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Abstract. Diabetic cardiomyopathy (DCM) is the leading 
cause of death worldwide, and oxidative stress was discovered 
to serve an important role in the pathophysiology of the condi‑
tion. An imbalance between free radicals and antioxidant 
defenses is known to be associated with cellular dysfunction, 
leading to the development of various types of cardiac disease. 
Nuclear factor‑erythroid‑2‑related factor 2 (NRF2) is a tran‑
scription factor that controls the basal and inducible expression 
levels of various antioxidant genes and other cytoprotec‑
tive phase II detoxifying enzymes, which are ubiquitously 
expressed in the cardiac system. Kelch‑like ECH‑associated 
protein 1 (Keap1) serves as the main intracellular regulator 
of NRF2. Emerging evidence has revealed that NRF2 is a 
critical regulator of cardiac homeostasis via the suppression 
of oxidative stress. The activation of NRF2 was discovered 
to enhance specific endogenous antioxidant defense factors, 
one of which is antioxidant response element (ARE), which 
was subsequently illustrated to detoxify and counteract oxida‑
tive stress‑associated DCM. The NRF2 signaling pathway is 
closely associated with the development of various types of 
cardiac disease, including ischemic heart disease, heart failure, 
myocardial infarction, atrial fibrillation and myocarditis. 
Therefore, it is hypothesized that drugs targeting this pathway 
may be developed to inhibit the activation of NRF2 signaling, 
thereby preventing the occurrence of DCM and effectively 
treating the disease.
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1. Introduction

Diabetic cardiomyopathy (DCM) is widespread, as is the 
necrosis of the myocardium caused by diabetes mellitus (DM), 
and leads to cardiac microangiopathy and myocardial meta‑
bolic disorders (1). Early diastolic dysfunction is usually 
characterized by decreased myocardial compliance and 
blocked diastolic filling (2). Late diastolic dysfunction is 
mainly manifested as congestive heart failure (HF) (3). DCM 
is one of the main complications of DM, differing from 
hypertension and other types of cardiovascular disease, which 
demonstrates one of the highest incidence rates of all cardio‑
vascular diseases with an incidence rate of 16.9% in China (4). 
In fact, DCM accounts for >80% of the deaths of diabetic 
patients (5,6).

A large number of studies have reported that the pathogen‑
esis of DCM primarily involves mitochondrial dysfunction, 
impaired intracellular calcium regulation, the accumulation 
of advanced glycation end products in the heart, abnormal 
cell metabolism and endoplasmic reticulum stress (2,7). 
Mitochondrial dysfunction has been discovered to lead to the 
excessive production of reactive oxygen species (ROS), which 
in turn can promote the opening of mitochondrial perme‑
ability transition pores (mPTP), reduce the mitochondrial 
membrane potential and impede the respiratory transmission 
chain (8). Impaired intracellular calcium regulation has been 
identified to lead to impaired cardiac contractility, while the 
accumulation of advanced glycation end products in the heart 
was discovered to lead to a buildup of extracellular matrix, 
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which in turn leads to diastolic dysfunction and eventually to 
functional failure (9). In addition, abnormal cell metabolism 
was shown to lead to the accumulation of toxic lipids in the 
heart, and endoplasmic reticulum stress is known to mediate 
cell apoptosis. It is also well known that metabolic disorders 
cause subcellular inflammation of the heart and inflammation 
is an important pathogenic feature of DM (Fig. 1) (10).

These pathologies are mainly caused by hyperglycemia, 
hyperlipidemia and inflammation, which can stimulate the 
production of ROS or reactive nitrogen species (11). ROS are 
small, highly reactive molecules, also known as free radicals, 
which serve important roles in pathology and physiology. The 
role of the heart is to provide sufficient blood flow to organs 
and tissues to supply them with oxygen and various nutrients. 
The heart has high energy requirements and is prone to oxida‑
tive damage caused by physiological processes (12). The heart 
needs more oxygen than other organs and consumes more 
energy (6). It has been reported that oxidative stress served 
an important role in various types of cardiac disorder (13). 
Oxidative stress is a negative condition caused by the produc‑
tion of free radicals, and manifests as an imbalance of 
oxidation and antioxidant effects in the body (14). The higher 
the levels of ROS in the heart, the higher the amount of oxida‑
tive stress produced (15). ROS is considered to be responsible 
for systolic and endothelial dysfunction, cardiac cell apoptosis 
and necrosis (16). Therefore, the reduction of oxidative stress 
is an attractive target for the treatment of cardiac diseases.

Nuclear factor‑erythroid‑2‑related factor 2 (NRF2) is 
expressed in a wide range of tissues and organs, including the 
heart, brain, liver, kidney and skin (17). A large number of 
reports have indicated that NRF2 signaling served important 
roles in processes, such as embryonic development, oxidative 
stress and ischemia/reperfusion injury (IRI) (14). NRF2 was 
also reported to regulate the clearance of free radicals and 
lipid homeostasis (18). Therefore, NRF2/antioxidant response 
element (ARE) signaling has become an attractive target 
for the treatment of DCM. The NRF2 signaling pathway is 
reportedly involved in DCM via the transcriptional regula‑
tion of other signaling pathways, including PI3K/AKT and 
JAK/STAT (19). The present review aimed to provide a 
comprehensive discussion of the current understanding of the 
regulation of NRF2‑mediated signaling in the development 
of DCM.

2. The NRF2/Kelch‑like ECH‑associated protein 1 
(Keap1)/ARE signaling pathway

Under the appropriate stimulation by physical and chemical 
factors, including inflammation, trauma and fever, NRF2 
dissociates from Keap1, which permits the levels of NRF2 
degradation to decrease and the simultaneous synthesis of 
NRF2 to increase, which subsequently facilitates NRF2 
entering the nucleus, where it specifically recognizes and binds 
to the core sequence of AREs (20). As a result of this series of 
actions, multiple downstream antioxidants are activated, where 
the expression levels of inflammatory proteins and detoxifica‑
tion enzymes are upregulated (21). The transcription of these 
genes, including superoxide dismutase (SOD), GSH, GPX and 
heme oxygenase (HO‑1), has been identified to suppress ROS 
production and reduce oxidative stress (Fig. 2) (22).

NRF2, which contains 589 amino acids, is a basic 
leucine zipper (bZIP) transcription factor belonging to the 
Cap ‘n’ Collar family that contains seven functional domains, 
Neh1‑Neh7 (23). These structures serve an important role in 
regulating the stability of NRF2 (24). The bZIP structure of 
the Nehl region can bind to the small Maf protein to form a 
heterodimer, which subsequently binds to the DNA molecule 
through the ARE (25). Neh2 is the region in which NRF2 
binds to Keap1; the region involves the 69 to 84th amino acids 
of NRF2 (a short peptide of 16 amino acids), which contains 
an ETGE motif and a DLG motif binding site that binds to 
Keap1 (26). The Neh3 domain is located at the carboxy 
terminus and is highly conserved (27). The agonist chromatin 
helicase DNA binding protein 6 binds to the Neh3 domain and 
upregulates NRF2 target gene expression (Fig. 3) (28). The 
Neh4 and Neh5 domains, which are related to the 596 and 
599 amino acids of NRF2, are involved in the transcriptional 
activation of the NRF2 target gene after binding to the coacti‑
vator cAMP‑response element binding protein (CREB) (29). 
The Neh6 region contains a large number of serine residues, 
which form redox‑insensitive regions. Under oxidative stress 
conditions, the degradation of Nrf2 is associated with Neh6, 
such that Neh6 mediate B‑TrCP‑dependent ubiquitina‑
tion of the NRF2 transcription factor so that NRF2 can be 
degraded (30). Finally, the Neh7 domain can inhibit NRF2 by 
binding to the retinoic X receptor α (31).

Keap1 is an important factor regulating the NRF2 response 
and a central regulator of cellular oxidative stress. Keap1 
contains five domains: i) An N‑terminal region domain; ii) a 
bric á brac (BTB) dimerization domain; iii) an intervening 
region (IVR) domain; iv) a theme containing the six Kelch 
motifs; and v) a C‑terminal region domain (32). BTB, which is 
an evolutionarily conserved motif involved in protein‑protein 
interactions found in actin‑binding proteins and zinc finger 
transcription factors, usually forms a dimer with other BTB 
regions; this domain is required for Keap1 to dissociate from 
NRF2 and prevent phase II gene transcription (33). The IVR 
domain is rich in cysteine and contains the most active cysteine 
residue of Keapl; it is a functional regulatory region for the 
entire protein, which is involved in the reactions of electro‑
philic compounds and oxidants, and also participates in the 
formation of ubiquitination linkages to stabilize NRF2 (31). 
The DGR domain contains six bis‑glycine repetitive sequences 
or six Kelch motifs; the repetitive Kelch motifs form six clas‑
sical p‑helices with multiple potential protein binding sites for 
Keapl to bind to the Neh2 region, and this is where Keapl also 
binds to cytoplasmic actin (34).

The ARE is the core protector of cytoprotective proteins, 
representing an important antioxidant component of the 
human body (35). Under reactive chemical pressure, ARE 
cis‑acting elements function primarily at the transcrip‑
tional level to regulate the expression levels of numerous 
cytoprotective enzymes, including SOD and HO‑1 (36). 
The ARE has important structural and biological charac‑
teristics and demonstrates a unique ability to respond to 
oxidative stress (37). It reacts not only to H2O2, but also 
to specific chemical compounds, and has the ability to 
conduct redox cycles or produce reactive or electrophilic 
intermediates (38). A number of compounds have a tendency 
to react with the sulfhydryl groups, such as diethyl maleate, 
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dithiothiones and isothiocyanates, which can potently induce 
ARE activity (39,40).

NRF2 is a key regulator of antioxidant reactions and 
has been demonstrated to regulate both oxidative stress and 
inflammation (41,42). There are two types of antioxidant 
systems in the body: One is the enzyme antioxidant system, 
which includes superoxide, SOD, catalase and glutathione 
S‑transferase; the other system is a non‑enzymatic antioxidant 

system, involving, for example, glutathione (43). NRF2/Keap1 
signaling serves an important role in the maintenance of 
intracellular redox homeostasis, in addition to serving a vital 
role in a variety of cell types and organs in different types of 
oxidative damage‑related cardiac disease, including myocar‑
dial ischemic disease, HF and cardiac hypertrophy (44). 
Numerous NRF2 activators are plant‑derived phytochemicals 
and natural products, such as curcumin (CUR), sulforaphane 
(SFN) and resveratrol (RES) compounds (45), although some 
synthesized NRF2 activators have been identified, including 
hydrogen sulfate and 4‑hydroxynonenal lipoic acid (46). 
These chemoprotective compounds protect cells from oxida‑
tive stress by mediating the NRF2 defense response, and 
activating phase II detoxification enzymes, transporters and 
antioxidants (47).

NRF2/ARE signaling has been associated with various 
major pathophysiological conditions, including hypoxia, 
ischemia, fibrosis and apoptosis (48). It is also associated 
with numerous signaling pathways (49). There is increasing 
evidence to suggest that NRF2 and PI3K/AKT are important 
in oxidative stress injury, where NRF2 is involved in several 
signaling pathways, including the NF‑κB and other cytokine 
signaling pathways (50). Therefore, NRF2/ARE signaling 
is known to serve an important role in several pathological 
conditions.

3. NRF2 signaling and its association with DCM 
complications

Ischemic heart disease. Ischemic heart disease is a serious 
condition, which among all patients with heart disease in 
China the death rate can reach 60% (51). In myocardial IR, the 
blood supply to the heart is blocked, following which perfu‑
sion and accompanying reoxygenation resumes (52). IR occurs 

Figure 1. Pathogenesis of DCM. The consequence of long‑term hyperglycemia is that the heart tissue will produce a large amount of ROS, which will induce a 
series of physiological changes in cardiomyocytes, including mitochondrial dysfunction, advanced glycation end products, calcium overload, lipotoxicity, ER 
stress and inflammation. This will eventually develop into DCM. DCM, diabetic cardiomyopathy; ROS, reactive oxygen species; ER, endoplasmic reticulum. 

Figure 2. NRF2 exerts antioxidant activity in the presence of ROS. NRF2, 
nuclear factor‑erythroid‑2‑related factor 2; Keap1, Kelch‑like ECH‑associated 
protein 1; ROS, reactive oxygen species; ARE, antioxidant response 
element; SOD, superoxide dismutase; GSH, glutathione; CAT, catalase; 
GPX, glutathione peroxidase.
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in acute coronary syndrome, cardiopulmonary resuscitation, 
organ transplantation thrombolysis, coronary bypass and 
other conditions (53). Calcium and ROS were discovered to be 
important molecular species involved in myocardial IRI during 
ischemia initiation and reperfusion. Calcium has an important 
electrophysiological elements, which enhances myocardial 
vitality and participates in heartbeat, whilst ROS plays an 
important regulatory role during myocardial ischemia and 
reperfusion (39). The mPTP opening is an important mecha‑
nism of myocardial necrosis induced by IRI (22). However, due 
to the complicated underlying mechanisms, there are currently 
no effective methods for preventing myocardial IRI.

The most critical feature of myocardial IRI formation is 
the production of ROS (54). During perfusion in the ischemic 
phase, residual oxygen can still reach the tissue and produce 
ROS in the myocardium (55). A small amount of ROS is formed 
in the early stages of myocardial ischemia, but levels were 
found to increase sharply after 20‑25 min (56). Myocardial 
reperfusion is extremely sensitive to large increases in ROS, 
which not only damage the mitochondrial respiratory chain, 
but also oxidize the mitochondrial inner membrane cardio‑
lipin and inhibit respiratory chain activity (57). When ROS 
levels are increased, they can also induce lipid peroxidation 
and cardiomyocyte oxidative damage, eventually leading to 
apoptosis (58).

NRF2 regulates a series of antioxidant enzymes and cell 
oxidative stress, and it has been reported that the overexpres‑
sion of NRF2 protected against IRI (59). The myocardial 
infarction (MI) area was demonstrated to increase, while 
the degree of cardioprotection decreased in NRF2 knockout 
mice following IR (60). Notably, following the activation of 
the NRF2 signaling pathway, a large number of compounds 
can protect the heart from IR damage (61). Similarly, reduced 
NRF2 activity in H9C2 cardiomyoblasts led to a decrease in 

cell survival under hypoxic conditions, irrelevant of whether 
reoxygenation occurred (62).

It has been suggested that NRF2 activity may be linked 
to mitochondrial function (63). NRF2 signaling controlled 
mitochondrial ROS production by regulating mitochondrial 
function, which indicated that the NRF2 signaling pathway 
may serve a vital role in cellular redox homeostasis (64). In 
clinical terms, this may lead to improved ischemic tolerance 
and make organs more resistant to ischemia (65). Following 
ischemic injury, organ transplantation and IR are beneficial for 
restoring blood flow (66). Although it is also worthy to note 
that several drugs can also be used to prevent IRI (67), as it is 
important to remove ROS from cardiomyocytes, the manipula‑
tion of the NRF2/Keap1 signaling pathway may represent a 
novel strategy for the treatment of IRI (68).

HF. HF is a pathological process in which the cardiac pump 
function is reduced due to myocardial contraction and/or 
diastolic dysfunction, resulting in a decrease in cardiac output 
and an inability of the heart to meet the metabolic needs of the 
body tissues (69). HF is considered the end point of numerous 
types of cardiovascular disease. Persistent, abnormal neuro‑
hormonal and mechanical stresses can lead to HF (70); such 
pathological stresses include, hypertension, cardiac fibrosis, 
cardiac hypertrophy and cardiomyocyte apoptosis (71). These 
stresses can alter the microvascular structure and ventricular 
dilation, ultimately leading to cardiac dysfunction and 
HF (12,38). However, it is common that the heart remains 
within the normal range of ejection fraction (72).

It was previously reported that oxidative stress accelerated 
the progression of HF (73). In fact, there is some experimental 
evidence to suggest that ROS‑induced changes in the structure 
and function of the heart can lead to HF, which highlights that 
oxidative stress and myocardial function are closely related. 

Figure 3. Domain structure of NRF2 and Keap1. NRF2, nuclear factor‑erythroid‑2‑related factor 2; Keap1, Kelch‑like ECH‑associated protein 1; 
β‑TrCP, β‑transducin repeat containing; NTR, N‑terminal region; BTB, bric á brac; IVR, intervening region; C‑terminal region; RxRa, retinoid X receptor α; 
Cul3, cullin 3.
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NRF2 is known to be associated with the inducible expression 
of various antioxidant genes and other cytoprotective phase II 
detoxifying enzymes, and it was previously reported that NRF2 
participated in the mechanism of HF (74‑76). In addition, several 
clinical studies have identified that microRNA (miRNA/miR)‑27a 
expression levels were upregulated in human HF (63,67,77). This 
is interesting as miR‑27a was one of the microRNAs predicted to 
be a target of NRF2; however, its mechanism of action remains 
unknown (69,78). Therefore, it is important to further investigate 
the specific role of NRF2 during HF.

Cardiac remodeling. Cardiac remodeling is an adaptive 
process of cardiomyocytes to repeated stress in order to 
maintain homeostasis (79). Cardiac remodeling frequently 
impairs function at the level of molecules, cells, tissues and 
organs (80). Numerous animal and clinical studies have 
revealed that cardiac hypertrophy, myocardial apoptosis 
and interstitial collagen deposition eventually led to systolic 
dysfunction (81‑83).

During cardiac remodeling, the loss of cardiomyocytes has 
been widely ascribed to necrosis, apoptosis or autophagy (80); 
however, fibrosis can also occur through fibroblast proliferation 
and extracellular matrix reorganization (84). Mitochondrial 
dysfunction and metabolic abnormalities were also discovered 
to contribute to the process of cardiac remodeling (85,86). In 
fatigued cardiomyocytes, calcium uptake is impaired, where 
calcium efflux becomes dysregulated and involves components 
such as sarco/endoplasmic reticulum calcium‑ATPase‑2a and 
the lysine receptor (87). Morphological changes also occur 
in the heart, with the shape morphing from elliptical to 
spherical (82). Cardiac remodeling also damages the systolic 
function of the heart (88).

Cardiac remodeling usually leads to left ventricular mass 
hypertrophy and a reduction of ejection fraction (89). It has 
been previously reported that ROS activated NRF2 signaling to 
facilitate different cardiac remodeling processes (90). Notably, 
the activation of the NRF2 pathway using allicin treatment was 
observed to prevent the development of cardiac remodeling to 
cardiac dysfunction (91). Oxidative stress was also discovered 
to be closely related to cardiac remodeling (92). In addition, 
antioxidants have been found to prevent cardiac remodeling 

and several studies have revealed that oxidative stress served 
a regulatory role in myocardial fibrosis (86,88,93). Therefore, 
NRF2 may serve as a good potential target for cardiac 
remodeling.

MI. MI is a type of myocardial necrosis caused by the acute 
and persistent ischemia and hypoxia of the coronary arteries, 
which occurs due to an imbalance between the oxygenated 
blood supply and demand (92). Every year, ~10% of patients 
with symptoms of acute coronary syndrome are diagnosed 
with acute MI worldwide (94). Necrosis was considered 
to be the main cause of cardiomyocyte death; however, 
cell apoptosis also serves an important role in the process 
of cell death (95). Although rapid reperfusion therapy was 
discovered to reduce infarct size and improve left ventricular 
function, reperfusion itself resulted in cell necrosis (96). 
IRI was also revealed to serve an important role in oxida‑
tive stress and myocardial infarction (97). During oxidative 
stress, large amounts of ROS are produced, which was 

identified to induce lipid peroxidation and convert oxidizing 
proteins to an inactive state, resulting in DNA damage and 
the exacerbation of IRI (11). Therefore, excess ROS should 
be eliminated as soon as possible. NRF2 is a well‑known 
antioxidant and has been discovered to be closely related to 
MI (51). NRF2/Keap1 pathway is an important antioxidant 
defense mechanism, which is closely related to DCM heart 
remodeling mediated by oxidative stress (98). It has been 
reported that after myocardial infarction (MI), the NRF2 
protein in the heart is downregulated, which leads to a 
decrease in the antioxidant enzymes targeted by Nrf2 (91). 
At this stage, the human body will protect the heart tissue 
from further damage, so it will trigger a series of reactions 
to downregulate NRF2 (96). As the heart tissue continues to 
undergo irreversible damage, DCM will increase the tran‑
scription and activation of NRF2 (14). Therefore, if a gene 
target that blocks Nrf2 is found, it may provide a new method 
for the treatment of DCM (96,98).

Cardiac hypertrophy. Cardiac hypertrophy is a relatively 
slow, but effective, compensatory function, which occurs 
mainly under long‑term stress overload (99). Cardiac hyper‑
trophy includes physiological hypertrophy and pathological 
hypertrophy (100). Physiological hypertrophy occurs mainly 
in healthy individuals, pregnant women and individuals 
pursuing long‑term high intensity training and it is a revers‑
ible condition; however, pathological hypertrophy is a 
compensatory response (101). Different stimuli can provoke 
different types of cardiac hypertrophy, including persistent 
stress overload (hypertension), excessive volume overload 
(arteriovenous shunt) and genetic mutations (cardiomyopathic 
hypertrophy) (102).

Cardiomyocytes can enhance myocardial contractility to 
a certain extent under the stimulus of various outside factors, 
including myocardial ischemia and septic shock (103). When 
a stimulus persists, the compensatory mechanisms of the 
myocardial cells become decompensated, and eventually HF 
develops (80). Cardiac hypertrophy has been strongly linked 
to HF and cardiac death, indicating that preventing cardiac 
hypertrophy may be of utmost importance (53). Previous 
studies revealed that oxidative stress activated cardiac hyper‑
trophy and other pathways including PI3K/AKT, NRF2/ARE 
signaling (104). Notably, upon the knockdown of NRF2 
expression, angiotensin II‑induced cardiac hypertrophy was 
exaggerated and the degree of oxidative stress in the heart 
was exacerbated (105). Other previous studies have indicated 
that endogenous antioxidants, such as HO‑1, protected against 
cardiac hypertrophy (22,68). For example, in hypertension 
model rats, an increase in HO‑1 effectively reduced left 
ventricular hypertrophy (106‑108).

Myocarditis. Myocarditis can be caused by viral, bacterial 
or parasitic infections, or by noninfectious factors, including 
trauma and drugs (41). Therefore, myocarditis is a common 
infectious or non‑infectious myocardial immunopathological 
process (109). Acute viral myocardial inflammatory injury 
without clinical symptoms and chronic myocarditis were 
discovered to lead to immune‑mediated myocardial damage 
and dysfunction (110). Importantly, myocarditis is a precursor 
lesion of DCM and may develop into DCM. It has been 
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reported that ROS and oxidative stress were involved in the 
pathogenesis of myocarditis (78). ROS and oxidative stress 
are associated with innate and adaptive immunity and tissue 
repair (73).

Persistent myocardial inflammation causes myocardial 
remodeling, which eventually develops into DCM. This leads 
to the release of cytokines, causing an inflammatory response. 
Histamine was discovered to increase the susceptibility of mice 
to autoimmune myocarditis (111). In addition, the activation of 
cytokines, such as TGFs, activated the intracellular signaling 
protein SMAD cascade, increased profibrotic factors, patho‑
logical fibrosis and myocardial remodeling, and decreased 
cardiac function, all of which lead to progressive HF (112). 
ROS was also identified to directly alter cardiac contractility; 
it has also been associated with cardiac depression in acute 
inflammation other than chronic myocarditis (113).

NRF2 is an important regulator of antioxidant reactions, 
which regulate oxidative stress (12). Several natural compounds, 
such as CUR, have antioxidant properties (53). CUR was 
discovered to regulate specific transcription factors, such as 
NRF2, which subsequently regulated free radical scavenging 
and the expression of lipid homeostasis (102). The induction of 
the activity of antioxidative enzymes has been attempted using 
gene therapies and nanotechnologies (39). However, there is a 
lack of clinical evidence for this effect (71,114). The clinical 
efficacy has not been established in human myocarditis, there‑
fore, further research remains to be undertaken. Although 
additional studies are required, NRF2 may serve a vital role 
in myocarditis.

4. Natural substance therapies for DCM

Oxidative stress, and hence antioxidants, have been illustrated 
to serve an important role in the pathogenesis of DCM (82). 
NRF2 and its downstream signaling pathways have been 
reported to have a key role in preventing DCM and other 
cardiovascular events induced by high glucose (69). In addi‑
tion, it was demonstrated that natural or synthetic NRF2 
activators had a therapeutic role in DCM model animals (54). 
Therefore, NRF2 is considered to be a target for the treatment 
of DCM.

CUR. CUR is a naturally occurring polyphenol isolated from 
the turmeric plant (115); it has been discovered to contain anti‑
oxidants, anti‑inflammatory agents and anti‑cancer agents, in 
addition to exerting anti‑diabetic activity (65). In streptozocin 
(STZ)‑induced diabetic model mice, CUR intervention was 
identified to reduce blood glucose levels (116). Using malondi‑
aldehyde and NAD(P)H quinone dehydrogenase 1 (NQO1) as 
indicators, CUR was also reported to inhibit myocardial oxida‑
tive stress by upregulating NRF2 in type 1 DM (T1DM) model 
rats (45). The upregulation of the endogenous antioxidant gene 
NRF2 also inhibited hyperglycemia‑induced inflammation, 
macrophage infiltration, diabetic‑induced cardiac dysfunc‑
tion, endoplasmic reticulum stress, oxidative stress injury and 
apoptosis (117).

SFN. As an isothiocyanate, SFN is widely found in cruciferous 
vegetables, especially broccoli (118). SFN was discovered to 
be an activator of the transcription factor NRF2, and it was 

observed to reduce the oxidative damage caused by DCM and 
improved cardiac function in T1DM model mice (119). SFN 
was also identified to effectively prevent cardiac enlarge‑
ment and cardiac dysfunction in type 2 DM model mice by 
upregulating the expression levels of NRF2 and the subsequent 
expression levels of the downstream genes, HO‑1 and NQO1, 
and significantly reducing the myocardial inflammatory 
response, fibrosis and oxidative damage (120).

RES. RES is a polyphenolic substance widely present in plants, 
including grape skins, nuts and knotweed (121). It was shown to 
have antioxidative stress and antihypertensive effects in T1DM 
model rats (122). RES was found to attenuate cardiac dysfunc‑
tion, cardiac hypertrophy and myocardial fibrosis (123). By 
detecting various indicators of oxidative stress in the heart, it 
was also illustrated that RES significantly reduced the degree 
of oxidative stress damage caused by DM (124). RES also 
reduced oxidative stress and inhibited the cardiac hypertrophy 
and vascular fibrosis caused by connective tissue growth factor 
by upregulating NRF2 expression levels and the transcriptional 
activity of its downstream target genes (125).

DMF. DMF is an oral drug used for the treatment of adult 
multiple sclerosis and in Europe for the treatment of 
psoriasis (126). In both human and animal experiments, it 
was demonstrated that DMF effectively activated NRF2 and 
promoted its downstream antioxidative stress activity (127). 
In mice with T1DM, the measurements of the antioxidant 
enzymes, SOD, HO‑1 and other indicators, suggested that 
DMF significantly inhibited the levels of oxidative stress in the 
DCM myocardium by reducing the source of free radicals and 
increasing the expression of enzymes and proteins involved 
in oxidative stress (128). Another previous study also revealed 
that the protective effect of DMF on DCM was related to the 
upregulation of NRF2 and the expression of downstream 
antioxidant genes in the cardiomyocytes of T1DM model 
mice (129).

Rutin. Rutin is a medicinally active ingredient of a flavonoid 
plant that exerts strong pharmacological activity and low 
toxicity (130). Rutin reportedly promoted vasodilation, the 
antagonization of platelet activating factor, anti‑inflammatory 
and anti‑oxidative processes, and the protection of the 
pancreas (131). It was reported that rutin may also reverse 
diabetic myocardial injury (78). In STZ‑induced diabetic 
model mice, the levels of serum myocardial enzymes and 
other indicated were recorded, and hematoxylin and eosin and 
Masson's trichrome staining were performed, and rutin was 
illustrated to reduce the serum myocardial enzyme content, 
improve the pathological morphology of myocardial cells, 
reduce the degree of fibrosis and alleviate myocardial injury 
in mice with DCM (132).

5. miRNAs as a novel drug therapy for DCM

miRNA is a type of endogenous, non‑coding single‑stranded 
RNA, which participates in numerous physiological 
processes, including angiogenesis, metabolism, cell growth, 
survival and death, proliferation and differentiation (133). 
miRNA can negatively regulate gene expression by 
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promoting the degradation, and inhibiting the transla‑
tion, of target RNA (134). Notably, the dysregulation of 
miRNA biological mechanisms has been shown to promote 
a variety of diseases, including DCM (135). For example, 
miR‑1 was found to be abundant in the diabetic myocar‑
dium, where it promoted ROS production and the decline 
in mitochondrial membrane potential, whilst upregulating 
Bax expression levels and inhibiting Bcl‑2 expression levels, 
thereby promoting cardiomyocyte apoptosis (136). Similarly, 
Dludla et al (137) suggested that inhibiting the expression 
levels of miR‑1 had a protective effect on the myocardium in 
patients with diabetes.

As one of the important downstream components of 
p53‑mediated cell signal transduction pathways, miR‑34b 
was discovered to serve a proapoptotic role in patients with 
DM complicated with HF (138,139). It has been reported that 
p53 is a target of miR‑30c and miE‑181a (124). In addition, in 
another previous study, the downregulation of miR‑30c and 
miR‑181a in DCM was closely related to the activation of the 
p53 pathway in cardiomyocyte apoptosis (140).

During the course of DM, miRNAs have been discovered 
to be involved in numerous aspects of DCM pathogenesis, 
including apoptosis, fibrosis, hypertrophy, mitochondrial 
dysfunction and epigenetic modifications (141). Therefore, it is 
hypothesized that miRNAs may serve an important role in the 
pathophysiological processes of DCM. Further research into 
miRNAs has the potential to provide new perspectives into the 
prevention and treatment of DCM.

6. Conclusions

Oxidative stress is known to serve a significant role in DCM. 
Therefore, signaling via the NRF2/Keap1/ARE pathway may 
represent a novel drug target for the treatment of DCM. In 
addition, research into the relationship between miRNA and 
DCM has far‑reaching clinical significance. Thus, the role 
of miRNA in the pathophysiology of DCM must be further 
clarified to be applied in clinical practice.
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