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INTRODUCTION

Fungi are remarkable organisms that readily produce a wide
range of natural products often called secondary metabolites.
In this review we will use the terms interchangeably. In many
cases, the benefit these compounds confer on the organism is
unknown (21). However, interest in these compounds is con-
siderable, as many natural products are of medical, industrial
and/or agricultural importance. Some natural products are del-
eterious (e.g., mycotoxins), while others are beneficial (e.g.,

antibiotics) to humankind (35). Although it has long been
noted that biosynthesis of natural products is usually associ-
ated with cell differentiation or development, and in fact most
secondary metabolites are produced by organisms that exhibit
filamentous growth and have a relatively complex morphology,
until recently the mechanism of this connection was not clear.
A critical advance in this regard was the establishment of a
G-protein-mediated growth pathway in Aspergillus nidulans

that regulates both asexual sporulation and natural product
biosynthesis (55). Since then, several studies have provided
insight into other molecules and pathways that link chemical
and morphological differentiation processes in fungi. The focus
of this review is to provide an overview of the research estab-
lishing this connection, and this review covers the progress
made to date in elucidating relationships between natural
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product metabolism and fungal development. We conclude
with speculation as to why such a relationship could be of value
to the organism.

SECONDARY METABOLISM IS ASSOCIATED WITH

DEVELOPMENTAL PROCESSES

Secondary metabolism is commonly associated with sporu-
lation processes in microorganisms (56, 77, 113), including
fungi (21, 103). Secondary metabolites associated with sporu-
lation can be placed into three broad categories: (i) metabo-
lites that activate sporulation (for example, the linoleic acid-
derived compounds produced by A. nidulans [23, 26, 27, 79]),
(ii) pigments required for sporulation structures (for example
melanins required for the formation or integrity of both sexual
and asexual spores and overwintering bodies [6, 63]), and (iii)
toxic metabolites secreted by growing colonies at the approx-
imate time of sporulation (for example the biosynthesis of
some deleterious natural products, such as mycotoxins [55,
120]). These and other examples of secondary metabolites that
fit into these categories are shown in Table 1.

Secondary Metabolites That Are Sporogenic Factors

Secondary metabolite production usually commences late in
the growth of the microbe, often upon entering the stationary
or resting phase (21). In early observations it was noted that
the environmental conditions required for sporulation and sec-
ondary metabolism were often similar and were more stringent
than those for pure vegetative growth (21, 51, 103). Although
it was once thought that natural products were essential for
sporulation, there are many examples of fungal strains that still
sporulate but are deficient in secondary metabolite production,
for example, Penicillium urticae patulin mutants (103) and A.

nidulans sterigmatocystin mutants (106). In addition, some sec-
ondary metabolites such as brevianamides A and B produced
by Penicillium brevicompactum appear only after conidiation
has commenced (14). It is possible, however, that some natural
products have subtle effects on sporulation, as recent studies of
A. nidulans sterigmatocystin mutants indicate that they exhibit
a decrease in asexual spore production not detectable by the
unaided eye (97, 108).

Some secondary metabolites have easily observable effects
on morphological differentiation in fungi. Several studies show
that compounds excreted by mycelium can induce asexual and
sexual sporulation in other fungi; this phenomenon operates
across species and genera (51, 88). In most cases, these com-
pounds have not been identified but are presumed to be nat-
ural products produced as the mycelia ages. Other natural
products affecting fungal development are better character-
ized. Fusarium graminearum produces an estrogenic mycotoxin
called zearalenone that enhances perithecial production in F.

graminearum. The addition of dichloros, an inhibitor of
zearalenone synthesis, inhibits the sexual development of this
fungus (125). Butyrolactone I, an inhibitor of eukaryotic cyclin-
dependent kinases produced by Aspergillus terreus, increases
hyphal branching, sporulation, and production of another sec-
ondary metabolite, lovastatin, in this fungus (102). Butyrolac-
tone-containing molecules act as self-regulating factors in
some bacteria and control many biological functions such as
antibiotic and virulence factor production (33). In A. nidulans,
endogenous oleic acid- and linoleic acid-derived molecules
called psi factor govern the ratio of asexual to sexual spores in
this organism (23, 26).

Pigments

Some fungal pigments are natural products associated with
developmental structures, the most common being melanins.
Melanins are generally dark brown pigments formed by oxida-
tive polymerization of phenolic compounds and are synthe-
sized during spore formation for deposition in the cell wall.
Melanin biosynthesis has been well studied in pathogenic
fungi, where the pigment not only contributes to the survival of
the fungal spore by protecting against damaging UV light but
is also an important virulence factor.

In Colletotrichum lagenarium, melanin biosynthesis has been
associated with the formation of appressoria (116). Appresso-
ria are infection structures required for host penetration, and
any impairment in their formation can reduce virulence. In
Alternaria alternata, melanin deposition is also involved in
spore development. Disruption of the A. alternata melanin
biosynthetic gene brm2 dramatically decreases melanin pro-

TABLE 1. Fungal secondary metabolites associated with sporulation processes and development

Secondary metabolite Producing fungus Association with development Reference(s)

Linoleic-acid derived psi factor Aspergillus nidulans Induces sporulation; affects ratio of
asexual to sexual spore
development

23, 26, 27, 79

Zearalenone Fusarium graminearum Induces sporulation; enhances
perithecial formation

125

Butyrolactone I Aspergillus terreus Induces sporulation and lovastatin
production

102

Melanin Colletotrichum lagenarium Associated with appressorial
formation

116

Melanin Alternaria alternata UV protection of spore 63
Melanin Cochliobolus heterotrophus Required for spore survival 72
Spore pigment Aspergillus fumigatus Required for virulence 121
Mycotoxins Aspergillus spp. Produced after sporulation 12, 49, 98
Patulin Penicillium urticae Antibiotic; produced after

sporulation
103
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duction in this fungus. The conidia produced are reduced in
diameter and are more sensitive to UV light than the wild type
(63). In another fungus, the maize pathogen Cochliobolus het-

erotrophus, fitness studies of albino spore mutants in a green-
house indicated that melanin production is required for sur-
vival of this fungus (72).

The effect of melanin biosynthesis on the virulence of fungal
human pathogens has also been studied. In Aspergillus fumiga-

tus, a cause of invasive aspergillosis in immunocompromised
patients, spore pigment is a virulence factor. Disruption of the
alb1 gene, which encodes a putative polyketide synthase, cre-
ates a pigmentless conidial phenotype and leads to a significant
reduction in fungal infection of a murine model (121).

Mycotoxins

The most deleterious of natural products, in terms of health
effects, are the mycotoxins. A relationship between mycotoxin
production and sporulation has been documented in several
mycotoxigenic genera. For example, in Aspergillus parasiticus

certain chemicals that inhibit sporulation have also been shown
to inhibit the production of aflatoxin (98). In A. parasiticus and
A. nidulans chemical inhibition of polyamine biosynthesis in-
hibits sporulation and aflatoxin and sterigmatocystin produc-
tion, respectively (49). Several papers have shown that As-

pergillus mutants deficient in sporulation are also unable to
produce aflatoxin (see reference 12 and references therein). In
1977, it was shown that Claviceps purpurea mutants lacking the
ability to form conidia on agar plates also produce less toxic
alkaloids (93). In the same year, Sekiguchi and Gaucher (103)
reported that P. urticae NRRL 2159A mutants blocked at an
early stage of conidiation produced markedly less patulin un-
der growth conditions which normally supported patulin bio-
synthesis. This study suggests an indirect effect of sporulation
on patulin biosynthesis (although patulin biosynthetic muta-
tions have no effect on conidiation [103]). In Fusarium, the
case for the existence of a genetic connection between sporu-
lation and mycotoxin production has recently been identified.
A mutation in the Fusarium verticillioides FCC1 gene results in
reduced sporulation and reduced fumonisin B1 biosynthesis
(104). Also, introducing a dominant-activated allele of an A.

nidulans � G-protein into Fusarium sporotrichioides produces
strains with elevated production of T-2 mycotoxin but reduced
conidium formation (115).

REVIEW OF ASPERGILLUS DEVELOPMENT AND

MYCOTOXIN PRODUCTION

Aspergillus Developmental Structures

To fully understand the relationship between sporulation
and mycotoxin biosynthesis, we will now briefly review these
developmental processes in Aspergillus with a focus on A. nidu-

lans. Most Aspergillus spp. propagate solely by asexual spores
called conidia (e.g., Aspergillus flavus and A. parasiticus), while
other species produce both conidia and sexual spores called
ascospores (e.g., A. nidulans, teleomorph: Emericella nidulans).
A. nidulans conidia are formed on specialized complex struc-
tures called conidiophores, while ascospores are produced in-
side spherical sexual fruiting bodies called cleistothecia. Most

asexual species, including A. flavus and A. parasiticus, form
resistant structures called sclerotia. For Aspergillus species that
are problematic opportunistic pathogens of plants and animals
(including humans), conidia serve as the major source of in-
oculum.

The formation of conidiophores begins with a stalk that
extends from a thick-walled foot cell. The tip of the stalk begins
to swell, forming a vesicle. From the vesicle, cells called sterig-
mata are formed (31, 81, 86), and chains of conidia originate
from the sterigmata. Genetic and molecular studies of conidial
reproduction in A. nidulans identified a gene, brlA (31), that
encodes a transcriptional regulator proposed to govern the
activation of developmental genes at the time of vesicle for-
mation (2, 3). Loss-of-function brlA mutations result in no
conidiation and abnormally long conidiophore stalks (17, 58)
and do not affect sterigmatocystin production in A. nidulans

(49). However, forced expression of brlA from an inducible
promoter in vegetative cells causes immediate activation of
conidiation-specific genes, resulting in conidiophore produc-
tion (8). The effect of brlA overexpression on sterigmatocystin
production has not been investigated. Both conidiation and
sterigmatocystin biosynthesis are coregulated, at a step prior to
brlA expression, by a common signal transduction pathway.
This regulatory pathway will be the subject of our review in
sections below.

Aflatoxin and Sterigmatocystin Biosynthesis

Since the discovery of aflatoxin and its deleterious properties
to humans and animals, efforts have been directed toward the
understanding of the molecular mechanisms leading to its bio-
synthesis. The last decade has seen significant progress in char-
acterizing the genes required for aflatoxin biosynthesis in A.

flavus and A. parasiticus and sterigmatocystin biosynthesis in A.

nidulans (sterigmatocystin is the penultimate precursor in the
aflatoxin biosynthetic pathway).

Genes required for the synthesis of aflatoxin and sterigmato-
cystin are well conserved between aspergilli and are located in
large gene clusters (18, 120, 130). The relative order and tran-
scriptional direction of some of the homologous gene pairs
though are not conserved (64). Thus far, most of the genes in
the respective clusters have been shown to encode enzymes
required for toxin biosynthesis (64). At least two genes, aflR

and aflJ, play a regulatory role (80, 91, 131). Several studies of
aflR have demonstrated it encodes a sterigmatocystin/aflatoxin
pathway-specific transcription factor (29, 119, 126, 131). aflR

deletion mutants in all three Aspergillus spp. do not express
biosynthetic genes in the sterigmatocystin-aflatoxin cluster nor
do they produce sterigmatocystin or aflatoxin (29, 92, 131).
Loss of aflR does not stop spore or sclerotial production but
does affect the numbers of spores (97, 108) and sclerotia (25,
120) formed. The function of aflJ is not well defined, but
disruption of aflJ in A. flavus results in a failure to produce
aflatoxin (80).

Environmental Factors That Affect Mycotoxin Production

and Development in Aspergillus spp.

Some environmental factors affect mycotoxin production,
conidiation, and cleistothecial and sclerotial production con-
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currently. Physical parameters affecting mycotoxin and/or
spore production in Aspergillus spp. include temperature (42),
availability of an air-surface interface (50), and pH (20, 32).
Nutritional factors such as carbon source and nitrogen source
can also affect both mycotoxin production and morphological
differentiation (65). Additionally, some compounds present in
seeds commonly infected by Aspergillus species can influence
both toxin production and fungal development (22, 24, 48,
135).

Effects of pH

Although aflatoxin and sterigmatocystin production, like
that of penicillin, appears to be influenced by growth medium
pH, studies addressing pH regulation of these mycotoxins have
produced complex and at times contradictory results. Cotty
(32) determined a link between aflatoxin production and scle-
rotial morphogenesis based on changes of both chemical and
morphological differentiation in response to pH. At pH 4.0 or
below, sclerotial production is reduced by 50% in A. flavus

while aflatoxin production is maximal (32). However,
Buchanan and Ayres (20) concluded from their work that the
initial pH of growth medium was not an important determinant
for mycotoxin production. In fact, the effect of pH on aflatoxin
biosynthesis is dependent on the composition of growth media.
Keller et al. (65) showed that A. nidulans and A. parasiticus

produced less mycotoxin as the pH of the growth medium
increased. In addition, pH-sensing mutants of A. nidulans ex-
hibit both sporulation (94, 118) and sterigmatocystin produc-
tion aberrations (94). Further research is necessary to eluci-
date the complex interactions between pH and other
environmental factors that influence morphological and chem-
ical differentiation in Aspergillus.

Effects of Carbon and Nitrogen Source

Availability and type of carbon and nitrogen source affect
sterigmatocystin and aflatoxin production. Simple sugars such
as glucose, fructose, sucrose, and sorbitol as sole carbon
sources support high fungal growth, sporulation, and aflatoxin
production (1, 19, 59, 75, 76). In contrast, peptone (1, 19, 42,
75) and the more-complex sugars like galactose, xylose, man-
nitol, and lactose (59) do not support aflatoxin production well.

The choice of nitrogen source used in the growth medium
can have different effects on sterigmatocystin and aflatoxin
production in different Aspergillus species. Nitrate as the nitro-
gen source has been shown by some groups to repress the
synthesis of aflatoxin intermediates in A. parasiticus (59, 85)
but enhance sterigmatocystin production in A. nidulans (42).
Feng and Leonard (42) also observed no sterigmatocystin pro-
duction in ammonium-containing media. Other studies (65,
82) indicate sterigmatocystin and aflatoxin production in-
creases in ammonium-based media and decreases in nitrate-
based medium. Nitrogen source influences not only mycotoxin
production but also the formation of developmental structures
in Aspergillus spp. Studies in which A. flavus is grown on agar
media containing either nitrate or ammonium as the sole ni-
trogen source have shown that development of sclerotia occurs
on nitrate but not on ammonium (13).

Effects of Host Seed Constituents

In A. nidulans, linoleic acid is metabolized into a series of

sporogenic molecules called psi factors (27). Calvo et al. (24)

have demonstrated that linoleic acid and the hydroperoxylino-

leic acid derivatives from seeds increase asexual spore produc-

tion in A. flavus, A. parasiticus, and A. nidulans. Figure 1 dem-

onstrates how the addition of 13S-hydroperoxylinoleic acid to

growth medium can stimulate conidiation of A. flavus. The

seed fatty acids closely resemble psi factors in structure (Fig.

2). As discussed earlier, psi factors are fatty acid-derived com-

pounds synthesized endogenously by Aspergillus (27) that in-

fluence the development of this fungus. The results presented

above suggest that the sporogenic effect of seed fatty acids

could take place through interference and/or mimicking of psi

factor.

Linoleic acid also supports aflatoxin production, whereas the

hydroperoxylinoleic acid derivatives and downstream break-

down products are reported to inhibit (22, 36, 48, 127) or

stimulate (22, 34, 89) aflatoxin production. This differential

effect on aflatoxin production might be associated with the

placement of functional groups on the carbon backbone of

fatty acid derivatives. For example, Burow et al. (22) have

shown specifically that treatment of Aspergillus with 13S-hy-

droperoxylinoleic acid decreases the accumulation of aflatoxin

biosynthetic gene transcripts. On the other hand, 9S-hydroper-

oxylinoleic acid lengthens the time aflatoxin and sterigmato-

cystin transcripts accumulate.

Many other plant compounds have been reported to affect

fungal growth and aflatoxin production. For a review of these

metabolites, see reference 134.

FIG. 1. Sporogenic effect of linoleic acid-derived compounds on
Aspergillus. Conidia of A. flavus were spread evenly over YGT medium
(26) at a concentration of 106 spores/ml. Discs containing 1 mg of
13S-hydroperoxylinoleic acid (L) or solvent control (R) were placed on
the surface, and the plate was incubated at 29°C for 2 days. Conidium
production is induced by 13S-hydroperoxylinoleic acid (24).
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SIGNAL TRANSDUCTION PATHWAY

The previous section demonstrates that interactions be-
tween sporulation and mycotoxin production in relation to
environmental factors are not understood at a genetic level.
Presumably, the Aspergillus fungal cell receives many develop-
mental and mycotoxin-stimulating signals from the environ-
ment. The detection and integration of these signals leading to
a comprehensive response by the fungus could involve many
genetic elements. However, once these signals are transmitted
into the fungal cell, it appears that a common signal transduc-
tion pathway is partially responsible for tying fungal develop-
ment to natural product biosynthesis. A major contribution to
the elucidation of this genetic connection between fungal de-
velopment and biosynthesis of natural products was made in
the study of Aspergillus developmental mutants first described
by Bennett and collaborators (10–12), in which they observed
that conidial mutants also lost the ability to produce aflatoxin.
Further studies by Kale et al. (60, 61) revealed that these A.

flavus and A. parasiticus developmental mutants also lack aflR

and aflatoxin enzymatic gene transcripts and fail to accumulate
other aflatoxin pathway intermediates. A similar phenotype
was found in developmental A. nidulans mutants called “fluffy”
(37, 78, 117, 123). Hicks et al. (55) demonstrated that some of
these A. nidulans developmental mutants are also deficient in
sterigmatocystin production. These findings led to the discov-
ery of a signal transduction pathway regulating both conidia-
tion and sterigmatocystin-aflatoxin biosynthesis.

Overview of Signal Transduction in Fungi

In Saccharomyces cerevisiae, several signaling pathways op-
erate to regulate filamentous growth and differentiation (71).
One prominent pathway involves components of the mitogen-

activated protein (MAP) kinase pathway that is activated in
response to pheromones and nutrition availability. In haploid
S. cerevisiae cells, the MAP kinase pathway mediates the re-
sponse to pheromones during mating (71). In diploid cells, the
same signaling pathway is used to stimulate filamentous growth
in response to nitrogen limitation and other environmental
signals (46). A second well-studied signal transduction pathway
in S. cerevisiae operates through nutrient sensing and functions
in parallel to the MAP kinase pathway. It involves a heterotri-
meric G-protein-coupled receptor, adenylate cyclase, cyclic
AMP (cAMP) signaling molecules, and protein kinase A
(PKA) and regulates pseudohyphal growth (71). Upstream of
PKA are at least two other small, monomeric GTP-binding
proteins called Ras1 and Ras2 (71). Ras1 and Ras2 regulate
cAMP production by interacting with adenylate cyclase, and
Ras2 regulates the MAP kinase pathway during filamentous
growth. In Schizosaccharomyces pombe, a Ras1 homolog plays
a role in MAP kinase pathway activation but not in regulating
cAMP production (71).

Some proteins acting downstream of PKA in the G-protein
signaling pathway also interact with components of the MAP
kinase pathway (66). For example, MAP kinase and cAMP
signaling pathways both activate expression of the FLO11

gene. This gene encodes a cell surface protein required for
pseudohyphal formation in S. cerevisiae (101). Other studies of
S. cerevisiae indicate that cAMP-dependent protein kinases
might positively regulate signaling in the MAP kinase cascade
(83).

Protein kinase signaling pathways have also been examined
in some pathogenic fungi (see reference 71 for a recent re-
view). Briefly, in Ustilago maydis, cAMP signaling appears to
control the switch between budding and filamentous growth.
This switch is essential for the ability of the fungus to cause
diseases of crops (47). cAMP signaling is also involved in
appressorial formation in Magnaporthe grisea, a key step in the
infection process of rice (see reference 66 and references
therein). An � or � G-protein subunit of the human pathogen
Cryptococcus neoformans regulates mating, virulence, and mel-
anin biosynthesis (6). From these examples it is clear that the
G-protein signaling pathway is essential for fungal growth and
infection.

A G-Protein/cAMP/PKA Signaling Pathway Connects

Sporulation and Sterigmatocystin-Aflatoxin Production in

Aspergillus spp.

Characterization of fluffy mutants in Aspergillus G-protein

signaling. Insight into an Aspergillus G-protein signal transduc-
tion pathway originated by complementation of single-locus
asexual developmental mutants called fluffy. Six fluffy loci were
initially identified that were the result of recessive mutations in
the fluG, flbA, flbB, flbC, flbD, and flbE genes. Fluffy mutants
have similar phenotypes in being deficient in conidiophore
formation and brlA expression (4, 5, 37, 70, 123). Two of these
genes, fluG and flbA, were later found to regulate both asexual
development and sterigmatocystin production (55), with fluG

believed to act upstream of flbA (Fig. 3). fluG is involved in the
synthesis of an extracellular low-molecular-weight diffusible
factor that activates a pathway leading to conidiation and sterig-
matocystin production (69). FluG loss-of-function mutations

FIG. 2. Structures of linoleic acid and linoleic acid-derived mole-
cules from seed-, 13S-hydroperoxylinoleic acid (13S-HPODE)- and
9S-HPODE-, and linoleic acid-derived sporogenic molecules from A.
nidulans, psiA, psiB, and psiC.
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(e.g., �fluG, Table 2 and Fig. 3) present an aconidial, non-
sterigmatocystin-producing phenotype (55). Overexpression of
fluG in submerged culture was sufficient to induce brlA expres-
sion and subsequent conidiation (68). However, fluG overex-
pression was not sufficient to induce precocious sterigmatocys-
tin production, indicating that FluG-independent regulatory
elements are required in sterigmatocystin gene cluster activa-
tion (55).

FlbA loss-of-function mutants exhibit a phenotype similar to
those of �fluG strains, and in addition, the mycelium starts to
autolyze after several days of growth (55) (Table 2 and Fig. 3).
The FlbA protein was found to contain a regulator of G-
protein signaling (RGS) domain (70), suggesting that �flbA

strains harbor a constitutively active G-signaling pathway re-
sponsible for the aconidial, non-sterigmatocystin-producing
phenotype (Fig. 3). This was supported by the identification of
another mutant, fadAG42R, presenting the same phenotype as
�flbA. fadA is an � subunit of a heterotrimeric G protein,
putatively the target for the RGS domain of flbA (133). When
bound to GTP, FadA is in an active form that favors vegetative
growth (Fig. 3). Developmental activation leading to sporula-
tion and sterigmatocystin production presumably requires
FlbA to enhance the intrinsic GTPase activity of FadA. The
fadAG42R mutant is a dominant-activated form of FadA unable

to hydrolyze GTP (55) (Table 2 and Fig. 3). Mutants overex-
pressing flbA or mutants carrying a fadA dominant negative
allele where FadA is inactive, e.g., fadAG203R, show premature
sterigmatocystin production and conidiation (55). These re-
sults support a model in which FlbA negatively regulates the
FadA signaling pathway that blocks conidiation and sterig-
matocystin biosynthesis (Fig. 3).

Loss-of-function flbA or fadAG42R dominant activating mu-
tations block sterigmatocystin production and conidiation
through inhibition of the expression of the sterigmatocystin
gene transcription factor aflR and the asexual developmental
transcription factor brlA (55, 133). Conidiation can be rescued
in loss-of-function flbA mutants by forced brlA overexpression
(J. Hicks and N. P. Keller, unpublished data). However, aflR

overexpression failed to reestablish sterigmatocystin produc-
tion in a �flbA background (K. Shimizu, J. Hicks, and N. P.
Keller, unpublished data). These results suggest differential
downstream regulation in the signal transduction pathway for
brlA and aflR.

Role of pkaA, which encodes a PKA catalytic subunit. The
understanding of the mechanism by which FlbA and FadA
regulate conidiation and sterigmatocystin production was re-
cently extended by characterization of a cAMP-dependent pro-
tein kinase catalytic subunit (pkaA) (106). Deletion of pkaA

FIG. 3. (A) Phenotype effect of signaling mutants. Strains shown are wild-type A. nidulans (a), �fluG (b), �flbA (c), fadAG42R (d), and �pkaA
(e). (B) Proposed model of G-protein signal transduction regulating sterigmatocystin production and sporulation. Arrows indicate positive
regulation, and blocked arrows indicate negative regulation. Solid lines indicate known pathways. Dashed lines indicate postulated pathways.
Abbreviations: FluG, early acting developmental regulator; FlbA, regulator of G-protein signaling; FadA, � subunit of G-protein; PkaA, catalytic
subunit of PKA; LaeA, AflR regulator; AflR, sterigmatocystin-aflatoxin-specific transcription factor; BrlA, conidiation-specific transcription factor
(55, 106).
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leads to hyperconidiation and has little effect on sterigmato-
cystin production, while pkaA overexpression inhibits brlA and
aflR expression and, concomitantly, conidiation and mycotoxin
production—the latter being a phenotype resembling �flbA

and dominant-activated fadAG42R mutants (106) (Table 2 and
Fig. 3). Deletion of pkaA restores conidiation in the �flbA and
fadAG42R backgrounds but restores sterigmatocystin produc-
tion only in the �flbA but not fadAG42R background (106).
These data suggest that FlbA and FadA inhibition of conidia-
tion is mediated in part through PkaA and that FlbA has a
FadA-independent, PkaA-dependent role in regulating sterig-
matocystin production. In addition to transcriptionally regulat-
ing brlA and aflR, PkaA also regulates AflR and perhaps BrlA
posttranscriptionally (106). Recent studies suggest that PkaA
negatively regulates AflR activity through phosphorylation (J.
Hicks, K. Shimizu, and N. P. Keller, Abstr. XXI Fungal Genet.
Conf., p. 144, 2001). Transcriptional regulation of AflR by

PkaA might be mediated by LaeA, a protein required for aflR

expression, and negatively regulated by PkaA (J. W. Bok and
N. P. Keller, Abstr. XXI Fungal Genet. Conf., p. 144, 2001)
(Fig. 3).

Other Components of the Signal Transduction Pathway

Controlling A. nidulans Development

With regards to Aspergillus development, several other sig-
naling proteins have been identified that are involved in sporu-
lation and colony formation. One protein, RasA, is a homolog
of the yeast Ras proteins. The levels of activated RasA protein
in fungal cells regulate the development of A. nidulans (111).
High levels of active RasA result in spores that cannot produce
germ tubes, whereas intermediate levels lead to uncontrolled
vegetative growth similar to the �flbA, fadAG42R, and pkaA

overexpression phenotypes. Preliminary data suggest that ac-

TABLE 2. Alleles having effects on sporulation and/or sterigmatocystin production.

Allele(s) Function Mutation effect Reference(s)

aflR Pathway-specific regulator of stc gene
expression

91

�aflR Loss of sterigmatocystin-aflatoxin production 29, 92, 131
Affects conidiation and sclerotial development 25, 97, 108, 120

OEaflR Early and increased mycotoxin production 106

brlA Pathway-specific regulator of conidiogenesis
genes

31

�brlA Abolishment of conidiation 17, 58
OEbrlA Early onset of conidiation, including

sporulation in submerged liquid culture; no
effect on sterigmatocystin production

8

fluG Involved in synthesis of extracellular, diffusible
factor required for conidiation

69

�fluG Aconidial; no sterigmatocystin production 55
OEfluG Activates conidiation; early sterigmatocystin

production observed in submerged liquid
culture but not on plates

55

flbA Encodes RGS-containing protein; active FlbA
inactivates G-protein pathway

70

�flbA Aconidial; no sterigmatocystin production 55
OEflbA Premature sporulation, early sterigmatocystin

production
55

fadA �-Subunit of heterotrimeric G protein 133
�fadA and fadAG203R Premature conidiation; early sterigmatocystin

production
55

fadAG42R Aconidial; no sterigmatocystin production 55

pkaA cAMP-dependent PKA 106
�pkaA Results in hypersporulation; aberrant

sterigmatocystin production
106

OE pkaA Decreased conidiation; no sterigmatocystin
production

106

�pkaA �flbA Double deletion mutant; partially restores some
sporulation; restores sterigmatocystin
production

106

�pkaA fadAG42R Partially restores sporulation but not
sterigmatocystin production

106

sfaD �-Subunit of heterotrimeric G-protein 99
�sfaD Increased sporulation 105

a � indicates the gene has been deleted. OE indicates the gene is overexpressed. fadAG203R is the dominant negative fadA allele. fadAG42R is the dominant activated
fadA allele.
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tivated Ras protein also inhibits sterigmatocystin production
(K. Shimizu and N. P. Keller, unpublished data). In S. cerevi-

siae but not S. pombe, Ras activity is partially mediated through
PKA, and efforts are under way to determine if Ras inhibition
of development and sterigmatocystin production in A. nidulans

requires PkaA activity.
Recently, Fillinger et al. (43) isolated cyaA, which encodes

adenylate cyclase, from A. nidulans (43). Deletion of cyaA

severely affects spore germination, causing a delay in germ
tube emergence, but the effect on sterigmatocystin production
is unknown.

The sfaD gene of A. nidulans encodes the �-subunit of the
heterotrimeric G-protein complex (99). sfaD deletion mutants
exhibit conidiation in submerged cultures, similar to the phe-
notype described for strains containing a dominant negative
allele of fadA (i.e., fadAG203R), but unlike in fadAG203R strains,
sterigmatocystin production is reduced in the �sfaD mutant
under these conditions (Shimizu and Keller, unpublished) (Ta-
ble 2). In addition, constitutive active FadA can cause prolif-
erative growth in the absence of sfaD. Also, introduction of
�sfaD into a �flbA background can restore sporulation (99,
132). These results suggest that SfaD and FadA are both pos-
itive growth regulators with partially overlapping functions and
that FlbA controls both proteins.

Conservation of FadA Regulation of Aflatoxin Production

in Other Aspergillus spp.

Proteins of the G-protein signaling pathway of A. nidulans

appear to have functional counterparts in A. parasiticus and
A. flavus. Hicks et al. (55) transformed the A. nidulans fadAG42R

dominant active allele into a norsolorinic acid (e.g., the first
stable intermediate in the aflatoxin pathway)-accumulating
strain of A. parasiticus. The resultant strain did not produce
norsolorinic acid and had the same fluffy phenotype as an
A. nidulans fadAG42R mutant (55). S. C. Sim and N. P. Keller
(unpublished data) obtained an aconidial, null aflatoxin phe-
notype in A. flavus strains transformed with the fadAG42R al-
lele.

Signal Transduction Regulation of Sporulation and

Secondary Metabolism in Other Organisms

Antibiotics. The best-known example of a genetic connec-
tion between antibiotic production and morphological devel-
opment is found in the filamentous bacteria Streptomyces spp.,
in which common elements regulating sporulation and antibi-
otic production have been reported (56). For example, the
translation regulator bldA (67) encodes a tRNA essential to
translate the ATT leucine codon, which is scarce in Streptomy-

ces. Deletion of this gene results in reduction of spore produc-
tion and failure to synthesize antibiotics, without affecting
growth. In A. nidulans, a relationship between conidiation and
the production of the antibiotic penicillin has also recently
been described (115). The dominant activating fadAG42R allele,
which represses conidiation and sterigmatocystin biosynthesis,
stimulates the expression of ipnA (an enzymatic gene of the A.

nidulans penicillin gene cluster) and stimulates concomitant
penicillin biosynthesis (115).

Cyclopiazonic acid. Several strains of A. flavus produce the
mycotoxin cyclopiazonic acid as well as aflatoxin. Introduction
of the fadAG42R allele into A. flavus inhibits the production of
both mycotoxins (Sim and Keller, unpublished).

Trichothecenes. Introduction of the A. nidulans fadAG42R

allele into the fungus F. sporotrichioides generated strains with
reduced conidial production and increased trichothecene pro-
duction (115). Expression of the fadAG42R allele reduced
Fusarium spore production 50 to 95% and resulted in delayed
radial growth compared with the wild type.

Pigments. In Cryphonectria parasitica, the chestnut-blight
fungus, deletion of cpg1, which encodes the �-subunit of a
heterotrimeric G protein, leads to a marked reduction in fun-
gal growth rate and spore production and a loss of virulence.
Reduced pigmentation is also observed (45). The �-subunit of
a G protein, Cpg2, has also been identified in this fungus. Its
deletion also decreases virulence, conidiation, and pigment
production (62).

OTHER GENETIC FACTORS COUPLING

DEVELOPMENT AND SECONDARY METABOLISM

CCAAT Binding Protein Complex

The A. nidulans CCAAT binding protein complex PENR1
has been reported to regulate both development and penicillin
production (74, 112). PENR1 positively regulates the expres-
sion of two penicillin biosynthetic genes, ipnA and aatA. De-
letion of hapB, hapC, and hapE genes, which encode PENR1
complex components, resulted in identical phenotypes charac-
terized by low levels of ipnA and aatA expression as well as a
slow-growth phenotype and a reduction in conidiation (74, 87,
112).

WD Protein Regulation

A. nidulans rcoA encodes a member of the WD protein
family. These proteins contain WD repeats, conserved se-
quence motifs usually ending with Trp-Asp (WD) (110). Mem-
bers of this family have a role in signal transduction pathways
and/or nuclear scaffolding complexes and/or act as global reg-
ulators involved in repression of a broad number of genes (84,
122). Several WD proteins have been found to be important in
fungal development. In S. pombe, Frz1 is required for spore
production (9). In Neurospora crassa, RCO1 is involved in the
control of vegetative growth, sexual reproduction, and asexual
development (128). S. cerevisiae Tup1p is the best-known ex-
ample of a fungal WD global regulator. Tup1p forms a com-
plex with other proteins and interacts with histone H3 and H4,
stabilizing the nucleosomes on the gene promoters and hence
blocking access by the RNA polymerase II complex (38).

RcoA in A. nidulans (53) has closest similarity to N. crassa

RCO1, and the respective mutants share some similar aber-
rance in growth. A. nidulans �rcoA strains are deficient in both
sterigmatocystin and asexual spore production (53). brlA and
aflR transcription is greatly suppressed in these strains, but
fluG, flbA, and fadA expression is not affected, thus suggesting
that the regulatory role of RcoA may be independent of the
G-protein signaling pathway.
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Polyamine Pathway

Polyamines are small aliphatic molecules important for nor-
mal cell growth and development in a wide range of organisms
(100). The most common polyamines are spermidine, sperm-
ine, and putrescine, and their biosynthetic relationship is
shown in Fig. 4. Rajam and Galston (96) showed that inhibitors
of polyamine biosynthesis reduced mycelial growth when ap-
plied to cultures of some phytopathogenic fungi, demonstrat-
ing the importance of these molecules for fungal development.
Guzman-de-Peña et al. (49) described a positive correlation
between polyamine biosynthesis and asexual development, sex-
ual development, and sterigmatocystin production. Diamino
butanone, an inhibitor of ornithine decarboxylase (the enzyme
required for putrescine biosynthesis), blocked the formation of
aerial mycelium, asexual and sexual sporulation, and sterig-
matocystin biosynthesis in A. nidulans and asexual sporulation
and aflatoxin biosynthesis in A. parasiticus (50). Supplementa-
tion of exogenous putrescine could partially overcome the re-
pressive effects of the drug. In A. nidulans, spermidine is es-
sential for growth, sporulation, and mycotoxin production,
since deletion of the spdA gene, which encodes a spermidine
synthase, is lethal (J. Yuan, J. W. Bok, D. Guzman-de-Peña,
and N. P. Keller, Mol. Microbiol., in press). Supplementing
media with spermidine restores growth and allows asexual
sporulation and sterigmatocystin production to resume (Jin et
al., submitted).

pacC

In an earlier section we stated that pH affected fungal de-
velopment and sterigmatocystin and aflatoxin production in
Aspergillus spp. in a complex fashion. Keller et al. (65) hypoth-
esized that control of aflatoxin and sterigmatocystin gene ex-
pression in response to pH could be mediated via the global

transcriptional regulator PacC (118). At acidic pHs, the PacC
protein is in an inactive conformation and is unable to bind
target sites. At alkaline pHs, the PacC protein is cleaved (40),
producing an active form. This activated PacC isoform can
then bind to the promoters of target genes, activating the
expression of alkaline expressed genes, and repressing the ex-
pression of acid expressed genes. This suggested that PacC
might be a negative regulator of aflatoxin-sterigmatocystin
gene expression, as these genes were more highly expressed at
acidic pH (65). Ehrlich et al. (39) showed that the promoter
region of the A. parasiticus aflR contains at least one PacC
binding site and several promoters of stc genes in A. nidulans

also contain putative PacC binding sites (65), thus allowing for
the possibility of aflatoxin-sterigmatocystin regulation by PacC.
Besides possibly regulating aflatoxin-sterigmatocystin produc-
tion (65), PacC is also a regulator of genes involved in peni-
cillin production (41, 118). At elevated pHs, PacC activates
expression of the isopenicillin N synthase gene, which is in-
volved in penicillin biosynthesis. In Penicillium chrysogenum,
PacC also activates the expression of the isopenicillin N syn-
thase homologue, pcbC (114). In addition, PacC regulates mor-
phogenesis. Deletion of the entire pacC coding region results
in reduction of growth and conidiation (118). Truncated pacC

alleles are also deficient in conidiation (94).

areA

As previously mentioned, Cotty (32) studied the influence of
the nitrogen source on development and aflatoxin production
in A. flavus and determined a link between nitrogen source,
aflatoxin production, and sclerotial morphogenesis. The influ-
ence of nitrogen source on sclerotial production at the molec-
ular level is still unclear. However, the repression of aflatoxin
production by nitrate might be partially explained by AreA-
mediated regulation. AreA is a positive-acting repressor of
genes involved in nitrogen metabolism. This GATA factor
recognizes specific sequences in the promoter regions of genes
under its control (124). areA has been recently cloned in A.

parasiticus, and it has been shown in electrophoretic mobility
shift assays that AreA binds the region between aflR and aflJ in
this fungus (30). This finding suggests that areA participates in
the nitrate-mediated negative regulation of gene transcription
for aflatoxin biosynthesis in A. parasiticus. Liu and Chu (75)
showed that aflR expression in A. parasiticus was inhibited by
nitrate. This inhibition can be overcome by overexpression of
aflR (28). Nitrate might also regulate aflatoxin biosynthesis
posttranscriptionally. Flaherty and Payne (44) overexpressed
aflR in nitrate and media lacking nitrate. Although aflatoxin
transcripts were detected in both cases, aflatoxin biosynthesis
inhibition in the presence of nitrate was not alleviated. This
result indicates that nitrate regulates mycotoxin production not
only transcriptionally but also posttranscriptionally.

C-Type Cyclins

Fumonisins are a group of mycotoxins produced by F. verti-

cillioides. One of the genes involved in fumonisin biosynthesis,
FUM5, encodes a polyketide synthase and has recently been
characterized (95). Recently, evidence connecting fumonisin
production and sporulation has been reported (104). A regu-

FIG. 4. Polyamine biosynthetic pathway.
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lator gene of the fumonisin pathway has been found, FCC1,
which encodes a putative polypeptide with similarities to C-
type cyclins of S. cerevisiae (73, 104). Cyclins are essential
activating subunits of cyclin-dependent kinases and include a
large family of proteins with conserved function in many or-
ganisms (7). The FCC1 mutant does not express FUM5 and
therefore does not produce fumonisin B1. Additionally, the
FCC1 mutant shows reduced asexual spore production when
grown on cracked corn. However, the effect of FCC1 mutation
on fumonisin production and development was shown to be
pH dependent, as the wild-type phenotype was partially recov-
ered in low-pH media.

CONCLUSIONS

It has been noted since the earliest days of fungal manipu-
lation that many species of filamentous fungi readily synthesize
complex compounds that are putatively helpful but not neces-
sary for survival and whose production is presumably costly to
maintain. Furthermore, production is often linked to fungal
development. Some compounds might function as virulence
factors, or their presence could give a competitive edge to the
producing organism or enhance the survivability of spores.
Some secondary metabolites stimulate sporulation and there-
fore influence the development of the producing organism and
neighboring members of the same species, perhaps enhancing
the fitness of a community of related species. Natural products
are often produced late in fungal development, and their bio-
synthesis is complex. This complexity is due to a number of
factors that affect secondary metabolite production. These in-
clude (i) the influence of a number of external and internal
factors on natural product biosynthesis, (ii) the involvement of
many sequential enzymatic reactions required for converting
primary building blocks into natural products, (iii) tight regu-
lation of natural product enzymatic gene expression by one or
more transcriptional activators, (iv) close association of natural
product biosynthesis with primary metabolism, and (v) close
association of natural products with later stages of fungal de-
velopment, particularly sporulation. Furthermore, the genes
required for biosynthesis of some natural products are clus-
tered, perhaps as a consequence of these factors. Gene clusters
contain all or most of the genes required for natural product
biosynthesis, and logic suggests that their maintenance could
only be selected for if the final natural product conferred some
advantage to the producing organism. Moreover, natural prod-
uct biosynthetic gene clusters can be conserved between or-
ganisms, for example the sterigmatocystin-aflatoxin biosyn-
thetic gene cluster in several Aspergillus spp.

As discussed in the preceding sections, some natural prod-
ucts directly enhance sporulation of the producing organisms.
Relatively few of these compounds have been described. Other
secondary metabolites function to protect the spore; for exam-
ple, melanin is a protectant from UV damage. Most natural
products play no obvious roles in sporulation or spore protec-
tion but are secreted into the environment at a time in the life
cycle of the fungus that corresponds with sporulation. How-
ever, some of the compounds that are excreted into the envi-
ronment could have subtle effects on the organism that are not
immediately obvious. For example, although sterigmatocystin
was long thought to have no effect on the producing fungus,

recent studies (97, 108) have demonstrated an effect of sterig-
matocystin on Aspergillus spore production.

Aspergillus spp. produce mycotoxins at a time that coincides
with spore development. In A. nidulans, these processes are
regulated by G-protein signaling pathway components (55,
106, 133). Inactivation of a G �-subunit, FadA, leads to con-
comitant sporulation and mycotoxin production. Some of the
G-protein signaling regulatory elements described for A. nidu-

lans are conserved among other filamentous fungi (6, 16, 55,
62, 66, 115, 116, 129). However, they can have different or even
opposite roles in regulating the biosynthesis of natural prod-
ucts (115). As Tag and collaborators reported, the fadAG42R

allele negatively regulates sterigmatocystin production but pos-
itively regulates trichothecene and penicillin production (115).
Why should the same G-protein signaling pathway oppositely
regulate two or more different natural products? The particu-
lar example of opposite regulation of sterigmatocystin and
penicillin production in A. nidulans by the same signaling path-
way allows us to speculate on the necessity of differential reg-
ulation when we consider that these two metabolites are also
oppositely regulated by pH (penicillin is favored in alkali en-
vironments, and sterigmatocystin is favored in acidic environ-
ments). Although penicillin is destroyed at low pHa, aflatoxin
and sterigmatocystin are very stable molecules not affected by
pH extremes. All three of these molecules are complex and
incur a large energy cost. Aflatoxin is known to be toxic to
insects (90), while penicillin is a renowned bactericidal antibi-
otic. One could speculate that in their natural environment,
Aspergillus spp. face more competition from bacteria in alka-
line soils, while acidic soils are generally less populous in bac-
teria. Therefore, penicillin is produced during fungal develop-
ment in alkaline environments to destroy its bacterial
competition, while sterigmatocystin and aflatoxin secretion and
accumulation in mycelial and sclerotial tissue in acidic envi-
ronments provide protection against insects. Penicillin and
sterigmatocystin biosynthesis is temporal in nature, with pen-
icillin biosynthetic gene transcription occurring earlier than stc

gene transcription (115). This would ensure that penicillin is
secreted into the environment first to kill off fast-growing pro-
karyotes, allowing the fungus to establish itself in the commu-
nity. Later, penicillin production ceases and sterigmatocystin is
produced to protect against eukaryotic competitors.

The G-protein signaling pathway operates in most organisms
and appears to be a conserved mechanism linking external
stimuli to a coordinated response by the organism. In Aspergil-

lus, homologs of familiar proteins identified in other organ-
isms, such as an RGS domain protein, �- and �-subunits of
heterotrimeric G proteins, and cAMP-dependent PKA, are
involved in controlling genes involved in conidiation (via brlA

expression) and mycotoxin production (via aflR expression).
Although most of the work on the G-protein signaling pathway
linking mycotoxin production and sporulation has been done
using Aspergillus species, particularly A. nidulans, evidence in-
dicates the presence of a similar pathway regulating tricoth-
ecene production in Fusarium (115). The G-protein signaling
pathway is an appealing mechanism to link fungal development
with natural product metabolism for the following reasons:
environmental influences on sporulation and sterigmatocystin
and aflatoxin production in Aspergillus spp. can be very com-
plex and contradictory, particularly with regards to pH. If mul-
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tiple signals for development and mycotoxin production are
received external to the cell by different receptors that sense
pH, sugar, and nitrogen content of the environment, a system
is required to integrate these signals and communicate a co-
herent message to the nucleus, leading to a coordinated re-
sponse. Because of the ubiquitous nature of the G-protein
signaling pathway in higher organisms, it seems likely that
Aspergillus has coopted this pathway to link sporulation and
development with mycotoxin production. We speculate that
the same mechanism could operate in other fungi that excrete
natural products at the onset of sporulation. However, this
signaling pathway might not be the only mechanism to coor-
dinate natural product biosynthesis and sporulation. In liquid
shake cultures, Aspergillus does not sporulate but still produces
mycotoxins. Furthermore, some linoleic acid-derived seed
compounds can promote sporulation but inhibit aflatoxin gene
transcription as described below.

Aspergillus spp. produce mycotoxins during the onset of
sporulation. These compounds might influence the fitness of
the producing organism but are not considered sporulating
factors per se. However, this genus also secretes linoleic acid-
derived molecules, termed psi factors, which do influence asex-
ual and sexual development of the fungus (27). In addition,
some plant unsaturated fatty acids have been shown to influ-
ence asexual and sexual development (24) and mycotoxin pro-
duction (22) in this fungus. It is interesting to speculate why
Aspergillus spp. produce sporulating molecules that resemble
host seed constituents. Perhaps the production of secondary
metabolites that mimic the effect of oilseed compounds on
fungal growth and development represents a mechanism for
survival by the fungi when it is not feeding on a host seed. For
A. nidulans, a soil organism, the production of linoleic acid-
derived psi factors required for development could indicate it
evolved from oilseed-infesting aspergilli.

Aflatoxin and sterigmatocystin production in Aspergillus spp.
has been extensively studied due to the deleterious effect of the
mycotoxin on human health. While medical investigations have
focused on understanding the mechanisms of aflatoxin toxicity
and carcinogenicity in humans, these effects of sterigmatocys-
tin and aflatoxin on human health are a consequence of in-
gesting infected crops and are not the primary function of
these compounds. Why these fungi produce sterigmatocystin
and aflatoxin; what effect, if any, these compounds have on
fungal development; and what ecological role the mycotoxins
play are complex questions. In A. nidulans, mutants that pro-
duce no sterigmatocystin or accumulate different intermediates
of this mycotoxin have been shown in corn and medium-based
experiments to be less fit than wild-type strains (97, 108), as
defined by reduced sporulation. The further one proceeds
along the sterigmatocystin pathway, the more fit the organism
becomes. Therefore, these results suggest sterigmatocystin can
increase the competitive fitness of the organism.

In recent years, great progress has been made in the discov-
ery of signaling pathways that connect fungal development
with natural product biosynthesis. However, much remains to
be learned. The complexity of these regulatory networks, with
multiple target sites and interconnections with other regulatory
mechanisms, makes their full elucidation a challenging task.
Emerging technologies should be brought to bear on this puz-
zle. A. nidulans has a large number of mutants available to

address these issues. Furthermore, most of the A. nidulans

genome has been sequenced and is available (Cereon Inc.). An
illuminating set of experiments could involve microarray anal-
ysis of genes involved in the G-protein signaling pathway, fatty
acid metabolism (as unsaturated fatty acids influence develop-
ment), acetate metabolism (acetate is derived from the catab-
olism of fatty acids and is the primary building block for afla-
toxin and sterigmatocystin), and sterigmatocystin biosynthesis.
Information obtained from the model organism A. nidulans

could lead to an understanding of how these regulatory path-
ways directly or indirectly control fungal development and the
biosynthesis of natural products in other microorganisms. This
will open up new broad and exciting fields of applications in
which the production of beneficial natural products could be
enhanced and the production of those with deleterious effects
could be reduced or eliminated.

ACKNOWLEDGMENTS

A. M. Calvo and R. A. Wilson made equal contributions to this
work.

REFERENCES

1. Abdollahi, A., and R. L. Buchanan. 1981. Regulation of aflatoxin biosyn-
thesis: characterization of glucose as an apparent inducer of aflatoxin pro-
duction. J. Food Sci. 46:143–146.

2. Adams, T. H., M. T. Boylan, and W. E. Timberlake. 1988. brlA is necessary
and sufficient to direct conidiophore development in Aspergillus nidulans.
Cell 54:353–362.

3. Adams, T. H., H. Deising, and W. E. Timberlake. 1990. brlA requires both
zinc fingers to induce development. Mol. Cell. Biol. 10:1815–1817.

4. Adams, T. H., W. A. Hide, L. N. Yager, and B. N. Lee. 1992. Isolation of a
gene required for programmed initiation of development by Aspergillus
nidulans. Mol. Cell. Biol. 12:3827–3833.

5. Adams, T. H., and J.-H. Yu. 1998. Coordinate control of secondary metab-
olite production and asexual sporulation in Aspergillus nidulans. Curr. Opin.
Microbiol. 1:674–677.

6. Alspaugh, J. A., J. R. Perfect, and J. Heitman. 1997. Cryptococcus neofor-
mans mating and virulence are regulated by the G-protein alpha subunit
GPA1 and cAMP. Genes Dev. 11:3206–3217.

7. Andrews, B., and V. Measday. 1998. The cyclin family of budding yeasts:
abundant use of a good idea. Trends Genet. 14:66–72.

8. Andrianopoulos, A., and W. E. Timberlake. 1991. ATTS, a new and con-
served DNA binding domain. Plant Cell 3:747–748.

9. Asakawa, H., K. Kitamura, and C. Shimoda. 2001. A novel Cdc20-related
WD-repeat protein, Fzr1, is required for spore formation in Schizosaccha-
romyces pombe. Mol. Genet. Genom. 265:424–435.

10. Bennett, J. W. 1981. Loss of norsolorinic acid and aflatoxin production by
a mutant of Aspergillus parasiticus. J. Gen. Microbiol. 124:429–432.

11. Bennett, J. W., P. M. Leong, S. Kruger, and D. Keyes. 1986. Sclerotial and
low aflatoxigenic morphological variants from haploid and diploid Aspergil-
lus parasiticus. Experientia 42:841–851.

12. Bennett, J. W., and K. E. Papa. 1988. The aflatoxigenic Aspergillus, p.
264–280. In D. S. Ingram and P. A. Williams (ed.), Genetics of plant
pathology, vol. 6. Academic Press, London, United Kingdom.

13. Bennett, J. W., P. L. Rubin, L. S. Lee, and P. N. Chen. 1979. Influence of
trace elements and nitrogen source on versicolorin production by a mutant
strain of Aspergillus parasiticus. Mycopathologia 69:161–166.

14. Bird, B. A., A. T. Remaley, and I. M. Campbell. 1981. Brevianamides A and
B are formed only after conidiation has begun in solid cultures of Penicil-
lium brevicompactum. Appl. Environ. Microbiol. 42:521–525.

15. Reference deleted.
16. Borgia, P. T., C. L. Dodge, L. E. Eagleton, and T. H. Adams. 1994. Bidi-

rectional gene transfer between Aspergillus fumigatus and Aspergillus nidu-
lans. FEMS Microbiol. Lett. 122:227–232.

17. Boylan, M. T., P. M. Mirabito, C. E. Willett, C. R. Zimmerman, and W. E.

Timberlake. 1987. Isolation and physical characterization of three essential
conidiation genes from Aspergillus nidulans. Mol. Cell. Biol. 7:3113–3118.

18. Brown, D., J.-H. Yu, H. Kelkar, M. Fernandes, T. Nesbitt, N. P. Keller,

T. H. Adams, and T. Leonard. 1996. Twenty-five coregulated transcripts
define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc. Natl.
Acad. Sci. USA 93:1418–1422.

19. Buchanan, R. L., and H. G. Stahl. 1984. Ability of various carbon sources
to induce and support aflatoxin biosynthesis by Aspergillus parasiticus. J.
Food Safety 6:271–279.

VOL. 66, 2002 SECONDARY METABOLISM AND FUNGAL DEVELOPMENT 457

http://mmbr.asm.org/


20. Buchanan, R. L., Jr., and J. C. Ayres. 1975. Effects of initial pH on aflatoxin
production. Appl. Microbiol. 30:1050–1051.

21. Bu’Lock, J. D. 1961. Intermediary metabolism and antibiotic synthesis. Adv.
Appl. Microbiol. 3:293–342.

22. Burow, G. B., T. C. Nesbitt, J. Dunlap, and N. P. Keller. 1997. Seed
lipoxygenase products modulate Aspergillus mycotoxin biosynthesis. Mol.
Plant-Microbe Interact. 10:380–387.

23. Calvo, A. M., H. W. Gardner, and N. P. Keller. 2001. Genetic connection
between fatty acid metabolism and sporulation in Aspergillus nidulans.
J. Biol. Chem. 276:20766–20774.

24. Calvo, A. M., L. L. Hinze, H. W. Gardner, and N. P. Keller. 1999. Sporo-
genic effect of polyunsaturated fatty acids on development of Aspergillus
spp. Appl. Environ. Microbiol. 65:3668–3673.

25. Cary, J. W., K. C. Erlich, M. Wright, P. K. Chang, and D. Bhatnagar. 2000.
Generation of aflR disruption mutants of Aspergillus parasiticus. Appl. Mi-
crobiol. Biotechnol. 53:680–684.

26. Champe, S. P., and A. A. E. El-Zayat. 1989. Isolation of a sexual sporulation
hormone from Aspergillus nidulans. J. Bacteriol. 171:3982–3988.

27. Champe, S. P., P. Rao, and A. Chang. 1987. An endogenous inducer of
sexual development in Aspergillus nidulans. J. Gen. Microbiol. 133:1383–1388.

28. Chang, P.-K., K. C. Ehrlich, J. Yu, D. Bhatnagar, and T. E. Cleveland.

1995. Increased expression of Aspergillus parasiticus aflR, encoding a se-
quence-specific DNA-binding protein, relieves nitrate inhibition of afla-
toxin biosynthesis. Appl. Environ. Microbiol. 61:2372–2377.

29. Chang, P.-K., J. W. Cary, D. Bhatnagar, T. E. Cleveland, J. W. Bennett,

J. E. Linz, C. P. Woloshuk, and G. A. Payne. 1993. Cloning of the Aspergillus
parasiticus apa-2 gene associated with the regulation of aflatoxin biosynthe-
sis. Appl. Environ. Microbiol. 59:3273–3279.

30. Chang, P.-K., J. Yu, D. Bhatnagar, and T. E. Cleveland. 2000. Character-
ization of the Aspergillus parasiticus major nitrogen regulatory gene, areA.
Biochim. Biophys. Acta 1491:263–266.

31. Clutterbuck, A. J. 1969. A mutational analysis of conidial development in
Aspergillus nidulans. Genetics 63:317–327.

32. Cotty, P. 1988. Aflatoxin and sclerotial production by Aspergillus flavus:
influence of pH. Phytopathology 78:1250–1253.

33. Davies, D. G., M. R. Parsek, B. H. Pearson, J. W. Iglewski, J. W. Costerton,

and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the
development of a bacterial biofilm. Science 280:295–298.

34. De Luca, C., M. Picardo, A. Breathnach, and S. Passi. 1996. Lipoperoxidase
activity of Pityrosporum: characterisation of by-products and possible role in
pityriasis versicolor. Exp. Dermatol. 5:49–56.

35. Demain, A. L., and A. Fang. 2000. The natural functions of secondary
metabolites. Adv. Biochem. Eng. Biotechnol. 69:1–39.

36. Doehlet, D. C., D. T. Wicklow, and H. W. Gardner. 1993. Evidence impli-
cating the lipoxygenase pathway in providing resistance to soybean against
Aspergillus flavus. Phytopathology 183:1473–1477.

37. Dorn, G. L. 1970. Genetic and morphological properties of undifferentiated
and invasive variants of Aspergillus nidulans. Genetics 66:267–279.

38. Edmondson, D. G., M. M. Smith, and S. Y. Roth. 1996. Repression domain
of the yeast global repressor Tup1 interacts directly with histones H3 and
H4. Genes Dev. 10:1247–1259.

39. Ehrlich, K. C., J. W. Cary, and B. G. Montalbano. 1999. Characterization
of the promoter for the gene encoding the aflatoxin biosynthetic pathway
regulatory protein AFLR. Biochim. Biophys. Acta 1444:412–417.

40. Espeso, E. A., T. Roncal, E. Diez, L. Rainbow, E. Bignell, J. Alvaro, T.

Suarez, S. H. Denison, J. Tilburn, H. N. Arst, Jr., and M. A. Peñalva. 2000.
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