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Abstract

This paper describes the relationship between two types of commonly used

models in control and identification theory: state-space and input-output

models. The relationship between the two model structures can be explained in

terms of a newly formulated set of parameters called the observer Markov

parameters. This is different from the usual connection between the two model

structures via well-known canonical realizations. The newly defined observer

Markov parameters generalize the standard system Markov parameters by

incorporating information of an associated observer. In the deterministic case,

the observer Markov parameters subsume a state-space model and a deadbeat

observer gain In the stochastic case, the observer Markov parameters contain

information of an optimal observer such as a Kalman filter. The observer

Markov parameters can be identified directly from experimental input-output

data. Making use of the new connection, one can extract from the identified

observer Markov parameters not only a state-space model of the system, but

also an associated observer gain for use in modern state-space based feedback

controller design.

1 Introduction

Those who design attitude (and shape) control systems for flexible spacecraft

need a structural dynamics model of the vehicle as the basis for developing a

design. Certain parts of control theory, such as classical digital control and

adaptive control, often use higher order difference equation models, or input-

output models. Other control approaches make use of discrete-time state-space
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186 Structures in Space

models, and the identification methods for these usually start from pulse

response histories, i.e. the Markov parameters, and these must be found from

the input-output data. Certain new identification methods have been developed

by the authors and co-workers, which have proved very successful in structural

dynamics testing at NASA. These methods find the Markov parameters of an

observer (in certain cases, a Kalman filter) from input-output data rather than

finding the Markov parameters of the system, and then from these they obtain

a state-space model of the system. This paper develops a bridge between the

model types, presenting certain intimate relationships between input-output

models, state-space models, system Markov parameters, and observer Markov

parameters

Discrete-time state-space models and input-output models both

describe the sampled-data input-output relationship of a dynamic system. The

state-space representation describes the relationship in terms of an intermediate

variable, the system state. The state-variable approach allows one to elegantly

address issues such as controllability, observability, and optimal control, etc.

In contrast with state-space based control is adaptive control, which is based on

input-output models In an input-output model, the output variable is

expressed directly in terms of the input variable, bypassing the intermediate

state variable. A commonly used input-output model is the auto-regressive

model with exogenous input (ARX), where the system output at the current

time step is expressed as a linear combination of a certain number of past input

and output values. Since adaptive control does not assume a priori knowledge

of the system, on-line identification is made part of the control approach. As a

result, input-output models are preferred over state-space models in adaptive

control because the relationship between input-output data and the coefficients

of an input-output model is linear On the other hand, the relationship between

input-output data and the state-space model parameters is non-linear. Due to

the different types of models used, state-space and adaptive control methods

tend to have different flavors, although in principle one would expect significant

connections between the two control approaches

To relate control approaches based on the two types of models, one

needs to understand how an input-output model is related to a state-space

model and vice versa. This connection is important not only in the area of

control but also in the area of system identification. It would allow, for

example, the extraction of a state-space model from the coefficients of an

identified input-output model Canonical realization allows one to express an

input-output model in the form of an equivalent state-space model and vice

versa. This kind of relationship between the two models is significant for

theoretical reasons, but it is rather abstract, and not often used in practice. In

this paper, we will describe another way to relate the two model structures via

a new set of parameters, which are called observer Markov parameters. Among

other things, it will be shown that the coefficients of an ARX model are related

to those of a state-space model through an observer gain. Since the coefficients

of the ARX model can be identified directly from input-output data, this result
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implies that not only a state-space model of the system, but also an associated

observer gain can be identified simultaneously from input-output data The

identified model and observer can then be used directly in an observer-based

controller design. This is in contrast to the traditional approach where system

identification and observer design are two separate processes. In the presence

of process and measurement noise, the identified observer, in a certain sense,

characterizes the noise inputs as they are actually embedded in the input-

output data This is in contrast to a designed observer, which is based on an

assumed model and assumed characteristics of the noise present in the system.

The paper starts out with various ways to describe the dynamics of a

linear system using input-output or state-space models. The observer Markov

parameters will be used to relate the two model structures. In the deterministic

case, the relationship between the coefficients of the commonly used ARX

model and the state-space model via a deadbeat observer gain will be explained.

The key relationship between the observer Markov parameters and the system

Markov parameters will be derived. This relationship allows one to extract

from the observer Markov parameters the system Markov parameters and an

associated observer gain In the stochastic case, conditions for which the

observer Markov parameters subsume an optimal Kalman filter will be

described. A connection between the coefficients of another common input-

output model known as the auto-regressive moving average model with

exogenous input (ARMAX) and the state-space model will be made in terms of

a deadbeat observer gain, and an optimal Kalman filter gain. Knowledge of the

system Markov parameters is sufficient to deduce a state-space model of the

system using realization theory Such an algorithm will be briefly described.

Throughout the paper, the role of the observer Markov parameters in

connecting various types of models, both in the deterministic and stochastic

cases, will be clearly seen.

2 Deterministic models

In this section we will examine various deterministic input-output models and

their connections to state-space models It will be clear that the system

Markov parameters are the coefficients of the pulse response model and the

observer Markov parameters are the coefficients of the ARX model

2.1 Pulse response model and state-space model

For a continuous-time system governed by a linear differential equation, if the

response to a Dirac delta impulse is known, then its response to any other

general input can be determined by the convolution integral. Similarly, for a

discrete-time system governed by a linear difference equation, we have the

Kronecker unit pulse sequence defined as
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The unit pulse reponse sequence, denoted bŷ ,̂ ,̂ ,..., is obtained by

seperately applying this unit pulse sequence to each input, holding the others

zero. The system input-output relationship, assuming zero initial conditions, is
given by

y(k) = ĥ u(k) + Ajii(jfc -1) + hju(k - 2) + • • • + A*w(0) (2)

For a system with q outputs and m inputs, each h- is a qxm matrix. The

contribution to the current outputy(k) by the current input n(Jfc) and past

input w(fc-l), n(*-2), ... is weighted by the pulse response sequence. For

this reason this input-output description is also known as the weighting

sequence description.

One basic drawback of the pulse response model is that the number of

parameters in the model, &,, i = 0,1,...,*, increases with k. Another drawback

is that it ignores the effects of the initial conditions. To see why this is the

case, we examine a state-space representation of the same system, which takes

the general form of a first-order matrix difference equation

where the dimensions of A, B, C, and D are nxn, nxm, qxn, and qxm,

respectively The n x 1 vector *(*) denotes the state of the system. Let x(0)

denote the initial state, solving for the output y(k) in terms of the previous

input values yields

y(k) = CA*x(0) + Du(k) + CBu(k -1) + CABu(k -2)+ •••+ CÂ Bu(0) (4)

The coefficient D is sometimes referred to as the direct transmission term, and

the products CA*~*B are known as the system Markov parameters

7(0) = D , Y(k) = CA*~'B (5)

Comparing Eq. (4) with Eq (2) yields

(6)

if *(0) = 0. Thus the system Markov parameters are precisely the coefficients

of the pulse response model. They are unique for a given system. For an

asymptotically stable system, the effect of the initial condition becomes
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negligible after some sufficiently large number of time steps, say p,. The

system input-output map can then be approximated by a finite number of

Markov parameters,

#) = W) + W-U + W-2) + •- +̂ w(6-p,) , t^P, (7)

where CA*B = 0, k > /?, . For a lightly damped system, however, this model is

still cumbersome because of the necessarily large number of coefficients needed

to make the approximation valid

2.2 ARX model and observer model

A commonly used input-output model is known as the auto-regressive model

with exogenous input or ARX model for short This model assumes the general

form

which states that the current input value y(k) is a linear combination of the

current input value w(t), past/? input values w(t-l), ..., u(k-p\ and past/?

output values y(k-l), ..., y(k — p). This model is considerably more

convenient than the pulse response model because it has a fixed number of

parameters. It is often used in adaptive control and estimation theory. ^

In the following we will describe how this model is related to the original

state-space model given in Eq. (3). To this end, adding and subtracting the term

My(k) to the right hand side of the state equation in (3) yields

x(k + 1) = Ax(k) + Bu(k) + My(k) - My(k)

= (A + MC)x(k) + (# + MD)u(k) - My(k)

If a matrix M exists such that (A + MCY vanishes identically, i.e.,

0 , k>p (10)

then for k > /?, the output y(k) can be expressed in the form of an ARX model,

where the coefficients a%, (3^ are related to the state-space model as

(11)
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The matrix M in the above development can be interpreted as an observer gain

for the following reason. The original state-space model in Eqs. (3) has an

observer of the form

- M #) - 9(
(12)

where x(k) is the estimated state. Even in the absence of noise, y(k) differs

from y(k) if the actual initial condition x(0) is not known, and some different

initial condition is assumed for %(0). Defining the state estimation error

e(k) = x(k) - x(k\ the equation that governs e(k) is

^ + l) = (A-HMC)f̂ ) (13)

Thus the estimated state x(k) will converge to the true state x(k) as k tends to

infinity provided the matrix A 4- MC is asymptotically stable Furthermore, if

Mis such that (A + MC)* =0, k > p, then the state estimation error will vanish

identically after a finite number of time steps (deadbeat observer gain). The

observer equation can be re-written in the form

x(k + 1) = (A 4- MC)x(k) + [B + MD, -

The combinations Y(k) = C(A + MC)*~*[B+MD , - Af] = [p* aj are the

Markov parameters of the observer. Hence they are referred to as observer

Markov parameters 3 To simplify the notation, we define

-M] (is)

so that the observer Markov parameters can be expressed as

..,p (16)

and F(0) = D

For system identification, the significance of the above result is as

follows. The observer mechanism compresses an infinite number of system

Markov parameters into exactly/? observer Markov parameters. The observer

Markov parameters can be identified from input-output data because they are

precisely the coefficients of an ARX model of order p. If the identified

observer Markov parameters can be unscrambled, then a state-space model of

the system and an associated observer gain can be recovered. The unscrambling

process is indeed possible and will be described in Sections 3 and 4 later.
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Consider the case where Mis a deadbeat observer gain and the system is

deterministic (no noise is present). The observer Markov parameters become

identically zero after a finite number of terms since (A + MCY vanishes

identically. The input-output relationship given by the model in Eq. (8)

becomes exact for k > p regardless of any non-zero initial state x(0) This is

an advantage over the pulse response model using system Markov parameters

From linear system theory, the existence of such an observer gain is assured as

long as the system is observable. From the point of view of system

identification, the observability requirement is automatically satisfied because

only the observable (and controllable) part of the system can be identified from

input-output measurements. The number of observer Markov parameters is

the same as the order of the ARX model. For a multivariable system with q

outputs, p must be chosen such that it is at least p^ (Section 3). p^ is the

minimum value of/? such that qp^ >/%, where n is the order of the state-space

model. This result implies that an n-th order (observable) state-space model

with multiple outputs can be represented by an ARX model with/? less than n.

For example, a 2-output system with three lightly damped flexible modes,

(/% = 6, q = 2), can be described exactly by 3 observer Markov parameters,

p = 3. If the system Markov parameters are used instead, one would need, say

100-1000 of them, and yet the description is only approximate (the actual

number depends on the sampling rate and the amount of damping in the

system). Of course, it is also possible to represent the same system by more

than the minimum number of observer Markov parameters corresponding to an

over-parameterized ARX model In fact, over-parameterization is desirable in

the stochastic case. It will be shown later that if/? is taken to be sufficiently

large relative to n then the observer subsumed in the identified ARX model

approximates an optimal Kalman filter. Otherwise, for/? to remain "small", the

same Kalman filter will be subsumed in a different model instead. This model

turns out to be an ARM AX model. This issue will be addressed in Section 5.

The extra freedom inherent in the observer Markov parameters (due to the

observer gain M) can be used to develop various identification algorithms,

including the Observer/Kalman filter Identification method (OKED) for open-

loop identification 4-7, and the Observer/Controller Identification (OCED) for

closed-loop identification &

3 Recovery of system Markov parameters from observer

Markov parameters

The coefficients of an ARX model can be identified from input-output data

These coefficients are the observer Markov parameters, which contain

information about the system and an observer As mentioned previously, it is

possible to extract the system state-space model and an associated observer

gain from the observer Markov parameters. In this section we describe how the

system Markov parameters can be recovered uniquely from a set of observer

Markov parameters. The system Markov parameters will allow us to realize a
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state-space model of the system eventually. First, the direct transmission term

D is simply 7(0) = (^ . The Markov parameter 7(1) = CB is simply

The next Markov parameter 7(2) = CAB is obtained from

7(2) = CAB = p,+ a,7(l) + 0̂ 7(0)

Similarly,

7(3) = CA^B

= p3 - CMCAB - C(A + MQMCB - C(A + MCJ* MD

= 03 + a,7(2) + 0^

(18)

(19)

In general, the system Markov parameters can be recovered from the observer

Markov parameters according to the following relationship

(20)

where a* =0, P* = 0 for k> p. The above recursive equation can be written

in matrix form as

-a, -a,

-a, /

I'd)

Y(k

P,

(21)

The left most matrix in the above equation is square and full rank, which implies

that from a given set of observer Markov parameters, the system Markov

parameters can be uniquely recovered.

Furthermore, let the matrices Y* and Y be defined as follows

(22)

where N is an arbitrary integer. Then from Eq (20)
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(23)

where

r(2)

Y(3) Y(4)

Y(4) 7(5)

Y(4)

Y(5)

(24)

Using the definitions of the system Markov parameters, the qp x Nm matrix

H(l) can be expressed as

C

CA

A[B AB (25)

where A is the system matrix for a state-space model, V^ is an observability

matrix, and H^_j is a controllability matrix The rank of a sufficiently large

(size) matrix H(l) is the order n of the (controllable and observable) system If

Nm > qp, the maximum rank of H(l) is qp. Thus, for a system of order %, the

number of observer Markov parameters p must be such that qp>n where q is

the number of outputs. Furthermore, the maximum order of a system that can

be described with/? observer Markov parameters is qp. For a multiple-output

system, therefore, the number of observer Markov parameters required to be

identified can be less than the true order of the system. The minimum number

of observer Markov parameters that can describe the system is p^, which is

the smallest value of/? such that qp^ > n.

4 Recovery of observer gain from observer Markov parameters

Since the observer Markov parameters contain information of both the system

and an observer gain, it is possible to recover the observer gain M from the

observer Markov parameters as well. First, the sequence

can be computed from the observer Markov parameters as follows

(26)
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k-l

(27)

The parameters Ŷ (k) contain information about the observer gain, therefore

they may be referred to as observer gain Markov parameters. Given A,C, and a

sufficient number of Ŷ (k), the observer gain Mcan be obtained from

(28)

where

" C '

CA

CA*

r* =

" CM '

CAM

CA"M

provided V^ is of rank n. Alternatively, the observer gain matrix M can be

realized simultaneously with the system matrices A,B,C from the combined

Markov parameters

(29}
= CA*-i[B M] , 6 = 1, 2, ... '

using realization theory. This problem is discussed in Section 6.

5 Stochastic models

This section examines stochastic input-output models as they are related to

state-space models in the presence of noise. In particular, we consider the

following two input-output models which can be connected to a Kalman filter.

5.1 Stochastic ARX model

Consider the case where the state-space equations given in Eq. (3) are extended

to include process and measurement noise

x(k +1) = Ax(k) + Bu(k) + w, (*)
QO)

The process noise ŵ (k) and measurement noise H^Cfc) are two statistically

independent, zero-mean, stationary white noise processes with covariances Q
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and /?, respectively. If A is stable and (A,C) is an observable pair, the same

system can also be expressed in the form of a Kalman filter ̂

x(k 4- 1) = Ax(k) 4- Bu(k) -

where the optimal residual e(Jt) is white with covariance L = CPC* 4- R, where

P is the unique positive definite symmetric solution of the algebraic Riccati

equation

P = APA* - APC*(CPC + R}~' CPA* + Q (32)

The Kalman filter gain K is given by K = -APĈ Z'* . The Kalman filter in Eq

(31) can also be expressed as

x(k + 1) = (A + KC)x(k) + (5 4- KD)u(k) - tfy(fc)

If p is sufficiently large such that

A* = (A 4- AT)* =0 k>p (34)

then the input-output description can be approximated by

(35)

+M*)+M*-D+ - +p,%(*-f)+c(t)

where

a, = -C(A 4-

(36)

P, = C(A 4 KC)*~\B 4- £D) , Po = D

Observe that for a sufficiently large p (such that the condition given in

Eq (34) holds) this model has the same internal structure as the ARX model

considered previously in Eq (1) where the Kalman filter gain K now plays the

role of the observer gain M. It is therefore possible to recover the Kalman filter

gain from the coefficients of an identified ARX model if p is chosen to be

sufficiently large. An important advantage of the structure in Eq (35) is that

the residual e(&) appears as an additive term In the identification of the

coefficients (%*,()*, k = 1,2,...,;?, this residual can be minimized by a simple

least squares solution. On the other hand, the major disadvantage of this model
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is that a large value of p may be needed. Theoretically, p is required to be

several times larger than the order n of the system, p»n, so that Eq (34)

holds. In practice, however, one may obtain a fairly accurate result with a much

smaller value ofp if the noise level is low The relationship between the ARX

model and a state-space model developed here has been used in the

Observer/Kalman filter identification algorithm (OKID) which identifies from

experimental input-output data a state-space model of the system together with

an associated observer/Kalman filter gain. This technique bypasses the need to

obtain estimates of the process and measurement noise covariances as normally

required if one has to design a Kalman filter instead of identifying it.

5.2 ARMAX model

It has been shown in the previous section that for an ARX model to subsume

an optimal Kalman filter, p must be sufficiently large In this section, a more

general stochastic input-output model is considered where p need not be as large

yet the model still subsumes a Kalman filter To derive such a model, add and

subtract the term My(k) to the right hand side of Eq. (31),

x(k + 1) = Ax(k) + Bu(k) + My(k) - My(k) - tfe(jfc)

= Ax(k) + Bu(k) + M[Cx(k) + Du(k) + e(*)] - My(k) - Ke(t) (37)

= (A + MC)x(k) + (B + MD)u(k) - My(K) + (M - K)t(k)

If M exists such that (A + MCY vanishes identically, then for k> /?, the output
y(k) can be expressed as

where the coefficients a*, (3* of this input-output model are related to the

state-space model as

(39)

This stochastic model turns out to be an auto-regressive moving average with

exogenous input model (ARMAX). It is widely used in adaptive estimation,

filtering, and control literature Equations (39) provide an interpretation of the

coefficients of the ARMAX model in terms of a state-space model A,B,C, a

                                                             Transactions on the Built Environment vol 19, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509 



Structures in Space 197

deadbeat observer gain M, and an optimal Kalman filter gain K. This model has

the advantage that p«p As discussed previously, for an observable system,

the minimum value of p is /?̂ , which is the smallest value of p such that

2Pmin - % where q is the number of outputs and n is the order of the state-space

model. However, this advantage is off-set by the introduction of the noise

dynamics which causes the identification problem to become non-linear because

both y* and e(£) are not known. The identification of such a model using a

generalized least-squares approach (OKID with residual whitening) is

formulated in Ref 6. The method identifies from experimental input-output

data a state-space model of the system, a deadbeat observer gain, and an

optimal Kalman filter gain without requiring a large value ofp as in the original

OKID algorithm.

The system Markov parameters, Y(k) = CA*~*£, and the observer gain

Markov parameters, Ŷ (k) = CA*~*M, can be recovered from the coefficients

a*, (3* as in Eq (20), and Eq (27), respectively Furthermore, it is possible to

recover the Kalman filter gain Markov parameters 7*(&) = CA*~*K from (%*,?*

(40)

where a^ = 0 for k> p. The Kalman filter gain K can be estimated from A, C,

and a sufficient number of recovered Kalman filter gain Markov parameters.

Alternately, application of a realization procedure to the sequence of combined

Markov parameters P(k) defined as

= CÂ [B M K]

will realize simultaneously the matrices A,B,C,M, and A" As a final note,

compare the ARM AX model in Eq (38) with the ARX model considered in Eq.

(8). In the stochastic case, if the model in Eq (8) is used, but p is not

sufficiently large, then the residual in the model will be colored. The dynamics

of this colored residual is modeled by the coefficients y*.

6 Realization from Markov parameters

If a sufficiently long sequence of Markov parameters Y(k) = CA*~*Z? is known,

realization theory can be applied to obtain the individual matrices A, B, C from

the sequence. One such method is the Eigensystem Realization Algorithm

(ERA), which is often used in structural identification. 8'io,n The same theory

can be applied to factorize the sequence P(k) = CA*̂ [B, M] to obtain

A,B,C,M, or the sequence CÂ [B, M, K] to obtain A,B,C,M,K

simultaneously. In the following, we describe the realization of the sequence
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CA*~^[B, Mj. Realization of the sequence CA*

similarly.

Define the Hankel matrix of P(k) as

P(k

, M, ^ can be carried out

P(k+s +

(42)

A minimal order realization of the //-dimensional state-space model A,B,C, and

the observer gain Mis given as

(43)

where matrices P„,Q„ are formed by the n left and right singular vectors in P

and Q, corresponding to the n (non-zero) singular values of H(0)

H(0) = fÎ  = ̂ Î  (44)

and E* are selection matrices, EJ=[/^^ 0 ••• OJ, a = m + q, q. The

realized model A',B',C', and realized observer gain M' are equivalent to the

original state-space model A,B,C, and the original observer gainM, in the sense

that they are related to each other by a similarity transformation This is due to

the non-uniqueness of the state-space representation. A coordinate change in

the state vector does not affect the input-output map, nor does it alter the

Markov parameters.

An important aspect in connection with system realization from the

Markov parameters is the order of the minimal realization. In the noise-free

case, given a sufficient number of Markov parameters, the minimal order n is

equal to the rank of the Hankel matrix, which is equal to the number of positive

singular values in £„. In practice, because all structural systems have noise and

non-linearities, the problem of rank determination is not trivial. The singular

value decomposition in the above realization procedure is a critical step to

determine this order Certain smaller singular values are attributed to noise, and

truncated. The number of retained singular values then determines an

"effective" system order. The corresponding retained columns of P and O in

the singular value decomposition of H(0) are used to obtain a realization.
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7 Concluding remarks

This paper presents a new connection between various standard input-output

models and state-space models in both the deterministic and stochastic cases.

The coefficients of the ARX and ARM AX models are explained in terms of the

state-space model and the associated observer or Kalman filter gains The

newly defined observer Markov parameters are useful in that they provide a

new way to view how state-space models and input-output models are related

to each other. This is in contrast to the known connection between the two

model types via canonical realizations. We have found a mechanism that

compresses an infinite number of system Markov parameters into a finite

number of observer Markov parameters, which can be identified from input-

output data The identified observer Markov parameters can then be

uncompressed to recover the original system Markov parameters, which

completely characterize the dynamics of a linear system because they are its

pulse response samples. From the Markov parameters, a state-space model of

the system can be realized as well.

This connection is also significant because it shows that not only a

state-space model can be extracted from the observer Markov parameters, but

an observer or Kalman filter gain as well. This additional capability helps link

traditional input-output model identification to modern state-space control,

because the identified state-space model and its associated observer gain can be

used directly in a state feedback control design. State-space models and

observers are two extremely fundamental elements of modern control theory

Furthermore, within the domain of modern control itself, the ability to identify

an observer from input-output data is also significant. Traditionally, observer

design and system identification are two separate processes. One typically

designs an observer rather than identifying it. To design an optimal observer

one not only needs accurate knowledge of the system model, but accurate

statistics of the process and measurement noise as well. In the proposed

approach, both the system state-space model and an associated observer gain

are identified from input-output data. There is no need to estimate the

statistics of the noises, which is a very difficult task in practice. Intuitively, the

fact that this is possible should not be too surprising, because a sufficiently

large amount of input-output data does in fact contain information about the

system as well as the characteristics of the process and measurement noise. It

is expected that several new identification techniques for complex flexible

structures can be developed by exploiting this fundamental relationship.
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