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Abstract

Multirate filterbanks have found applications in speech processing, image processing, communications, and in the
development of new sampling theorems. This paper explores the relationship between sampling theorems and
multirate filterbanks in the linear canonical transform (LCT) domain. The sampling identity and the interpolation
identity for bandlimited signals in the LCT domain are discussed and then employed to obtain a discrete-time
implementation for bandlimited signals in the LCT domain from their multichannel samples. Furthermore, we relate
the multichannel sampling for bandlimited signals in the LCT domain as well as the corresponding continuous-time
LCT filterbank to the discrete-time LCT filterbank, which can lead to new sampling strategies for bandlimited signals
in the LCT domain.
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1. Introduction
Over the recent years, multirate filterbanks have found
applications in speech processing, image processing,
communications, radar systems, etc. [1,2]. The structure
of uniform filterbanks is generally composed of two
parts: an analysis and a synthesis filterbank. Filterbanks
help split a signal into two or more subbands, decimate
each subband signal, and allocate bits for samples in
each subband, which is the basic principle of subband
coding for speech and image signals [1]. Specifically,
properties of speech and image signals to human percep-
tion are used in the coding process. In video signal pro-
cessing, subband coding has been successfully applied
for image compression [3-5].
Sampling is one of the most fundamental concepts in

the area of digital signal processing, which serves as a
bridge between continuous physical signals and discrete
signals [6]. Sampling theorems for continuous-time signals
remain an active research field for decades. The classical
Shannon sampling theorem has been extended into vari-
ous generalized versions. Specifically, Papoulis has showed
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that a Fourier bandlimited signal can be recovered from
several linear time-invariant filtered versions of the ori-
ginal signal, where each channel is sampled at a fraction of
the Nyquist rate [7]. In fact, the Papoulis' multichannel
sampling theorem can be understood from the framework
of filterbanks, which is independently developed in the
discrete-time domain. In [8], Brown exhibits the resem-
blance between the Papoulis' multichannel sampling and
the filterbanks and shows that the reconstruction process
from multichannel samples is essentially a problem of de-
signing a synthesis filterbank. In [9], Vaidyanathan and Liu
further exploits the relationship between the multichannel
sampling theorem and multirate filterbanks, and utilizes
the framework of the filterbanks as a convenient tool for
the derivation of the sampling theorems. In [10], the
filterbank interpretation of multichannel sampling is
presented more explicitly by using two identities, and the
efficient reconstruction from multichannel samples is
obtained.
In another advance in signal processing, the linear ca-

nonical transform (LCT) has been introduced and used
in processing nonstationary signals [11]. The LCT is a
linear integral transform with four parameters (a, b, c,
and d). Although it is not very well-known, its special
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cases are widely applied in various fields under different
names [12]. The well-known operations such as Fourier
transform (FT), the fractional Fourier transform (FRFT)
[11], the Fresnel transform [13], and the scaling operation
are all special cases of the LCT. The LCT is also applied
in filter design, signal synthesis, pattern recognition, time-
frequency analysis, holographic three-dimensional televi-
sion, and many others [14-17]. Understanding the LCT
can help gain more insight into its special cases and carry
the knowledge gained from one subject to others [12].
Moreover, a nonstationary signal (for example, the chirp
signals) that is nonbandlimited in the FT domain can be
bandlimited in a LCT domain. Therefore, many results in
the FT domain have been extended to the LCT domain,
such as uncertainty relations [18,19], sampling theorems
[20-26], sampling rate conversion [27], and multirate
filterbanks [28].
This paper generalizes the relationship between the

multichannel sampling theorem and multirate filterbanks
from the FT case to the LCT case. In section 2, some pre-
liminaries about the definition of the LCT, the uniform
sampling theorem, and the convolution theorem for the
LCT are introduced. The sampling and interpolation iden-
tities for bandlimited signals in the LCT domain are
presented in section 3. In section 4, we use these identi-
ties to obtain an efficient reconstruction method for
bandlimited signals in the LCT domain from multichannel
samples. Moreover, in section 4, we discuss the relation-
ship between a continuous-time LCT filterbank, which is
an interpretation of the multichannel sampling, and a
discrete-time LCT (DTLCT) filterbank. Finally, conclu-
sions are made in section 5. The derived results reveal a
method for processing signals nonbandlimited in the FT
domain but bandlimited in the LCT domain, and can be
seen as a step towards generalizing the relationship be-
tween the multichannel sampling and filterbanks from the
FT to other transforms that are special cases of the LCT.

2. Preliminaries
2.1. Linear canonical transform
The LCT of x(t) with parameters (a, b, c, and d), namely
XM(u), is defined as [11]

XM uð Þ ¼ LM x½ � uð Þ

¼
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where M ¼ a b
c d

� �
is the parameter matrix and det(M) =

ad − bc = 1. Two successive LCTs with matrices M1 and
M2 equal to another LCT with the matrix M3 = M2M1;
consequently, the inverse LCT is given by the LCT with pa-
rameters (d, −b, −c, and a). The LCT with the parameter

matrix M ¼ cosθ sinθ
− sinθ cosθ

� �
reduces to the FRFT and to

the FT when θ = π ⁄ 2. The LCT reduces to the Fresnel

transform when M ¼ 1 b
0 1

� �
. Note that when b = 0, the

LCT becomes a chirp multiplication. Therefore, only the
cases where b ≠ 0 are considered. Without loss of general-
ity, we assume b > 0 in this paper.
A signal x(t) is said to be bandlimited to σM in the

LCT domain with the parameter M if XM(u) = 0 for
|u| > σM. A nonzero bandlimited signal x(t) in the LCT
domain has the following property: If x(t) is bandlimited

in the LCT domain with the parameter M1 ¼ a1 b1
c1 d1

� �
,

then it cannot be bandlimited with another parameter

M2 ¼ a2 b2
c2 d2

� �
, satisfying the relationship a1 ⁄ b1 ≠ a2 ⁄

b2 [25]. From this property, we can see that if a signal is
nonbandlimited in the FT domain, then it can be
bandlimited in the LCT domain [29]. Therefore, the
problems of processing nonbandlimited signals in the
FT domain can be solved in the LCT domain.

2.2. Uniform sampling theorem in the LCT domain
The uniform sampled version of a continuous-time sig-

nal x(t) with the sampling period T is xT tð Þ ¼ x tð Þ
X∞
n¼−∞

δ t−nTð Þ, where δ(t) is the unit impulse function, or

Dirac delta function. The spectrum in the LCT domain
of the uniform sampled signal xT(t) is [16]

XM
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Equation (2) shows that the LCT spectrum XM

T uð Þ rep-
licates XM(u) with a period 2πb⁄T along with a phase
shift. Thus, the Nyquist sampling period for a
bandlimited signal in the LCT domain with the param-
eter M is TM

s ¼ πb=σM . For a discrete-time signal xT(n)
sampled from a continuous-time signal x(t) with the
sampling period T, i.e., xT(n) = x(nT), the (DTLCT of xT(n)
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with parameters (a, b, c, and d), namely ~XM
T wð Þ , can be

defined from (2) by denoting w = uT [27]:

~XM
T wð Þ ¼ ~LM

T x½ � wð Þ

¼
ffiffiffiffiffiffiffiffiffiffi
1

j2πb

s
⋅e j d2b
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T2
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xT nð Þe j a2b nTð Þ2−j1bwn: ð3Þ

Here, we use the :̃ operator to indicate the discrete-
time LCT domain.

2.3. Convolution theorem for the LCT
In [16], the convolution theorem for the LCT has been

proposed, which is as follows: Define y tð Þ ¼ x tð Þ �M

h tð Þ ¼
ffiffiffiffiffiffiffi
1

j2πb

q
e−j

a
2bt

2
x tð Þe j a2bt2

� �
� h tð Þe j a2bt2
� �h i

, where * is

the conventional convolution operator for the FT. �M
denotes the convolution for the LCT with the param-
eter M. XM(u), HM(u), and YM(u) are the LCTs of x(t),
h(t), and y(t), respectively. Then, YM(u) =XM(u) ⋅GM(u),

where GM uð Þ ¼ HM uð Þe−j d2bu2 . Through the convolution
theorem for the LCT, we can define a multiplicative filter
GM(u) in the LCT domain, which is a linear time-variant
system.

3. Sampling and interpolation identities
associated with the LCT
In [9], the close analogy between sampling theorems and
the multirate filterbanks is exploited, and in [10], the
filterbank interpretation of multichannel sampling is
given more explicitly by using two identities. The sam-
pling and interpolation identities in [10] are suitable for
bandlimited signals in the traditional FT domain. How-
ever, these identities are not applicable to signals
nonbandlimited in the FT domain, but bandlimited in
the LCT domain. In order to solve this problem, we
introduce the sampling identity and the interpolation
identity for bandlimited signals in the LCT domain in
this section.
Theorem 1 Assume that x(t) is a continuous-time sig-

nal bandlimited to σM in the LCT domain, HM(u) is a
filter bandlimited to σM in the LCT domain, and T ¼ N
TM
s , where N is an integer. Then, the block diagrams il-

lustrated in Figure 1a,b are equivalent, provided that
~HM wð Þ satisfies

~HM wð Þ ¼ HM w

TM
s

� �
; wj j≤πb : ð4Þ

Proof For simplicity, the parameter matrix M is omit-
ted in this proof. In Figure 1a, the LCT of s1(t) is
S1 uð Þ ¼ LM s1½ � uð Þ ¼ X uð ÞH uð Þ: ð5Þ

Since yT(n) is the uniformly sampled version of s1(t)
with a period T, its DTLCT is
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where w = uT. Note that the bandwidth of HM(u) in the
LCT domain is σM, and T ¼ NTM

s ¼ Nπb=σM. Let k = l +
k'N, where 0 ≤ l ≤ N − 1. Then, (6) becomes
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In Figure 1b, the DTLCT of the discrete-time signal
s2;TM

s
nð Þ is
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where ws ¼ uTM

s . Thus, we have
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The output yT(n) is the result of decimating sH;TM
s
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by a factor N, and thus the DTLCT of yT(n) can be
expressed in terms of the spectrum of sH;TM
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Substituting (8) and (9) into (10), we can obtain
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Comparing (11) to (7), we observe that the two out-
puts are equal if

~H wð Þ ¼ H
w

TM
s

� �
; wj j≤πb :

Theorem 2 Assume that H(u) is a filter bandlimited to
σM in the LCT domain, and HM

LP uð Þ is a lowpass filter in
the LCT domain such that

HM
LP uð Þ ¼ TM

s uj j≤σM
0 otherwise

:

	
ð12Þ

Let T=TM
s ¼ N where N is an integer, then the block

diagrams depicted in Figure 2a,b are equivalent, pro-
vided that ~HM wð Þ satisfies

~HM wð Þ ¼ 1

TM
s

HM w

TM
s

� �
; wj j≤πb : ð13Þ
(a)
Figure 1 Sampling identity for bandlimited signals in the LCT domain
discrete-time domain.
Proof For simplicity, the parameter matrix M is omit-
ted in this proof. In Figure 2a, the input of the filter
HM(u) is

s tð Þ ¼
X∞
n¼−∞

x nTð Þδ t−nTð Þ

¼ x tð Þ
X∞
n¼−∞

δ t−nTð Þ: ð14Þ

The LCT of s(t) with the parameter M is
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(b)
. (a) Sampling block in continuous-time domain. (b) Sampling block in



Figure 3 Reconstruction of bandlimited signals from
multichannel samples in the LCT domain.

(a) (b) 
Figure 2 Interpolation identity for bandlimited signals in the LCT domain. (a) Interpolation block in continuous-time domain.
(b) Interpolation block in discrete-time domain.
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Then, we have
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In Figure 2b, the DTLCT of xT(n) is
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where w = uT. According to the relationship between
the spectrum in the LCT domain and the expansion
operation, we have
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Note that y(t) is a lowpass version of a uniform sam-

pled signal sI tð Þ
X∞
n¼−∞

δ t−nTM
s
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with the lowpass filter
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LP uð Þ satisfying (12). Then, we can obtain
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Comparing (20) with (16), we observe that the two
outputs are equal if

H uð Þ ¼ TM
s

~H TM
s u
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; uj j≤σM ¼ πb

TM
s

ð21Þ

or equivalently ~H wð Þ ¼ 1
TM
s
H w

TM
s

� �
; wj j≤πb:

In Figures 1a and 2a, the whole processing is performed
in the continuous-time domain, whereas in Figures 1b and
2b, most of the processing is performed in the discrete-
time domain. The sampling identity and the interpolation
identity establish an equivalence between a continuous-
time filtering and a discrete-time filtering involving sam-
pling rate conversion in the LCT domain.

4. Continuous and discrete LCT filterbanks
In subband coding for speech and image signals, it is
possible to compress the signal by the filterbank for
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bandlimited signals in the FT domain. However, we may
encounter signals that are not bandlimited in the FT do-
main but bandlimited in a LCT domain. In this case, we
need to use the filterbank in the LCT domain to perform
the subband coding.
In [26] and [30], the Papoulis' multichannel sampling

theorem has been extended for bandlimited signals in
the FRFT domain and the LCT domain, respectively. To
illustrate the utility of the derived identities, we apply
them to obtain an efficient discrete-time reconstruction
method for the multichannel sampling pattern in the
LCT domain in this section. By employing the sampling
and interpolation identities for bandlimited signals in
the LCT domain, a continuous-time LCT filterbank,
which corresponds to a certain multichannel sampling
scheme, can be converted to an equivalent discrete-time
LCT filterbank and vice versa.
Multichannel sampling theorem in the LCT domain

states that a bandlimited signal in the LCT domain can
be reconstructed from the samples of the outputs of
multiple LCT filters [26]. Let x(t) be a σM bandlimited
signal in the LCT domain with the parameter M, and
HM

k uð Þ, k = 1,…,N be N filters in the LCT domain. Then,
the original input signal x(t) can be reconstructed from
Figure 5 Discrete-time LCT filterbank implementation of sampling an
LCT domain.
the samples of the N outputs gk(t) of the LCT filters
HM

k uð Þ. The reconstruction formula is

x tð Þ ¼ e−j
a
2bt

2
XN
k¼1

X∞
n¼−∞

gk;T nð Þe j a2b nTð Þ2yk t−nTð Þ; ð22Þ

where T ¼ NTM
s ¼ Nπb=σM , gk,T(n) is the uniform sam-

ples of gk(t) with a sampling period T, i.e., gk,T(n) = gk(nT),
and yk(t) is the reconstruction function. Expressing (22) as
a convolution form in the LCT domain, we have

x tð Þ ¼
XN
k¼1

gk tð Þ
X∞
n¼−∞

δ t−nTð Þ
" #

�M zk tð Þ; ð23Þ

where zk tð Þ ¼ yk tð Þe−j a2bt2 :
Let FM

k uð Þ ¼ e−j
d
2bu

2
LM zk½ � uð Þ. Then, the reconstruction

formula (23) can be achieved via a continuous-time syn-
thesis filterbank that is shown in Figure 3.
Here, the filtering function FM

k uð Þ denotes the convo-
lution in the LCT domain with the parameter M rather
than the conventional Fourier convolution. It should be

pointed that the filters HM
k uð Þ are general, but not
d reconstruction processes for bandlimited signals in the
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entirely arbitrary. They must meet the condition that the
reconstruction function yk(t) is a solution of the system
[26]. Similar condition holds for the filters FM

k uð Þ.
Applying the interpolation identity to each branch

in Figure 3 and moving the term
X∞
n¼−∞

δ t−nTsð Þ and

lowpass filter HM
LP uð Þ outside the summation for each

branch, we can obtain the equivalent implementation
shown in Figure 4.
The discrete-time filters ~FM

k wð Þ with the expansion op-
erations construct a discrete-time synthesis filterbank or
a multirate filterbank in the LCT domain, which can be
performed very efficiently (e.g., utilizing the polyphase
structure [28]). Since the Papoulis' multichannel sam-
pling theorem is a unified framework for linear filtering
operations prior to sampling and the LCTs are a family
of integral transforms, reconstruction processes for
bandlimited signals in the corresponding transform do-
main (special cases of the LCT domain) from certain
multichannel samples can be efficiently implemented in
a similar way.
As the case in the Fourier domain, multichannel sam-

pling for bandlimited signals in the LCT domain can be
understood by relating the sampling and reconstruc-
tion schemes to the continuous-time analysis/synthesis
filterbank system in the LCT domain. Both the LCT
continuous-time and discrete-time filterbanks are related
to perfect reconstruction (PR) of the original bandlimited
signal in the LCT domain, with one in the continuous-
time domain and the other in the discrete-time domain.
Utilizing the sampling identity and the interpolation iden-
tity associated with the LCT, we can convert a continuous-
time LCT filterbank to an equivalent discrete-time LCT
filterbank preceded by a Nyquist rate sampling and
followed by an impulse train multiplication and a lowpass
filter in the LCT domain, and vice versa. For example, the
discrete-time LCT filterbank implementation of multichan-
nel sampling and reconstruction for bandlimited signals in
the LCT domain is shown in Figure 5. This relationship
also helps us derive new sampling schemes. We can obtain
new sampling and reconstruction processes from a PR
LCT multirate filterbank by converting it to a continuous-
time LCT filterbank.

5. Conclusions
This paper investigates the relationship between the
multichannel sampling theorem for bandlimited signals
in the LCT domain and the LCT multirate filterbanks.
Two identities for bandlimited signals in the LCT do-
main are firstly presented and then applied to obtain the
discrete-time implementation for multichannel sampling
based on the LCT. Through the use of the sampling and
the interpolation identities associated with the LCT, we
establish a relationship between the continuous-time
LCT filterbank and the discrete-time LCT filterbank.
New sampling strategies based on the LCT can be
obtained using these identities. Since the discrete-time
filterbank can be implemented efficiently (e.g., using the
polyphase structure), the sampling and reconstruction
processes can be realized efficiently.
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