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ABSTRACT. Genetic studies of multiple paternity are a valuable tool to 
gain information on the reproductive biology of turtles. We analyzed 
paternity type in Podocnemis sextuberculata and related number of fathers 
per nest to nesting period (beginning, middle, or end of nesting season); 
clutch size (number of eggs); female size; and hatchling success. Females 
were captured and maximum linear carapace lengths measured during the 
60 days that encompass the nesting season at Rio Trombetas Biological 
Reserve (Pará, Brazil). Nests were marked and blood samples collected 
from hatchlings. Six heterologous loci were used: five from Podocnemis 
unifilis and one from Podocnemis expansa. Hatchlings were analyzed from 
23 nests, and the rate of multiple paternity was 100%. The mean number 
of fathers per nest was six (± 0.9), and no significant difference between 
number of fathers in a nest and nesting period. Similarly there was no 
significant relationship between number of fathers in a nest and female 
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size or hatchling success rate. Number of fathers was, however, positively 
correlated with clutch size (Spearman correlation rho = 0.47; P > 0.05). 
To our knowledge, this is the first study to test the relationship between 
multiple paternity and ecological aspects of the reproductive ecology of 
turtles in the genus Podocnemis.
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INTRODUCTION

Advanced genetic analysis has revealed that multiple paternity is common in marine 
(Galbraith et al., 1993; Bollmer et al., 1999) and freshwater (Valenzuela, 2000; Pearse et al., 2006; 
Fantin et al., 2008) turtles. The study of multiple paternity is particularly interesting in chelonians, 
since it provides indirect information on mating of turtles, which can be challenging to observe in 
the field, under the water (Carpenter and Ferguson, 1977; Ireland et al., 2003).

Reproductive behavior studies of marine turtles in their natural habitat are relatively 
common (Booth and Peters, 1972; Broderick and Godley, 1997) compared to those conducted on 
Amazon freshwater turtles (Nascimento, 2002; Vogt, 2008). In the Amazon, Podocnemis spp turtles 
migrate from lakes to rivers in the beginning of the nesting season, once water levels decrease. 
Courtship and copulation occur in lakes before migration, or near nesting beaches along main river 
channels (Vogt, 2008).

Paternity studies have shown polygamy (one male copulating with more than one female) 
and polyandry (one female copulating with more than one male) among chelonians (Gist et al., 
2002; Fisher et al., 2006). Bowen et al. (1992) described a polyandrous reproduction system in 
male chelonians, where males mate with the maximum number of females possible, with no territory 
delimitation. According to Fisher et al. (2006), polyandry guarantees benefits to the offspring and 
field studies have shown that polyandrous female progeny usually present a lower juvenile mortality 
rate (Madsen et al., 1992; Jennions and Petrie, 2000). The genetic benefits obtained through 
polyandry are in line with the “good-sperm hypothesis”, which states that paternity is granted to 
males that produce the most viable descendants (Fisher et al., 2006).

In species with a polyandrous mating system, females have the capacity to stock sperm 
in the oviduct (Gist and Jones, 1989). This mechanism is fairly common among birds and reptiles. 
Sperm storage promotes a post-copula selection that can potentially benefit offspring through the 
inheritance of “good genes”, increasing population reproductive viability and genetic heterozygosity 
(Jennions and Petrie, 2000). This reproductive strategy allows genetic contribution of more than 
one male during ovule fertilization.

Polyandry was first observed in the genus Podocnemis in studies using microsatellite 
DNA markers to reveal multiple paternity in Podocnemis expansa, P. unifilis, and P. erythrocephala 
(Valenzuela, 2000; Pearse et al., 2006; Fantin et al., 2008; Fantin et al., 2010). These microsatellites 
are highly polymorphic (Faleiro, 2007; Fantin et al., 2008) and are commonly used in paternity studies. 
So far, multiple paternity studies in Amazon freshwater turtles have focused on analysing the number 
of males that contribute genetically to female progeny (Valenzuela, 2000; Pearse et al., 2006; Fantin et 
al., 2008; Fantin et al., 2010). Nevertheless, studies on the influence multiple paternity in the ecological 
aspects of the population of turtles need to be more studied. It is possible to use these genetic tools to 
answer ecological questions with regard to the reproductive biology of Amazon turtles.
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The six-tubercled Amazon river turtle, Podocnemis sextuberculata, has a limited distribution 
in the Amazon Basin from Colombia in the southeast to Peru in the northeast. It is restricted to white 
and clear water rivers and tributaries. It is the second smallest species in the genus Podocnemis, 
with a maximum carapace length of 34 cm and maximum weight of 3.5 kg (Vogt, 2008). The nesting 
season for this species varies geographically and can occur between June and July in the Purus 
River; July to November in the lower Solimões; or August and September in the Trombetas River 
(Vogt, 2008). Nesting takes place during the dry season on river sandbanks and clutches ranges 
from 6 to 25 eggs. Hatchling sex and incubation period are determined by incubation temperature; 
hatchlings emerge from the nest between 45 and 60 days after nesting (Haller and Rodrigues, 
2006; Vogt, 2008).

In this study we verified cases of multiple paternity in nests of P. sextuberculata in the Rio 
Trombetas Biological Reserve (Pará, Brazil). We tested whether if 1) the number of males in a 
given clutch was related to the nesting period, and 2) the number of males is correlated to female 
size, clutch size, and hatchling success rate.

MATERIAL AND METHODS

Study area and data collection

Data were recorded from October to November 2013, for 60 nights (7:00 pm to 7:00 am), at 
the Farias beach located at the Rio Trombetas Biological Reserve (1°15ʹS, 56°50ʹW, WGS84) (city 
of Oriximiná, Pará, Brazil). This period encompassed the nesting season, when we were able to 
capture females and mark nests following egg laying. For all captured females, the maximum linear 
carapace length was measured. And blood (100-500 µL) collected from the femoral vein. Because 
of the difficulty of capturing females after nesting, female size was also inferred by measurement 
of tracks to and from freshly laid nests using a metric tape (± 0.1 mm). This is commonly used 
procedure, has proven effective in many turtle nesting biology studies (Valenzuela, 2001; Bonach 
et al., 2006). We also recorded the number of eggs and nesting date for each female.

After 40 days incubation, nests were fenced to prevent exit of hatchlings. For each nest, 
blood samples (50-100 µL) were collected via the femoral vein from all hatchlings. Blood samples from 
females and hatchlings were stored in microtubules containing ethanol and solution EDTA preservative. 
Material collection and transport were carried out under authorization of the ICMBio/SISBIO (approval 
No. 40084-3) and the Ethics and Research Committee for Animal Use (INPA No. 037/2013).

DNA extraction and genotyping

Only nests with more than ten hatchlings were included for final analysis; 23 nests met 
this criterion. Total DNA was isolated from blood samples using a detergent solution CTAB protocol 
(Doyle and Doyle, 1987). Specific regions of loci were amplified by polymerase chain reaction 
(PCR), following the protocol described by Schuelke (2000), where each forward primer had an 
M13 sequence tail added to its 5ʹ end to allow for dynamic fluorescent labelling (TET-labelled M13 
primer). PCRs were performed in 12.5 µL reaction volumes containing 4.6 µL H2O; 1.5 µL buffer 
10X with (NH4)2SO4; 1.5 µL 25 nM MgCl2; 1.5 µL 0.2 µM reverse primer; 0.75 µL 0.2 µM forward 
primer; 0.75 µL 0.2 µM FAM-6 labeled M13 label primer; 1.5 µL 0.2 µM each dNTP mix; 0.4 µL 1 
U/µL Taq DNA Polymerase; and 1 µL 10 ng DNA. The initial denaturation temperature was 94°C 



4F.P. Freda et al.

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 15 (1): gmr.15017335

per minute, which was followed by 25 cycles for 30 s at 94°C, 30 s at 55°C, and 30 s at 68°C, and 
final extension for 15 min at 72°C. Amplified DNA fragments were visualized by electrophoresis on 
a 1% agarose (w/v) gel. We used six loci for PCRs, five were developed for P. unifilis (Fantin et al., 
2008) and one for P. expansa (Valenzuela, 2000) as shown in Table 1.

Table 1. Loci used in multiple paternity analysis of Podocnemis sextuberculata.

Loco Repeat motif References 
Puni_2E7 (GA)5gc(GA)8 Fantin et al. (2008) 
Puni_1B11 (GA)7gg(GA)9 Fantin et al. (2008) 
Puni_2A9 (GA)12 Fantin et al. (2008) 
Puni_1H9 (GA)12 Fantin et al. (2008) 
Puni_1D12 (GA)10 Fantin et al. (2008) 
PE_344 (AG)13 Valenzuela (2000) 

 

Products amplified by PCR were diluted in water 1:100, and the size marker ROX pUC-19, 
modified from Dewoody et al. (2000), was added to determine sizes of observed alleles. Genotyping of 
amplified DNA used an ABI 3130xl automatic sequencer (Applied Biosystems, Foster City, CA, USA).

Genetic analysis

Allele length and peak patterns were analyzed using the GeneMarker v.2.4 software 
(SoftGenetic, 2012). The probability of paternity exclusion (Q) was determined using the method 
described by Weir (1996). The probability of genetic identity (I), which indicates the probability of 
two individuals not related, having the same genotype, was calculated according to Paetkau et al. 
(1995). Observed (HO) and expected (HE) heterozygosity values were calculated using the Arlequin 
v.3.5 software (Excoffier and Lischer, 2010). The presence of null alleles and large allele drop out 
was evaluated using the program MicroChecker (Oosterhout et al., 2004), which estimates the 
values of the null alleles through the Brookfield (1996) method.

Three methods were used to analyse the type of paternity to confirm our observation. 
Initially, we used the method of simple allelic counting, which assumes a normal pattern of Mendelian 
inheritance. The inference of multiple paternity was based on the presence of five alleles per locus 
sampled among the hatchlings of each nest. Secondly, we used the program KINALYZER (Ashley 
et al., 2009), which uses a minimum 2-allele set cover approach based on Mendelian properties 
to find the lowest possible number of siblings groups in a given nest (Ashley et al., 2009). We 
also used the GERUD 2.0 program to reconstruct parental alleles, infer the relative contribution 
of individual males to each nest (Jones, 2005), and confirm minimum number of fathers per nest 
results obtained using the previous analysis techniques.

Statistical analysis

We used the number of fathers estimated using the program KINALYZER to perform 
subsequent ecological analysis. A Kruskal-Wallis test was used to evaluate the relationship 
between the number of fathers at different points in the nesting season (beginning, middle, or 
end) (Ayres and Ayres Júnior, 2007). Spearman correlations were used to analyze relationships 
between number of fathers and female size, clutch size (number of eggs per nest) and hatching 
success rate (Vanzolini, 1992).
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RESULTS

For all six loci the I value was 1.84 x 10-13 and Q was 99.27% (Table 2). For each locus, HO 
and null alleles are presented in Table 2. Null alleles were observed in five of the six loci, only the 
locus Puni_1D12 did not present null alleles. However, observed values were similar to the indices 
calculated by Brookfield (1996). The population was found to be in Hardy-Weinberg equilibrium.

Table 2. Genetic characteristics of the heterologous loci used in multiple paternity analysis of Podocnemis 
sextuberculata.

HO = observed heterozygosity; HE = expected heterozygosity; I = probability of identity; Q = paternity exclusion.

Loco HO HE I Q Null alleles 
     Observed Brookfield (1996) 
Puni_2E7 0.788 0.949 0.005 0.896 0.064 0.062 
Puni_1B11 0.235 0.916 0.013 0.833 0.374 0.363 
Puni_2A9 0.546 0.916 0.013 0.776 0.155 0.150 
Puni_1H9 0.043 0.868 0.030 0.748 0.463 0.446 
Puni_1D12 0.950 0.941 0.006 0.856 -0.019 -0.018 
PE_344 0.817 0.969 0.001 0.732 0.060 0.059 
Total   1.84 x 10-13 0.999   

 

The 2013 nesting season started on September 30 and ended on November 27 (59 days). 
This period was divided into beginning, middle, and end, with approximately 20 days for each 
period. Eight nests each were sampled from the beginning and middle, and seven from the end of 
the nesting season.

In total, 402 hatchlings from 23 nests were analyzed. Blood samples were obtained from 10 
females that laid nests with less than 10 eggs; these were not used in subsequent analysis. There 
was evidence of multiple paternity in all nests, using the three methods described to assess paternity 
type (Table 3). Analyzed nests presented a high number of alleles, with minimum 9 and maximum 16 
alleles per nest. The mean of fathers per nest were 6, with minimum 4 and maximum 8 fathers per 
nest (Table 3). There was a minimum of two to three fathers, according to the program GERUD 2.0.

*MMCA = Method Minimum Count Alleles.

Table 3. Number of alleles ratio and number of fathers in Podocnemis sextuberculata nests, using three methods 
(minimum count alleles, Kinalyzer, and Gerud) for analysis.

Nest No. hatchlings No. alleles MMCA* No. fathers Kinalyzer No. brothers groups Gerud No. fathers minimum 
N1 14 15 7 6 3 
N2 12 10 4 6 2 
N3 12 14 6 6 3 
N4 12 11 5 5 3 
N5 14 13 6 7 2 
N6 12 11 5 6 2 
N7 10 10 4 5 2 
N8 13 14 6 7 2 
N9 13 11 5 7 2 
N10 11 12 5 5 3 
N11 16 12 5 6 2 
N12 12 13 6 6 2 
N13 14 15 7 7 2 
N14 12 10 4 5 2 
N15 10 9 4 4 2 
N16 14 11 5 7 3 
N17 11 9 4 5 2 
N18 17 11 5 8 3 
N19 16 12 5 7 2 
N20 13 13 6 7 3 
N21 12 12 5 5 3 
N22 18 11 5 8 2 
N23 15 16 7 7 2 
Total 302     
Mean 13 12 5 6 2.3 
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Data are reported as means ± SD. The number of fathers per nest was not significantly 
different during the three periods of the nesting season (Kruskal-Wallis P = 0.33, d.f. = 2, H = 2.9), 
beginning = 6 ± 0.76, middle 6 ± 1.20, end = 6.7 ± 1.25, and total nesting period = 6.14 ± 1.11. 
There was no significant relationship between female size [track width (mm) = 125.17 ± 25.24] and 
the number of fathers per nest (Spearman correlation: rho = -0.10; P = 0.76). There was however, 
a significant positive relationship between clutch size (number of eggs per nest = 16.04 ± 2.77) and 
the number of fathers per nest (Spearman correlation: rho = 0.47; P ≤ 0.05; Figure 1). There was 
no significant relationship between the hatching success (hatchlings/ eggs = 0.69 ± 0.12) and the 
number of fathers per nest (Spearman correlation: rho = 0.04; P = 0.85).

Figure 1. Relationship between clutch size of Podocnemis sextuberculata and the numbers of fathers participating in 
fertilization of the clutch.

DISCUSSION

To our knowledge, this is the first study to test the relationship between multiple paternity 
and ecological aspects of the reproductive ecology of turtles in the genus Podocnemis. We found 
that using heterologous loci was satisfactory for multiple paternity analysis and the probabilities of I 
and Q values were within the acceptable range for genetic analysis by using these loci. Because of 
the presence of null alleles, HO was below HE for some loci. We conclude that using heterologous 
loci is a viable option for the analysis of multiple paternity in P. sextuberculata, but because of the 
non-specificity of loci, there may be a high occurrence of null alleles, suggesting that the loci are 
less polymorphic. We found Puni_1B11 and Puni_1H9 to be the less polymorphic loci, as HO was 
lower than HE in both cases. Fantin et al. (2008) found higher heterozygosity using the same loci in 
paternity analysis in P. unifilis, a finding that may be specific to the species studied.
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In our study, multiple paternity was observed in 100% of nests and the number of alleles 
has high variability. High occurrence of alleles and multiple paternity are probably because this 
population of P. sextuberculata is located in a biological reserve, where the chelonian population 
nesting areas have been protected for more than 30 years. In a previous study, the P. sextuberculata 
population in Barreirinha (Amazonas State, Brazil) presented a less variation from three to 11 
alleles and there was multiple paternity in all nests analyzed with a minimum of two fathers per nest 
(Fantin, 2008). Barreirinha is located in a relatively densely populated region, with low or no official 
protective measures to prevent the harvest of turtle eggs and meat, both of which are considered 
local delicacies. Chelonian populations in areas that are fully protected, there are probably 
higher numbers of males contributing genetically in comparison to populations in areas with a 
lower degree of environmental protection. These findings indicate the importance of conservation 
and management actions to the maintenance of the gene pool for P. sextuberculata and other 
chelonians in the Amazon. According to Lasala et al. (2013), high rates of multiple paternity are 
good indicators of population stability and/or growth, since they suggest a high number of adult 
males. While female adult populations are easy to count through the number of nests on a beach, 
genetic studies of paternity are good to estimate the male population of a given chelonian species 
(Jensen et al., 2006). In a similar study of Lepidochelys olivacea (the olive ridley sea turtle), a 
strong correlation between paternity rate and population size was observed, indicative of a larger 
number of individuals available to participate in the mating system (Jensen et al., 2006). This 
difference was attributed to the larger number of individuals available to participate in the mating 
system, with a strong correlation between paternity rate and population size (Jensen et al., 2006).

In previous studies that the correlation between female size and paternity rates was 
observed, the authors declared that larger females have more capacity to store sperm and 
consequently, present a higher occurrence of different fathers in their offspring (van Buskirk and 
Crowder, 1994; Lasala et al., 2013). In the current study, we did not find a correlation between 
female size and number of fathers per nest. However, a higher number of fathers was observed for 
nests with a higher number of eggs.

A higher degree of multiple paternity in a given nest is probably related to an increase in 
the genetic variability of the offspring, which might enhance hatchling survivorship rates. According 
to Madsen et al. (1992), genetic variability reduces juvenile mortality but does not increase the 
hatching success rate. We did not observe a correlation between hatching success rate and the 
number of fathers per nest in the current study. This finding reflects that the Lasala et al. (2013), 
who expected a positive relationship between these parameters for a population of Caretta caretta 
(loggerhead sea turtle) in Wassaw Island, USA, but found no correlation. This is probably because 
hatching success rates are more strongly influenced by environmental factors (Ferreira, 2009) than 
by genetic heterozygosity.

CONCLUSIONS

Heterologous loci to P. sextuberculata can be used in studies of multiple paternity. However, 
the development of specific primers is highly recommended to improve the efficacy of the tests. 
We found multiple paternity in 100% of analyzed nests, a high allele variation and similar numbers 
of fathers per nest across different periods of the nesting season. Female size had no relationship 
to the number of fathers per nest. However, there was a significant positive relationship between 
the number of fathers per nest and clutch size, indicating larger clutches represent more males 
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contributing genetically to the offspring. Hatchling success rate was not significantly correlated with 
the number of fathers per nest. This study confirms the polyandrous mating system between the 
genus Podocnemis turtles and showed some effects of multiple paternity in reproductive ecology 
P. sextuberculata species. However, it is necessary for most field studies are conducted to assess 
the effect of multiple paternity in other aspects of the species behavior.
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