrestrial Land Application Scanner (ATLAS) image

data to improve estimates of individual tree height. They improved their average plot

height estimation from LiDAR metrics by differentiating forest type from optical

data. Methods for combining LiDAR-derived metrics and optical images have also

been devised. Chen et al. (2004) used IKONOS, Landsat 7 ETMþ and LiDARdata to

quantify coniferous forest and understorey grass coverage in a ponderosa pine forest.

They compared optical-derived cover estimates of bare soil, understorey grass and

tree/shade to similar cover estimates derived from LiDAR data, and found significant

correlations (R2 ranging from 0.58 to 0.79) between optical-derived tree/shade frac-

tions and LiDAR-derived cover estimations. Lefsky et al. (2005b) proposed an

approach to estimate aboveground net primary production based on stand age and

biomass. Stand age was obtained by iterative unsupervised classification of multi-

temporal Landsat TM images and aboveground biomass was estimated from LiDAR

data. Productivity estimates from this approach compared well with forest inventory

estimates. Donoghue and Watt (2006) compared predictions of forest height derived

from LiDAR and from optical images (IKONOS and Landsat ETMþ). Their study

concluded that LiDAR data provided an accurate estimate of height (R2
¼ 0.98) in

very densely stocked Sitka spruce crops over the entire range of age classes studied.

Nevertheless, the optical imagery generated accurate predictions of forest height only

in the range 0–10 m; above 10 m height predictions were very poor. In addition, two

coincident LiDAR transects, representing 1997 and 2002 forest conditions in the

boreal forest of Canada, were compared using image segments generated from

Landsat ETMþ imagery (Wulder et al. 2007). The image segments were used to

provide a spatial framework within which the attributes and temporal dynamics of

the forest canopy were estimated and compared.

However, very few studies have combined LiDAR-derived metrics and Landsat

spectral indices in regression models. Wulder and Seemann (2003) developed regres-

sion models to relate Landsat 5 TM digital numbers (DNs) with quantile-based

estimates of canopy top height derived from SLICER (Scanning LiDAR Imager of

Canopies by Echo Recovery) data, in polygons and segments. Nevertheless, these

authors did not combine different LiDAR-derived summaries and spectral indices or

study correlation among both datasets, and they only obtained acceptable accuracy

(R2
¼ 0.62) for the segment approach.
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Given the relationship between mean, median and variability of canopy height

derived from LiDAR and forest structure (Pascual et al. 2008), the objective of the

present workwas to evaluate the relationship amongmean,median, SD and coefficient

of variation (CV) derived fromLiDARandLandsat spectral indices; that is, shortwave

infrared (SWIR)-associated indices, Tasseled Cap, principal component analysis

(PCA) and normalized difference indices. This would be a first step in proposing the

future development of new support tools for forest management on a regional scale.

2. Materials and methods

2.1 Study area

A 127 ha (1293 m� 983 m) area, located on the western slopes of the Fuenfrı́a Valley

(40� 450 N, 4� 50 W) in central Spain, was selected as the study area. The Fuenfrı́a

Valley is located in the northwest portion of the Madrid region (see figure 1). The

predominant forest is Scots pine (Pinus sylvestris L.) with abundant shrubs of Cytisus

scoparious (L.) Link., C. oromediterraneus Rivas Mart. et al. and Genista florida (L.).

On the lowest part of the hillside there are small pastures and there is an extensive

rocky area in the north of the study site (see figure 2). This area was selected based on

its representativeness within the pine forest of Fuenfrı́a Valley, according to the

opinion of local forest managers and based on our previous data from the research

permanent plots network that we have in the area, as described in Pascual (2006) and

Pascual et al. (2008).

0 52,5 kilometres

Figure 1. Study site. Fuenfrı́a Valley, in the village of Cercedilla, northwest of Madrid
(Spain).

SilviLaser 2008 1263

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
s
c
u
a
l
,
 
C
r
i
s
t
i
n
a
]
 
A
t
:
 
1
3
:
3
8
 
6
 
A
p
r
i
l
 
2
0
1
0



F
ig
u
re

2
.

A
0
.5
-m

p
ix
el
d
ig
it
a
l
o
rt
h
o
p
h
o
to
g
ra
p
h
o
f
th
e
st
u
d
y
a
re
a
(y
el
lo
w
fr
a
m
e)
.
D
if
fe
re
n
t
co
v
er

ty
p
es

(p
a
st
u
re
,
b
a
re

so
il
,
sh
ru
b
s
a
n
d
P
o
p
u
lu
s
sp
.)
w
er
e

d
ig
it
iz
ed

a
n
d
la
b
el
le
d
.

1264 C. Pascual et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
a
s
c
u
a
l
,
 
C
r
i
s
t
i
n
a
]
 
A
t
:
 
1
3
:
3
8
 
6
 
A
p
r
i
l
 
2
0
1
0



Elevations range between 1310 and 1790 m above sea level, with slopes between

20% and 45%. The general aspect of the study site is east. The site has a mean annual

temperature of 9.4�C and precipitation averages 1180 mm year-1.

2.2 LiDAR data

A small-footprint LiDARdataset was acquired by TopoSys GmbH over the study area

in August 2002. The TopoSys II LiDAR system recorded first and last returns with a

footprint diameter of 0.95m.Average point densitywas 5pointsm-2. The rawdata (x, y,

z-coordinates) were processed into a 1-m-pixel digital surface model (DSM) and 1-m-

pixel digital terrain model (DTM) by TopoSys, using a local adaptive median filter

developed by the data provider. The DSMwas processed using the first returns and the

DTMwas constructed using the last returns. Filtering algorithms were used to identify

canopy and ground surface returns for an output pixel resolution of 1 m horizontal and

0.1 m vertical resolution. According to Toposys calculations for the DSM and DTM,

horizontal positional accuracy was 0.5 m and vertical accuracy was 0.15 m. To obtain a

digital canopy height model (DCHM), the DTM was subtracted from the DSM. Both

the DTM and DCHMwere validated before use by land surveying using a total station

in 19points andground-based tree heightmeasurements of 102 trees.Vertical accuracies

(i.e. root mean square error, RMSEs) obtained for the DTM in open areas and for the

DCHM under forest canopy were 0.30 and 1.3 m, respectively. These accuracies were

acceptable for this study, andwere in agreementwith previous studies (Clark et al. 2004).

2.3 Image data and preprocessing

Three Landsat ETMþ images from scene path/row (201/32) corresponding to three

different dates (15 March 2000, 6 June 2001 and 10 September 2001) were georefer-

enced and radiometrically calibrated. The projection system was UTM (Datum

European 1950) with a pixel resolution of 30 m.

The June and September Landsat images were previously co-registered using digital

maps and a 50-m-pixel DTM. The RMSE of georegistration was , 1 pixel in both

cases (Heredia-Laclaustra et al. 2003). We checked the co-registration accuracy using

nine easily recognizable points. We orthorectified and adjusted the March image to

the September image by setting a total of 38 ground control points (GCPs) over a 30

km� 30 km subset area centred on the study site. This area allowed the identification

of a larger number of GCPs, ensuring the accuracy of the transformation for the study

area. The RMSE of the transformation was 11.5 m (0.4 pixels). In addition, different

forest cover patches were digitized from an aerial photograph (see figure 2) and served

as reference for the registration of the different Landsat images.

The cosine estimation of atmospheric transmittance (COST) absolute radiometric

correctionmodel of Chavez (1996) was applied to each image to convert digital counts

to reflectance. This model consists of a modification of the dark-object subtraction

(DOS) method by including a simple multiplicative correction for the effect of atmo-

spheric transmittance.

2.4 LiDAR DCHM summaries and spectral indices

The LiDAR DCHM (1 m pixel) was degraded to 30-m cell blocks providing a grid of

32 rows and 42 columns with 30-m cells. The mean, median, SD and CV of the 900

LiDAR height values contained inside each 30 m� 30 m block were calculated. Four
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new 30-m-pixel images of mean (HMN), median (HMD), standard deviation (HSD)

and coefficient of variation (HCV) of LiDAR height values were obtained.

Several near-infrared (NIR)- and SWIR-derived spectral measures were calcu-

lated for each Landsat image (see table 1). These indices, grouped into two cate-

gories, included: (1) normalized difference indices (the normalized difference

vegetation index (NDVI), normalized difference moisture index (NDMI) and

normalized burn ratio (NBR)) and (2) linear transform of multiple bands

(Tasseled Cap (brightness, greenness, wetness) and unstandardized PCA).

Tasseled Cap transformation was obtained using the coefficients for brightness,

greenness and wetness derived by Huang et al. (2002) for Landsat ETMþ at

reflectance data (see table 1).

2.5 Sample design and statistical analysis

Unsupervised classification of the September Landsat was performed to mask bare

soil, rocks, pasture and shrubs from subsequent analysis and focus the statistical

analysis over the pine forest cover.

In addition, a systematic sampling was used to reduce the spatial autocorrelation

inherent in remote sensing imagery. The sampling procedure was designed based on

semivariograms of the LiDAR DCHM mean height and Tasseled Cap wetness

component of the three dates. Semivariograms were calculated using the free distribu-

tion software Variowin 2.2 (Pannatier 1996). Mean LiDAR height was selected based

on the correlations with spectral indices found in previous work (Pascual 2006), and

the Tasseled Cap wetness component was selected as this is related to forest structure

(Cohen and Spies 1992). The semivariance tended to stability at 130–150 m. Two

systematic samples were obtained: one for statistical model-building and the other to

provide an independent validation of the model. For each sample we selected the 25

pixels (a window of 5 � 5 pixels) in the upper left corner of the image. The starting

point of the model sample was randomly selected from this subsample of 25 pixels.

From the starting pixel, we took every fifth pixel, or fourth pixel when the previous

one was not possible. We developed this approach twice, once for the model sample

and once to build the validation sample.

Pearson and Spearman correlations were carried out among the Landsat spectral

indices and LiDAR statistical descriptors. Regression analyses were also carried out

between both sets of variables. Finally, an independent validation served as a basis for

comparing the ordinary least squares (OLS) regressionmethod and the reducedmajor

axis (RMA) regression method. OLS regression assumes that an independent variable

X is measured without error and coefficients for the regression are calculated by

minimizing the sum of square errors in Y (i.e. the dependent variable). In this case,

estimates of slope are biased, with a resulting compression of the variance of predic-

tions. In other words, values above the mean of Y tend to be underpredicted and

values below the mean tend to be overpredicted. The RMA makes no assumptions

about errors in X and Y. Therefore, this method minimizes the sum of squared

orthogonal distances from measurement points to the model function. The effect of

this is to minimize or eliminate any attenuation or amplification of predictions

(Cohen et al. 2003). The RMA regression is defined by simple regression paradigms.

Following the procedure of these authors, prior to RMA analysis, it was necessary to

apply a canonical correlation analysis (CCA) to the body of predictive variables to

integrate all independent variables in one spectral index.
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We conducted a statistical analysis to assess the relationship between the LiDAR

height predictors and multi-temporal spectral measurements. Our aim was to under-

stand the influence of multiple images versus a single image and the importance of

different spectral vegetation indices and transformations. Two model-building

approaches were used. The vegetation spectral indices NDVI, NDMI and NBR

were considered from a single date, two dates and three dates. Spectral transforma-

tions (PCA and Tasseled Cap) of the three dates were also combined. Regarding the

PCA, all possible combinations of the first three components (PC1, PC2 and PC3)

were tested, with one, two or three dates. In addition, NDVI was combined with

NDMI, NBR and wetness. This was done by building as many as 200 models,

representing an exhaustive list of combinations of predictors (indices and dates).

Regression analysis was constructed by a forward stepwise method (p enter ¼ 0.05;

p remove¼ 0.05). The Akaike Information Criterion (AIC; Quinn and Keough 2003)

was calculated as an additional criterion for selecting the best models.

Statistical treatment was performed with the Statistica program version 6.1. Before

proceeding with the analysis, the necessary transformations (i.e. logarithm and inver-

sion of variables) were made to adjust the distributions of variables to the prerequisites

required for statistical analysis. Normality was checked using the Shapiro–Wilks test.

3. Results

Sample plots of the 30-m-pixel images of LiDAR-derived metrics and of NDVI and

Tasseled Cap components are shown in figures 3 and 4. Correlations between height

descriptors from the LiDARdata and the spectral indices vary depending on variables

(a) (b)

(c)
(d)

0 400 800200 metres

Figure 3. 30-m-pixel LiDAR-derived metrics images: (a) mean (HMN); (b) median (HMD);
(c) standard deviation (HSD) and (d) coefficient of variation (HCV). Vectorial digitized cover
types are included.
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and dates (see table 2). HMN and HMD show the highest correlation coefficients in

all indices for the three dates, with mean height providing a slightly better relationship

than the median LiDAR descriptor. HSD shows a non-significant relationship with

all spectral variables from Landsat scenes for the three dates, and HCV shows an

irregular pattern of behaviour (see table 2).

SWIR-derived indices (i.e. NDMI, NBR and wetness) show higher correlation

coefficients with mean, median and CV LiDAR-derived height, with wetness showing

a very slightly better relationship than the normalized differenced SWIR indices

(NDMI and NBR). NDVI and PC1 of June and September also presented strong

(a)

(b)

(c)

0 400 800 metres200

Figure 4. NDVI (left) and colour composition of the Tasseled Cap components (right):
brightness in red channel; greenness in green channel and wetness in blue channel. (a) 15
March, (b) 6 June, and (c) 10 September with the feature digitized cover types (bare soil,
pasture, shrubs).
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correlations with LiDAR-derived summaries. Indices from March provided lower

correlation coefficients than those of June or September.

Nearly all the possible combinations of spectral indices produced multiple regres-

sion models, with adjusted R2 ranging from 0.150 to 0.695. In the present study, we

have only considered those models with R2 of � 0.65. Ten, eight and one regression

models were selected with HMN, HMD and HCV as the dependent variable, respec-

tively (see table 3). HSD derived from LiDAR was excluded from the regression

analysis because of low correlation coefficients (see table 2). All models verify the

assumption of normality of the standard residuals according to the Shapiro–Wilks

test, with a mean standard residual of zero in all the models. The Durbin–Watson

statistic, D, was between -2 and 2 for all the models; therefore none of the models

show correlation among their residuals. Finally, in all cases, Cook’s distance was, 3,

which is the threshold to detect outliers according to Quinn and Keough (2003).

Models including HMN and HMD as the dependent variable provided better

adjusted R2 than those containing HCV (see table 3). Selected HMN and HMD

models included nearly the same spectral indices as predictors but HMN regressions

provided slightly better accuracy according to the RMSE values. Most of the models

include predictors of different dates, except for models 8 and 17, which only included

NBR for September. According to R2 adjusted and AIC values, most of the best

models included three predictors from the three different dates (see model 16, table 3).

As expected, RMA regression in comparison with traditional OLS regression

provides higher values for the slope (see table 4). Scatterplots of predicted versus

observed for the OLS regression method show higher compression of the variance of

predictions than those of the RMA (see figures 5 and 6).

4. Discussion

LiDAR data offer substantial improvements over other optical sensors of higher

spectral resolution in the accuracy of predictions of forest structural attributes

(Lefsky et al. 2001). Nevertheless, laser scanner data are economically and computa-

tionally constrained at broad regional scales (Sexton et al. 2009). Therefore, Landsat

or other passive image data are required to extrapolate LiDAR height measurements

across a broad landscape. We could use field-measured height instead of LiDAR-

derived canopy height, but LiDAR provides many orders of magnitude more obser-

vations of height than field data. In addition, our results show that the mean height of

the outer canopy derived from LiDAR (HMN) provides correlation coefficients with

Landsat spectral indices that equal or improve the correlations between Landsat-

derived indices and the mean height of individual trees (Cohen et al. 1995, Lu et al.

2004, Freitas et al. 2005).

Some authors have reported a strong correlation between SWIR bands and asso-

ciated indices and multiple forest attributes (Cohen and Spies 1992, Cohen et al. 1995,

Jakubauskas 1996, Steininger 2000, Lu et al. 2004, Freitas et al. 2005). In the present

study, mean LiDAR-derived canopy height (HMN) and SWIR-derived indices (wet-

ness, NDMI andNBR) show higher correlation coefficients than those reported in the

literature for SWIR-derived indices and mean plot height in areas of simple forest

structure (R ranging from 0.247 to 0.619) (Cohen et al. 1995, Lu et al. 2004, Freitas

et al. 2005). However, in complex forest structures (multiple strata), Lu et al. (2004)

and Freitas et al. (2005) reported higher correlation coefficients (R ranging from 0.785

to 0.908) among SWIR-derived indices and mean height of individual trees. In fact,
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several authors have related SWIR reflectance to the structural maturity of the forest

(Cohen and Spies 1992, Cohen et al. 1995, Freitas et al. 2005).

Regarding NIR reflectance, the application of NDVI to forest structure character-

ization has given conflicting results. Hall et al. (1995) and Franklin et al. (1997) do not

consider this spectral index especially appropriate for the study of forest attributes

because of the weak correlation shown with certain vegetation parameters. However,

significant correlations with leaf area index (LAI) have been found in both boreal

(Chen and Cihlar 1996) and coniferous forest (Gong et al. 1995). In the present study,

the correlations between HMN and NDVI are clearly greater than those reported in
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Figure 5. Scatterplot of observed versus predicted data for OLS regression models.
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the literature for field-derived mean height of individual trees. Indeed, the correlation

coefficients between NDVI and mean field tree height range from 0.119 to 0.458 (Lu

et al. 2004, Freitas et al. 2005) and exceptionally Lu et al. (2004) reportedR¼ 0.633 in

areas with a simple structure. This pattern has been considered as a constraint caused

by the saturation of NDVI in very dense forest canopies (Freitas et al. 2005). These

authors consider that, beyond a certain canopy density, the addition of more canopy

layers makes little difference in the relative reflectance of red and NIR radiation and

thus little difference in NDVI.

The literature indicates good correlations between mean height of individual trees

and the SWIR reflectance in areas with a mature and complex structure, but very low

correlations for the NDVI in these same areas of complex structure. However, our

results for the mean height of the DCHM indicate very similar correlation values for

all the spectral indices in heterogeneous Scots pine stands, although SWIR-derived

index correlations are slightly stronger than NDVI. HMN correlates nearly equally

strongly with SWIR-derived indices andNDVI because both are continuous variables

related to the outer canopy that synthesize forest canopy information in 900 m2.

Regarding multi-temporal issues, our results show that Landsat indices from

March provided lower correlation coefficients with LiDAR-derived mean height of

canopy than those of June or September. McDonald et al. (1998) found that vegeta-

tion indices were significantly affected by exogenous effects, including the solar zenith

angle. In our latitude, the solar zenith angle and albedo might explain the lower

correlations for March. In addition, according to Demarez et al. (1999), chlorophyll

concentration in deciduous species increases during the first phase of the growing

season (April) and stabilizes between June and September. In our Scots pine forest

stands, this pattern might also describe the lower correlation coefficients for the

spectral-derived indices of March. Nevertheless, canopy water content estimates

appear to be independent of the cycle of photosynthetic activity in many plant

communities (Trombetti et al. 2008).

The different spectral Landsat indices used in our study (see table 1) generated 10

regression models for HMN that have a similar R2 (0.65–0.70). These results indicate

the accuracy limit for the application of Landsat for use in large-scale multi-temporal

studies of mean canopy height. This limit is partially due to Landsat’s spatial
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Figure 5. (Continued.)
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resolution, which has a 30 m pixel, and to the LiDAR-Landsat integration approach

that degraded LiDAR data to coarser resolution. The accuracy of Landsat ETMþ

georegistration was between 0.4 and 1 pixel, and therefore in some samples we may

not have compared the spectral response with the matching LiDAR metrics. This is

particularly significant in horizontally heterogeneous Scots pine stands and leads us

to consider that the R2 of the models are accurate.
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Figure 6. Scatterplot of observed versus predicted data for RMA regression models.
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Our results (see table 3) improve on previously published mean field tree height

estimations as a function of wetness and NDMI (e.g. Cohen et al. 1995: R2
¼ 0.523;

Freitas et al. 2005: R2
¼ 0.559). They also improve on maximum field tree height

estimations based on multi-temporal Landsat information (Lefsky et al. 2001: R2
¼

0.64). Previous studies that relate waveform LiDAR-derived height and DNs of

Landsat images have lower accuracies. Wulder and Seemann (2003) estimated

LiDAR-derived height based on the DN values of image segments (R2
¼ 0.61,

RMSE ¼ 4.06). Therefore, our results (see table 3) show an improved accuracy,

especially for the standard error, when considering spectral indices instead of DN,

and because of the different integration approach. The regression models of Hudak

et al. (2002) explain a lower proportion of the total variation in canopy (R2
¼ 0.58),

although they developed several interesting spatial extrapolation methods for linking

LiDAR data and Landsat bands.

According to theR2 adjusted andAIC values, the best models included two or three

predictors from different dates. These results are consistent with Lefsky et al. (2001),

who consider that multi-temporal TM analysis improves forest attribute predictions.

Scatterplots of observed versus predicted LiDAR height metrics (in the validation

sample) (see figures 5 and 6) served as a basis for validating the models (see table 4).

According to the validation results, the best models were based on PCA components.

However, PCA is a statistical technique that is dataset dependent. Therefore, it is

difficult to generalize the interpretation of PCA axes to other dataset. Moreover,

unlike the Tasseled Cap, it is not possible in the PCA to give the resulting components

an a priori significance (Cohen et al. 2003). All these reasons and the simplicity of the

model led us to select model 10 as the best model.

The use of the DCHMhas made it possible to obtain LiDAR-derived metrics (i.e.

HMD and HCV), which are considered to synthesize information on forest struc-

ture (Zimble et al. 2003, Lefsky et al. 2005b, Pascual et al. 2008). HCV and HMD

presented significant correlations (up to –0.75) and regression coefficients (adjusted

from R2
¼ 0.64 to 0.69) with Landsat-derived spectral indices. In our previous

studies in the present study area, we have defined five structure types based on

HMN, HMD and the SD of LiDAR height. These forest types range from high

dense forest canopy (850 trees ha-1 and Lorey’s height of 17.4 m) to scarce tree
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coverage (60 tree ha-1 and Lorey’s height of 9.7 m) (Pascual et al. 2008). For this

classification, HMN and HMD of the five forest types differ by around 2.5 m on

average. The accuracy of our regression models as indicated by the RMSE range

from 1.9 to 2.3 m. These results suggest that improved accuracy might be required

before applying these models to characterize forest structure in horizontally hetero-

geneous Scots pine stands in Fuenfrı́a Valley. Our results point to an upper limit (R2

¼ 0.70) of the explained variation in LiDAR-derived canopy height based on

Landsat information due to the spatial resolution and co-registration of Landsat

images. Therefore, further research involving smaller resolution imagery, careful

co-registration of LiDAR-spectral datasets and stratification in homogeneous

areas should be tested. In addition, RMA regression results (see figures 5 and 6),

which are consistent with Cohen et al. (2003), encourage the use of this alternative

procedure to improve the accuracy of LiDAR-derived summaries in forest structure

studies.

4. Conclusions

LiDAR metrics are nearly equally strongly correlated to SWIR-associated indices

(wetness, NDMI and NBR), NDVI and PC1. Estimations of LiDAR-derived sum-

maries as a function of Landsat spectral indices improve mean field tree height

estimations based on Landsat-derived indices. Although the results are from a rela-

tively small area, they do show great promise for applicability to the larger area

represented by the Fuenfrı́a Valley, which consists of forests similar to those studied

here. The present approach may be of interest in forest management plans using a

small training LiDAR dataset combined with multi-temporal Landsat scenes.

Nevertheless, the spatial resolution of Landsat imagery and co-registration with

LiDAR data limit the accuracy of characterizing forest structure in horizontally

heterogeneous Scots pine stands. Further research is required to apply this novel

LiDAR–Landsat linking approach with higher resolution imagery and using the

RMA regression.
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