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ABSTRACT. This paper shows that the differential equations model
for compartmental systems is consistent with a stochastic descrip-
tion. Consequently, we may employ either a differential equations
or a stochastic formulation for either parameter identification, or
for physical interpretation, as best suits the purpose. The differ-
ential equations parameters, the so-called fractional transfer coef-
ficients, may be determined from the corresponding set of stochastic

parameters and vice versa.



INTRODUCTION. This paper deals with mathematical models for compart-

mental systems to be used for parameter identification. Usually one
employs the differential equations model [1] however sometimes we
find a stochastic model [2]. The paper discusses the relationship
between these modeling techniques.

We consider the differential equations model first. In the case

of the "bolus input hypothesis', the model takes the form

X(t) = AX(t), X(0) =X (1.1)

0 -
Here A 1is an n X n compartmental matriz. The elements of A4,

the so-called fractional transfer coefficients, have the following

properties:

a;; 2 0 (§ =1,2,..04n). (1.2)

oo~

a,,>0 (1 #J)s
W i=1
The compartmental matrix A will be said to be elosed if A has

the additional property:

zai'j:O (jzz,g,;..,ﬂ)- (103)

it 13
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The vector X(t) is called the state of the system at time ¢ > 0.
Its component xi(t) is the state of compartment < at time ¢. In
general, xi(t) represent nonnegative physical quantities. TFor exam-
ple in [2], xi(t) represents the percentage of Rose Bengal in com-
partment < at time ¢. The closure condition corresponds to the
n

] =,(¢) = 0. Thus if initially the sum is

conservation law é%
1=1



1, it will remain 1 Ffor all ¢ > 0.
m

For closed compartmental systems for which X mi(O) = 1,
i=1
the state vector X(t) 1is a probability vector, le. for each fixed
t > 0 the components satisfy:
m

x, >0, ] =x,=1. (1.4)
i=

Taking advantage of this property, the process may be considered

from the stochastic point of view. Saffer et al [2] define the tran-

sition probability matrix P(h} such that
X(t + k) = P(h)X(t) (1.5)

and regard, for fixed time increment h, X(nh), n=0,1,..., as
a Markov chain. The elements pij(h) of P(h) rvepresent probabili-
ties of going from compartment J to compartment < in time h.
One sees from the discussion of liver diseases [2] that the
stochastic model is very handy for interpreting data. It is also
convenient for parameter identification since one is dealing with a
discrete process. On the other hand, the differential equations ap-
proach has nice analytical properties and the flow graph of A may
have less segments than the corresponding stochastic matrix. Fach
modeling approach provides its own special insight into the physical

problem.

This paper deals with the following question. Suppose data
identifies, via the differential equations model, a compartmental
matrix 4, and via the stochastic model, a probability matrix P.

How are P and A4 related? It develops that these matrices are



related by velatively simple formulas which permit computation of

one from the other. This provides for more identification algorithms.
Leaving aside identification, one may take advantage of the

relationship between the models to interpret compartmental parameters

from the stochastic point of view. For example we are led to the

interpretation of -A*I as the matrix whose (i,j)th entry is the

mean time the process is in compartment ¢, having started in com-

partment J, before being excreted.

2. PROBABILITY AND COMPARTMENTAL MATRICES. Since we are relating

probability matrices to compartmental matrices, we define a probabil~
ity vector, X, as a column vector (rather than the more customary
row vector) satisfying condition (1.4). A probability matriz is de-
fined as a matrix such that each column is a probabillty vector. We
do not require that a probability matrix be square, in fact a proba-
bility vector is a probability matrix with one column.

The following properties are well known [3] and are not diffi-

cult to verify.

Lemma 2.1. (1) The product of two probability matrices (whose di-
mensions are compatible for multiplication) is a probability matrix.
(£1) The limit (if it exists) of probability matrices 1s a probabil-
ity matrix.

Recall that a closed compartmental matrix was defined above to
satisfy properties (1.2)-(1.3). The following simple connection

between closed compartmental matrices and probability matrices was



essentially pointed out in [ul.

Lemma 2.2. (i) Let 4 be an #n X n closed compartmental matrix.

Let d = mam{‘aﬁj' ¢ 121,45 <mn}. Then

q(h)

fik

I+nd, 0<h gbd’z s (2.1)

is a probability matrix. (I denotes the identity matrix).

(1i) Let P be a prcbability matrix, then for all # > ¢
Ay =1 lep - 1) (2.2)
is a closed compartmental matrix.

Proof: (i) The colum sums of Qfh) ave 1+ h '31 aij =1 by
condition (1.3). The off-diagonal elements of Q(z; are the off-
diagonal elements of hA  which are nonnegative by condition (1.2).
Finally, the diagonal elements of @&(h) are I + haii which are

nonnegative asince h < dwz. (11) Since multiplication by positive
scalars preserves the properties {1.23-(1.3), it suffices to show

that these properties are satisfied by P - I. But this Is easy to
verify.
Theorem 2.1. Let A be a closed compartmental matrix. Then

|

P(h) = exp(hd), h >0 : (2.3)

is a probability matrix.



Proof: It suffices to consider the case h = 1, Since kA 1is also

a closed compartmental matrix.

We define the functlons f,(s) = (1 +a/n)", n=1,2,...,
and f (8) = exp(e). It is well known that fﬁ(s) + f (8) for all
complex numbers &. Moreover, the derivatives f}ik) {8} f':;k) (),
k=1,2,... . It follows (see [5], p. 606) that the corresponding
matrices fﬁ(A) = (I + 4/m)" converge to f (A) = exp(4A). We know
from Lemma 2.2(1) that Iw#A/n is a probability matrix for n suffi-
ciently large. Hence (I + A/n)n is a probability matrix, for large
n, by Lemma 2.1(i). Finally, we apply Lemma 2.1(ii) to see that
exp(A) = lim (I + 4/n)"  is a probability matrix. This completes the

#4000
proof,

3. RELATIONS BETWEEN STOCHASTIC AND DIFFERENTIAL PROCESSES. The fol-

lowing result 1s at the heart of the correspondence between the two

models.

Theovem 3.1. (i) Let X(tJ be a solution to the differential
system (1.1) where A 1= a closed compartmental matrix. Then there
is a one parameter family of probability matrices P(h), h >0,
such that Bq. (1.5) is satisfied and P(hJ is expressed in terms

of 4 by BEq. (2.3). If X(0) is a probability vector, then

X(t) 1is a probability vector for each ¢ > 0. Conversely, (i1) let
X(t) be a solution to Eq. (1.5) where P(h) is a one parameter

family of probability matrices such that P(h) 1is differentiable at



h = (0. Let
4 = P(0). (3.1)

Then A is a closed compartmental matrix and X(¢) is a solution

of the differential system {1.1).
Proof: (i) The solution to (1.1) is
X(t) = exp(tA)X, . (3.2)

Thus X(t + h) = exp((t + k)A)XU = emp(hA)exp(tA)X& = P(h)X(t} where
Pth) is a probability matrix by Theorem 2.1. If XU is a probabil-
ity vector, then X(t) is a probability vector in view of Eq. (3.2)
and Lemma 2.1(1). (ii)} Observe that A4 = P(0) = lim A(h) where
A(h) 1is given by Eq. (2.2). Since A(h) is a clgggd compartmental

matrix (Lemma 2.2(ii)) so is its limit A. Next observe from Eq.

PeRIX(t) and P(O)X(t) = X(t) = IX(t). Thus

]

(1.5) that X(t + k)

hnl(X(t £ h) - X(tS) = A(h)X(t), Taking the limit as h + 0 we ob-

i

tain BEq. (1.1). This completes the proof,

The above result is well known in the context of semi-pgroup theory
(see [6], p. 231) but not in regards to the relationship between
probability and compartmental matrices. The matrix A 1s called
the infinitesimal generator of the semi-group P(hJ. The Following
result is a paraphrase of Theorem 3.1 which emphasizes the modeling

aspect.




Corollary 3.1. (1) GSuppose a compartmental system iz described by

the differential equation model (1.1) where 4 1s a closed compart-

mental matrix and XO is a probability vector. Then for each

h > 0 and for each ta.i 0 the system may be modeled as a Markov
= P o N # i

chain X, 01 P(h)X, where X, X(nh + taj Conversely, if the

system may be modeled as a Markov chain in the above sense for each

fixed h >0, t,> 0 and if P(h) 1s differentiable at h = 0,

",
then the system may be modeled in terms of the differential system

(1.1) where 4 1s a closed compartmental matrix.

Remark 3.1. (flow graphs) In general the graph of P(h) (h> a)
exhibits more connectionz between compartments than the graph of

A.. TFor example, if the fractional transfer coefficient aij = (
then the graph of A has no path from compartment J to compart-
ment 4 which does not intersect other compartments. However, as
long as compartment 7 1is reachable from compartment J along some
path (which may intersect several intermediate compartments, the
probability, pij{h) of reaching compartment < - from compartment

7 in time % > 0 is positive. On the other hand, we may observe

from the expansion
g ©
P(h) = exp(hd) = I + hA + h°A°/80 + ... (3.3)
that for h small

Pih} ~ I + k4 . (3.4)



Notlce that the graph of the approximation I + h4 (h > 0) has the
same connections between compartments as does the graph of A. This
i{s because if there is no immediate path from J to ¢ then pij(h)

is of order hZ as h +~ 0.

4. SYSTEMS WITH EXCRETIONS. We now consider an n X n compartmental

matrix A which 1s not closed, i.e. there ls at least one integer
J such that

7
Q.. 5~ J a,,>0. (4.1)
i=1 ¥
The positive quantity @y represents the excretion from compart-
ment J into the external environment.

Let p denote the number of excretions. For the sake of sim-
plicity of notation, we renumber (if necessary)} the compartments so
that the first »r compartments exhibit excretions. In order to ob~
tain an equivalent closed model of our system, we add r new compart-
ments (traps) so that the ith new compartment serves as the deposi-~
tory for the éth excretion. The resulting compartmental matrix,
which we call the clogure of 4 (see Remark 8.1) and denote it by 4,

is described as the partitioned matrix

o E
- rr
4 = . (4.2)
o A
| nr
Here O, {resp. Onr) denotes the p x r» (resp. n % p) matrix

of zero entries and F is the » X n matrix such that

S



(']:.:‘j)_‘ 62--=0 (i#j) * (u‘;a)

1J 04 1J

Notice that 4 is in block upper triangular form so we may apply

Corollary 3.1 in [7] to obtain (for h > 0):

I S(h) ]
P(h) = exp(hd) = (4.4)
0., Ph

where Ifr denotes the r x » identity matrix, P(h) = exp(hd)

as before and

st) =8 § WU+ 1)1 (4.5)
w=()

The series (4.4) always converges, and if A'Z exist, as is the case
when 4 1is excretory (see Theorem 4.1, below), then the series con-

verges to

sth) = ea"L(p(n) - 1) . (4.6)
If h is small, then In view of the approximation (3.4)

S(h} ~ hE = h déag(agl,aog,...,aan) . (u.7)

Notice that P(h) is a probability matrix but P(h) 1is not
(h > 0). However, the elements of P(h) are elements of a proba-
bility matrix and have the propertles.

H

. >0, ) D,

L < 1. (4.8)
g=1 "7

Matrices having properties (4.8) will be called PP (partial proba-

bility) matrices.
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Remarks 4.1. All the above results remain true when "probability" is
replaced by YPP'" and '"closed compartmental' is replaced by Heompart-
mental". That is, PP matrices correspond to compartmental matrices
in the same fashion as probability matrices correspond to closed com-
partmental matrices.

The representation (4.4) is handy for applying some well known
concepts from Markov chain theory L[31].

A Markov chain is absorbing if it has one or more absorbing
states and it is possible to reach an absorbing state from every
state. In a corresponding fashion we define the differential process
(1.1) to be excretory if there is at least one excretion and it is
possible to reach an excreting compartment from every compartment
({.e. there are no traps). We will say that a probability (resp.
compartmental matrix Is absorbing (resp. excretory) if it is the
transfer matrix (resp. matrix of fractional transfer coefficients)

for an absorbing (resp. excretory) process.

Lemma 4.1. Let h > 0. Then P(h) is absorbing if and only if the

corresponding compartmental matrix A iz excretory.

Proof: The result Follows from comparing the graphs of A and
B(h). It is not difficult to show that a compartment < is reachable
from compartment ¢ if and only if the probability Eéj(h) of

reaching < from J, in time h, 1s positive.

Lemma 4.2. Let P(h) be absorbing. Then
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M(h) = (T - P(h))~t (4.9)
exists and 1s equal to the series ] P(nh).
ne=(
Proof: The result is immediate from [8] (p. 106} and the fact that

P(nh) = p(h)".

Lemma 4.3, The matrix M, given In (4.9), exists 1f and only if

A“l exlsts.

Proof: This follows directly from the spectral mapping Theorem (see

[61, p. 227).

Lemma 4.4. Suppose 4 is excretory. Then Aml exlsts.

Proof: We argue by the contrapositive. Suppose compartment % is
not reachable to any excretory compartment. Let ¢ be the set of

all compartments reached from compartment k. Consider the sclution
X(t) of the differential system (1.1) where the initial input X(0)

is given by mk(o) = 7, xi(ﬁ} = @0 if 4 £ k. Let s(t) = ‘ZC xi(t).
Then, since there is no excretion from the set of campartmenzg Cs

a(t) =1, t > 0. On the other hand, we know from the theory of
differential equations that a(t) may be expressed as a sum of lineap-
1y independent modez g(t) = ’f aifé{t) where the amplitudes

a, £ 0 (7= 1,8y...sm) and ?}é{t) _ t%iexp(ait} for some non-

negative Iinteger n and some elgenvalue ki of 4. But

m
Z a.f%(ﬁ) ~ 1 =0 implies that the set of functions
ﬁﬁ_z [+
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(l,f}(t),..,,fh(t)) are linearly dependent, which necessltates that

¢ is among the elgenvalues Xi. We conclude that 4 1s singular.

Theorem 4.1. Let #4 > ¢ be fixed. The following conditions are
equivalent
(1} A is excretory.
(11y P(h) 1s absorbing.
(1ii) M(h) exists

{(iv) A-I exists.

Proof: The proof results from Lemma's 4.1-U.h.

Remark 4.2. The results in Theorem 4.1 are not all new. Dr. John

Jacquez conjectured that "a linear compartmental system has a trap

if and only if zero is an eigenvalue of the associated compartmental

matrix". This result, later proved by Fife [9], 1s equivalent to

our "excretory if and only if invertible' result and, in particular,

it contains Lemma 4.3, which is also proved in {107. However, we

have included an additional proof of Lemma 4.3 since it offers a

somewhat diffevent slant. For further results regarding traps see f11].
The matrix M(h) is known as the fundamental matrix (correspond-

ing to P(h)). The elements mij(k) of M(h) may be Interpreted

“as the mean number of iterations the Markov process is in compartment

4, having started initially from compartment 7., before the process

enteps an absorbing state (is excreted). The approximation (3.4)

yields
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1

M) ~ - n g (4.10)

The matrices A, P(h) and M{h} are all Ffunctions of one
another so that the knowledge of any one determines (with % known)
the other two (even without the approximation (3.4)). An example will
be presented in Sectilon 5.

Another set of useful parameters 1ls fuprnished by the matrix

Glh) = Sth)M(h) = _nat

The elements gij(h) give us the probability that, starting in a
transient compartment J, the Markov process will be excreted to

compartment #n+71, when it finally is excreted.

Remark 4.3. Notice that the approximation (4.10) implies that
~A-1 is nonnegative. This fact is directly deductible from the
properties (1.2), however it is interesting to see it as a conse~
quence of stochastic theory. The same obzervation applies to
exp(hd) (h > 0} which, as a PP matrix, is also nonnegative,

Let p{j(t) denote the elements of F(t). Then, in an in-
finitesimal interval [t,t + §¢J), the mean time the process is
in compartment <, having started in compartment J, before en-
tering an absorbing compartment, is pij(t)ét. The total mean time
the process stays in compartment <, having started in compartment
Js before entering an absorbing compartment, is the (i}j)th element

of

.



1k

7= r Plt)dt = At (4,11)
0

The above integration may be obtained using the function-of-a-

matrix representation (see [5], p. 606 or [61, p. 225).

Jw P(t)dt = jm exp (tA)dt ='f {j"lﬁ"% exp(ht) (AL ~ A}"I&i}&t =
0 0 g L2 J¢ i)

. PO
-s- 7 bd -—1
é—;% U exp(At)dt| (AT ~ A) Iy = —gj;;é a7 lor - aia
C 0 c
(we choose the contour C in the left half plane so that ext + 0

as t > o) = ~An1.

We summarize the above result.

Theorem 4.2. Let 4 be excretory (equivalent to ﬂ-z exists).
Then the (Z,J) element of «Aaz is the mean time (w.r. to P(%))
the process ls in compartment 4, having started in compartment

3

Js before being excreted.

Remark 4.4. Employing the Riemann sum, for small increments of
constant width %, to approximate the integral in (4,11} we obtain
(See Lemma 4.2)
T~ § Plnh)h = M(h) . (4.12}
n=(

Notice that the approximation (4.12), along with (4.11), ylelds (4.10).

Remark 4.5. Hearon [127 defines a conditional probability density
for times of exit from the system, conditioned on the total number

of particles which, leave the system. Using this density, he defines
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the mean residence time u, for the system. For the special case

1
that excretion is from one and only one compartment, say compartment
k, then Hy = j: txkfﬁjdt/ [: xkft}dt. Specializing further to the
case that only one compartment is loaded, say cémpartment g, Hearon
shows that y is the @ column sum of 41, This result is
consistent with Theorem 4,2, for having started in compartment @,
the total mean residence time in the system is the sum of mean times
in each compartment. If the system has more than one excretion, the

above formula for My, as the ratio of two moments may no longer be

valid. However we may still conclude Ffrom Theorem k.2 that

Corollary L4,1. Given that an excretory system is loaded in a single

compartment &, the mean residence time is the s column sum in

~A~1 .

5. A LIVER MODEL. As an illustrative example we consider the model

of the biliary system discussed in [2] and [4]. Here we have two
transient compartments: blood (1) and liver (2}, Rose Bengal (a
radloactive substance) is injected into the blood and it is eventually
excreted into either the urine, from the blood, or into the feces,

from the liver. The compartmental matrix for the two compartment

model is
b g
b i a,. a
A=, | 18 (5.1)
o1 %ap

where none of the elements a;J are zero and the excretions
i



a (i = 1,2) ave positive. Since A 1is excretory 1t

0t = %11 " %
is invertible. (see Theorem 4.1}.

The closure of 4 1is given by

u f b A

U g g a4 0

i F a 0 0 g

A_ B ] e cvw i v oot o s e i S v et 2 b G e e 0 @ (5’2)
b g 0 Ay Ayg
£ “~0 Y] agj azgm

Let time be measured in hours and let % = 1 hour. Then,

according to Eq. (4.4},

U 1 31} 512
i Firo 1 8yy  Byg
P o . (5.3)

g 0 Pi; Pig

=
<
Ty

Pg1 Pog

For simplicity of notation we have dropped the dependence on k.
Saffer et al [2] adopted the stochastic model {(5.3). However they
assumed that & is diagonal which may be justified in the light of
the approximation (4.7) if % is small. Now h = 1 hour may be
considered small compared to thelr 72 hour observation perlod. Thus

perhaps they may be justified in their approximation
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For one patient (D.W., diagnosed as neonatal hepatitis) they

estimated the fundamental matrix

=
i
P
o
-
o
Sepd®

They interpret (see Remark 4.4} (5.5) to mean that the mean number
of hours in the blood before eventually ending up in the urine or
feces having inltially started from the blood is 10 and having ini-
tially started from the liver is 8. Similarly, they interpret the
mean number of hours in the liver before eventually ending up in
the urine or feces, having initially started from the blood is 77
and having initially started from the liver is 81,

It is an interesting numerical exercise to determine the com-
partmental matrix A corresponding to the fundamental matrix (5.5).

Notice that
4= g(M) where g() = in(1 - 2"1) . (5.6)

Let X, and X, be the eigenvalues of M. Using the interpolation

1 2
method (see [5], pp. 607-612):

90
Ao = Ay

g(%z) g (i
A = i (M = A T #

M~ A.I1,
Ay = Ag

1

a1

we obtailn

"Qb 558 0‘ 055

| 0.53¢ -0.066
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If we use the approximation (4.10} we estimate

-0.418  0.041
4~ (5.8)
g.387 ~0.062 '

which approximates (5.7) by about 25%. As for the excretions, the
estimated values of S in [2] ave: (8113522) = {0,080,0.0140}.
FProm the matrlx (5.7) one determines (ﬁgz’agg} = (0,024,0.011).
The approximation (5.4), in this case, (0.020,0.010) ~ (0.024,0.011)
is accurate to within 17% (assuming that M given in Eq. (5.5) is
correct).

The above calculations are meant as merely an Illustration of

how to compute one set of parameters from another and as a gauge of

the approximation (3.4).

6. STOCHASTIC INTERPRETATION OF THE IMPULSE RESPONSE FUNCTION. We

now consider the case of g (g > 1) inputs, uz(i),uzfﬁ},‘;,,uq(ﬁ),

which occur over an interval of time. Suppose that the rate of flow

into compartment 1 is given by )} b..u.(t) where b,. are posi-
Tl iJ
L2
tive constants. We also consider p (p > 1) observations from
7
the n compartments yi(t) = X c{jwj(t}. The poverning state
- g=1

equations then take the form (e.g., see [1371}):

X(t) = AX(t) + BU(Et) (t > 0), X(0) =0, (6.1)
Y(E) = CX(t) (t > 0) (6.2)

where 4 18 the n %X n matrix of fractional transfer coefficients,
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B is the n x g matrix of input constants b,., ¢ 1is the p xn

R,

matrix of output constants cﬁfﬁ X(t) is the state vector of com-
L%

partmental states xi(é), yrt) is the vector of inputs ui(t) and

¥(t} is the vector of observations yi(t}, In gyatems theory {51,

¥(t) is referred to as the output vector.

Notice that we may integrate in Eq. {6.1) to obtain

&
X(t) = g exp((t~8)A)B Ule)ds . (6.3)
u
Suppose we set
Ulg) = 6(3}503 X, = BU, . (6.4)

where &(g) denotes the Dirac delta functlon and UG is a constant
vector. Then, under conditions (6.4}, X(£) reduces to the szolution
(3.2) which corresponds to the "bolus input hypothesis”. Thus the
model (6.1)-(6.2) is more complete than the model {(1.1) in that it
allows Ffor inputs over continuous time and exhibits the input/output
pathways .

As an illustrative example we consider the injection uj(t} =
5(t) (bolus input hypothesis) of Rose Bengal into the blood as
discussed in Section 5. As outputs we have: Yy, (blood), Yy
(urine) and y, (feces). If we adopt the 2 compartmental model

(5.1) we take

a a 1 (6.5)
CAB = | a 0 { 1 "Iz ‘
01 t a a 0
“21 28
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On the other hand, 1f we adopt the closed four compartmental model

(5.2), we obtain

(0 0 a g Y[ 1)
0 0 1 0 01
——m g 0 e 0
GiE=1{1 0 o0 0 02 . (6.6)
g 0 «a a.,, g
0 1 0 0 11 14
RO 0 agz agg Ik a

Notice that certain parameters may appear elther in the compartmental
matrix or the output matrix, depending on how the problem is modeled.
Returning to the general case, suppose we multiply in Eq. (6.3)

by ¢ to obtain

t
Y(t) = [ O(t - a)i(e)de, (6.7)
0
where the matrix,
$(t) = C exp(td)B, (6.8)

is the so-called impulse response functlon. Although there may be
several ways to model the process, the Impulse response function,
which determines the input/output transfer, ls independent of the
particular compartmental model. In particular, for the liver prob-

lem, we have
O(t) = C eap(tA)B = C exp(td)B . (6.9)

In the language of syatems theory, the triplets (4,B,0) and



21

(4,B,C) are sald to be pealisations of the impulse response function
d(t).

Systems identification theory deals with the question of whether
or not sufficient input-output information is available in.order to
determine the fractional transfer coefficients. One of the underly-
ing principles which has been clearly pointed out by Bellman [i4],
is that all identifiable parameters must be identified through the
impulse response function. For example, suppose in the liver model
(for a particular patient) data is available only in the blood com-~
partment. In this case &(t) = {1,0)exp(tA){ é ]. It may be shown
[15] that o(t) = ajexp(A t) + apeap(At) where (Ajh,) are eigen-
values of A and (ul,ag) are corresponding amplitudes. These
decay parameters may be estimated from the data. Now Ay =
&(0) = ulkl + azkg is identifiable. Also, from the trace asq*
ayg = -ki - AZ’ we ldentify Agy = -AI - AZ ~ ayqe From the de-
terminant equation A q0gn = Gqgdpg = AZAZ we may also identify the

product ¢ However, it can be shown from results in [15], that

15%21°

nor a is identifiable from blood samples alone but

neither d12 21

they are identifiable if we include either urine or feces samples.
Since the impulse response function plays an important role in

the identification problem we would like to obtain a stochastic inter-

pretation. For this purpose we employ the realization (4,8,C)

corresponding to the closed compartmental model. We recall from

Theorem 2.1 that P(t) = exp(td) 1is a probability matrix. Thus if

T and ¢ are also probability matrices, as in the case of (6.8), then

&(t) 1is a probability matrix. The elements ¢ij(t) may be inter-
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preted as the probability of reaching output i from imput § in
time +. The assumption that B is a probabllity matrix is not un-
reasonable and, in fact, is assumed in the work of Cobelli and
Romanin-Jacur [13]. However, the output matrix is often not a proba-
bility matrix but it is a nonnegative matrix. Thus by appropriate
normalization (e.g., dividing by the largest column sum) we may
regard C as a PP matrix, It then follows (see Remark 4.1)

that ©0(%) is a PP matrix and so we may still interpret the ele-

ments ¢ij(t) as stated above.

7. CONTINUOUS TO DISCRETE MODELS. We consider again the model

(6.1)-(6.2). Let h > 0 be a fixed time increment and suppose

the input

Uft) = U,, nh<t< (n+alh (7.1)

where Un is a constant, »n = 0,1,... . We set

X, = X(nh), Y, =Y(nh), n=0,2,... . (7.2)
(n+l1)h
Then, from Eq. (6.3) we obtain Xoe1= J expl((n + 1)k - 8)A1BU(8)ds
14
h (nt+1)h
o= In expl((n + 1)h - 8)A1BU(e)ds + f expl((n + 1)h - s)A]BUndb
0 nh

= P(h)Xﬁ + F(k)Un:
pew) = | Y WA+ 1018 (7.3)
n=0
The series which occurs in Eq. (7.3) is the same series which occurs

in Eq. (4.5). Recalling the observation made in Section 4, we have:
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F(h) ~ hB (h ~ 0), (7.4)
Peh) = 4~ e - B (4”1 extets). (7.5)

We see that under assumption (7.1), the model (6.,1)-(6.2) may be ex~

pressed in discrete form:

Xn+1 = P(k)Xh + F(h)Uh (n=0,1,...), Xo =0, (7.6)
Yn = CXn (m=0,1,...). (7.7)

The discrete system (7.6)-(7.7) is in the standard systems-~theory form.

As in the continuous case, the equations may be combined:

lp”-.?:Uo s (n=-'0,1_,...), (708)

n
Y .= 7
=1

n+l y)
where the discrete impulse response,
¥, = CE'(F(h) = CP(rhJF(R) (n = 0,1,...).  (7.9)
Notice that for small % (see (7.4))

wn ~ h&(nh). (7.10)

Stochastic interpretations for the matrices appearing in Egs.
(7.4) through (7.10) may be obtained by appealing to the results in

Sections 2,3,4 and 6.

8. CONCLUSIONS. We have pointed out relationships between the dif-

ferential equatlons and the stochastic approaches for modeling a
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compartmental system. Moreover, we have touched on relationships be-
tween open and closed models and between continuous and discrete mod-
els, We see therefore that there lies a multitude of wars for model-
ing a physical system all of which are at our disposal.. Oﬁe of the
advantages gained from the relationships between the differential equa-
tions and the stochastic models is that either one may be used for sys-
tem identification purposes and either set of parameters may be com-~
puted from the other. Another advantage is gained in the stochastic
interpretation of the physical process in terms of fractional transfer

coefficients.

REMARK 8.1. Dr. John A. Jacquez has suggested defining the closure of

4 by collecting all excretions into a single compartment. Then the
closure of A has only one more column and one more row than A. This
would simplify the development in Section 4 and make its application to
particular problems a little easier. On the other hand, when we want to
keep track of the separate excretions, as in the liver model, the defi-

nition of closure given in Section 4 seems more appropriate.
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