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RELATIONSHIP BETWEEN THE MAXIMUM PRINCIPLE AND

DYNAMIC PROGRAMMING FOR MINIMAX PROBLEMS

CRISTOPHER HERMOSILLA AND HASNAA ZIDANI

Abstract. This paper is concerned with the relationship between the maxi-
mum principle and dynamic programming for a large class of optimal control
problems with maximum running cost. Inspired by a technique introduced by
Vinter in the 1980s, we are able to obtain jointly a global and a partial sensi-
tivity relation that link the coextremal with the value function of the problem
at hand. One of the main contributions of this work is that these relations are
derived by using a single perturbed problem, and therefore, both sensitivity
relations hold, at the same time, for the same coextremal.

As a by-product, and thanks to the level-set approach, we obtain a new
set of sensitivity relations for Mayer problems with state constraints. One
important feature of this last result is that it holds under mild assumptions,
without the need of imposing strong compatibility assumptions between the
dynamics and the state constraints set. Minimax optimal control problems
and Maximum principle and Dynamic programming and Sensitivity analysis
and State constraints

1. Introduction

This work is devoted to study the relationship between the maximum principle
and dynamic programming for optimal control problems governed by a control
system of ordinary differential equation on RN . In particular in this paper, we
are concerned with two types of optimization problems: (i) the Minimax problems,
where the goal is to minimize a maximum running cost of the form

y !→ max
t∈[0,T ]

Φ(t,y(t))
!

Ψ(y(T )),

and (ii) Mayer problems with pathwise state inequality constraints

Φ(t,y(t)) ≤ 0, ∀t ∈ [0, T ].

Our task is to provide some insights on the connexions between the coextremal that
appears in the corresponding maximum principle and the value function associated
with perturbations in the initial data.

This type of connexions, called by some authors the sensitivity relations, have
been intensively studied in the literature for problems without state constraints.
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2 CRISTOPHER HERMOSILLA AND HASNAA ZIDANI

For example, given s ∈ [0, T ] and y ∈ RN , let us consider the following Mayer
problem:

"
###$

###%

Minimize Ψ(y(T ))

subject to ẏ(t) = F(t,y(t),u(t)), a.e. on [0, T ],

u(t) ∈ U(t) ⊆ Rm a.e. on [0, T ].

y(s) = y.

Assume in addition that the data of the problem is regular enough. Then, classi-
cal results (see for instance [11, 24]) lead to the so-called Pontryagin’s maximum
principle (PMP), which allows to associate any optimal pair (y,u) with a costate
function p satisfying a transversality condition involving the cost Ψ and the follow-
ing equations:

ẏ(t) = ∇pH(t,y(t),u(t),p(t))

ṗ(t) = −∇yH(t,y(t),u(t),p(t))

H(t,y(t),u(t),p(t)) = max
u∈U(t)

H(t,y(t), u,p(t)),

where H(t, y, u, p) := p · F(t, y, u), for every (t, y, u, p) ∈ [0, T ] × RN × Rm × RN .
The PMP provides a set of necessary conditions for any (locally) optimal process,
whereas the dynamic programming approach provides insightful information on
the value function V , that is, the mapping that associates the initial time and
position of the problem (s, y) with the optimal value V (s, y) of the corresponding
control problem. One can guarantee, under rather mild assumptions, the Lipschitz
continuity, in a local sense, of the value function (see for instance [4, 24]) as well
as the fact that it satisfies a dynamic programming principle; The latter claiming
that optimal trajectories remain optimal on each subinterval. For Mayer problems,
the relationship between the PMP and value function has been known since the
seminal works of Bellman in the 1950s, and can be described as follows:

(1) −p(t) = ∇yV (t,y(t)), H(t,y(t),p(t)) = ∂tV (t,y(t)),

where H is the maximized Hamiltonian. These relations highlight the fact that
the costate function somewhat measures the sensitivity of the optimal cost of the
problem with respect small variations in the optimal trajectory.

In the particular case that the value function is continuously differentiable as
well as all the functions involved in the problem setting, the proof of the relations
(1) is rather simple. Moreover, if the value function is merely locally Lipschitz
continuous, and the costate function is unique, the relations (1) can be extended
by using variational techniques (super and sub-differentials) as in [26] (we refer also
to [4] where different arguments are provided).

In [12, 23] the authors studied the sensitivity relations for Mayer problems with
locally Lipschitz continuous cost; the value function turns out to be Lipschitz con-
tinuous as well. Since the final cost is not necessarily smooth, the costate function
may not be uniquely determined. In this setting, the sensitivity relations claim
that at least one of the coextremals p given by the PMP, satisfies the endpoints
conditions

−p(0) ∈ ∂yV (0,y(0)), −p(T ) ∈ ∂yV (T,y(T )),

and either a partial sensitivity relation

(2) −p(t) ∈ ∂yV (t,y(t)), a.e. on (0, T ),
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or a global sensitivity relation

(3) (H(t,x(t),p(t)),−p(t)) ∈ ∂V (t,x(t)), for all t ∈ [0, T ].

These relations improve (1) by using the generalized gradient of the value func-
tion (which is well defined in this context). It is worth pointing out that some
examples are presented in [12, 24] to demonstrate that not all coextremals satisfy
the sensitivity relations, even though they are associated with the same optimal
control problem and same minimizer.

Another worth mentioning nonsmooth case is when the dynamics is governed by a
linear system and the cost is a convex function. These are the so-called fully convex
optimal control problems. It’s well known that in this setting, the PMP takes an
equivalent form in terms of a Hamiltonian system; see for instance [19]. Moreover,
in this context, the value function is a convex function on the state variable (see
[21]) and the partial sensitivity relations (2) hold true for any coextremal ; see for
instance [15, Lemma 3.1].

The proofs for (2) (in [12]) and the one for (3) (in [23]) are based on the con-
struction of a new optimal control problem, which is a perturbation of the initial
one, however, involving additional control variables, and for which the original min-
imizer, is as well a solution. This new problem has, by construction, a richer class
of variations. Necessary conditions for optimality are then evoked, which makes
new information to come out, leading to the sensitivity relations for the optimal
control problem we have considered at the beginning.

In the present work, we first derive the sensitivity relations for the control prob-
lem with a maximum running cost. The general idea of the proof follows similar
arguments developed in [23, 9]. However, some specific difficulties arise in the max-
imum running cost case. First, the choice of the perturbed problem should be
adapted to take into account the nature of the running cost and also to take into
account the nature of the sensitivity of the value function with respect to distur-
bances around the optimal trajectory. This sensitivity is more complex than in the
case of Mayer problem. Let us also highlight that in the present work, the par-
tial and global sensitivity relations can be jointly obtained from a single perturbed
problem (whereas in the original proofs in [9], a different perturbed problem was
introduced for each sensitivity relation).

Motivated by the well-known connexion between minimax problems and state
constrained problems (e.g. [1]), the sensitivity relations for the minimax problem
can be used as a pivot for getting a relationship between the maximum principle
and the dynamic programming for problems with state constraints. As a long list of
works demonstrates, the presence of state constraints in optimal control problems
poses many challenging difficulties. Indeed, the value function is no longer finite
nor locally Lipschitz continuous everywhere, and unless some strong controllability
assumptions are enforced, it may even be discontinuous on the interior of the state
constraints set. Several works have been devoted to analyze of the regularity of the
value function for state-constrained optimal control problems; we refer for instance
to [22, 14, 13, 18, 17, 16] and the references therein. See also [3, 5, 7] for similar
results for the case of differential games.

Connections between the PMP and the dynamic programming have been re-
ported for state-constrained optimal control problems in [8] under the so-called
Inward Pointing Condition. This condition forces the state constraint set to be a
viability domain, while guaranteeing that the value function is Lipschitz continuous
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on the interior of that set. In this work, we consider a general control problem with
pathwise state inequality constraints. We follow some ideas introduced in [1, 10]
and reformulate the original control problem as a control problem with a maxi-
mum running cost whose value function is locally Lipschitz continuous everywhere.
Then, by using the results that link the original control problem with the auxiliary
problem, we are able to derive a set of sensitivity relations without requiring any
type of compatibility assumptions such as the mentioned above.

The paper is organized as follows. Section 2 presents some preliminary results
in Nonsmooth Analysis. Section 3 introduces the minimax control problem and
presents the sensitivity relations for this problem. The proof of the sensitivity
relations for the minimax problem is given in Section 4. Section 5 is devoted to
the relation between the PMP and the dynamic programming principle for state
constrained optimal control problems.

2. Preliminaries

In this paper standard notation is used. For example, R denotes the set of real
numbers, x ·y the Euclidean inner product of x, y ∈ RN , ‖x‖ is the norm of x ∈ RN

(for any N ≥ 2), BN is the unit closed ball centered at the origin of RN (also
denoted B if there is no ambiguity) and B(x; r) = x+ rB.

For any set S ⊆ RN , co(S) denotes its convex envelope (the smallest convex set
that contains S). For any a, b ∈ R, we define

a
!

b := max(a, b).

We write L1
&
[0, T ];RN

'
, L∞ &

[0, T ];RN
'
and W 1,1

&
[0, T ];RN

'
for the usual

Lebesgue spaces and Sobolev space of functions x : [0, T ] → RN , respectively.
The abbreviation ”w.r.t.” means ”with respect to”, and ”a.e.” stands for ”almost
everywhere”. Also, L denotes the Lebesgue subsets of [0, T ], Bm stands for the
Borel subsets of Rm and L × Bm is the corresponding product σ-algebra. In this
paper, the δ-tube around a curve x : [0, T ] → RN is the open set defined via the
formula

(
x ∈ RN | ∃t ∈ [0, T ], ‖x− x(t)‖ < δ

)
, for some δ > 0.

A set-valued map U : [0, T ] ⇒ Rm is said to be locally selectionable ([2, Definition
1.10.1]) if for any (t, u) ∈ Gr(U) there exists a selection v of U , which is continuous
on a neighborhood of t and satisfies v(t) = u. Here Gr(U) stands for the graph of
the set-valued map U .

2.1. Nonmooth analysis tools. Before going any further, we evoke some defini-
tions and properties from sub-differential calculus that we will need in the rest of
the paper. For more details on nonsmooth analysis, we refer to [11, Chapter 10] or
[24, Chapter 5].

Let φ : RN → R be a Lipschitz continuous function in a neighborhood of a point
x ∈ RN . The generalized directional derivative of φ at x, for any direction v ∈ RN ,
is given by:

D◦φ(x; v) := lim sup
y→x,h↓0

φ(y + hv)− φ(y)

h
.

Consequently, the Clarke’s sub-differential of φ at x is given by:

∂φ(x) =
(
ξ ∈ RN | D◦φ(x; v) ≥ ξ · v, ∀v ∈ RN

)
.
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The generalized directional derivative and the Clarke’s sub-differential are related
to each other in the following way (see for instance [24, Proposition 4.7.4]):

(4) D◦φ(x; v) := max
ξ∈∂φ(x)

ξ · v, ∀v ∈ RN .

The gradient formula for the Clarke’s sub-differential ([24, Theorem 4.7.7]) reads
as follows: for any Ω ⊆ RN that has (Lebesgue) measure zero it follows that:

(5) ∂φ(x) = co
(
ξ ∈ RN | ∃xi → x, xi /∈ Ω, ∇φ(xi) exists and ∇φ(xi) → ξ

)
.

The Clarke’s sub-differential of φ at x is a compact, convex and nonempty set
of RN , and if L > 0 is the Lipschitz constant of φ in a neighborhood of x then
∂φ(x) ⊆ BN (0;L). This sub-differential satisfies some properties reminiscent of the
classical differential calculus as the sum rule ∂(φ + ψ)(x) ⊆ ∂φ(x) + ∂ψ(x) for φ
and ψ Lipschitz continuous functions in a neighborhood of x. Moreover, when ψ is
continuously differentiable (in a neighborhood of x) then

∂(φ+ ψ)(x) = ∂φ(x) + {∇ψ(x)}.
Notice too that for any α ∈ R, we have ∂(αφ)(x) = α∂φ(x).

If φ is a bivariate function with x = (x1, x2), then for a given (x̄1, x̄2) ∈ RN ,
we write ∂x1φ(x̄1, x̄2) and ∂x2φ(x̄1, x̄2) for the sub-differentials of the functions
x1 !→ φ(x1, x̄2) at x1 = x̄1 and x2 !→ φ(x̄1, x2) at x2 = x̄2, respectively. These are
the partial sub-differentials of the function φ at x̄ = (x̄1, x̄2). It is noteworthy to
mention that in general

(6) ∂φ(x̄1, x̄2) ∕= ∂x1
φ(x̄1, x̄2)× ∂x2

φ(x̄1, x̄2).

The lower Dini directional derivative at x of a function ψ : RN → R in the
direction v ∈ RN is defined as:

D↓ψ(x; v) := lim inf
w→v,h↓0

ψ(x+ hw)− ψ(x)

h
.

If ψ is Lipschitz in a neighborhood of x then we have the following expression:

D↓ψ(x; v) = lim inf
h↓0

ψ(x+ hv)− ψ(x)

h
.

Following [10, Lemma 2.1], if ψ : RN → R is Lipschitz continuous function on a
neighborhood of x, then

D↓ψ(x; v1 + v2) ≥ D↓ψ(x; v1)−D◦ψ(x;−v2), ∀v1, v2 ∈ RN .

Therefore, the following inequality holds for any v1, . . . , vk ∈ RN :

(7) D↓ψ

*
x;

k+

i=0

vi

,
≥ D↓ψ(x; v0)−

k+

i=1

D◦ψ(x;−vi).

2.2. Optimality conditions for minimax problems. Let T > 0 be a finite time
horizon and consider now the following minimax optimal control:

"
#####$

#####%

Minimize

-
max
t∈[0,T ]

ϕ(t, x(t))
!

ψT (x(T ))

.
+ ψ0(x(0))

over all x ∈ W 1,1 ([0, T ];Rn) and u : [0, T ] → Rm measurable

such that ẋ(t) = F(t, x(t), u(t)), a.e. on [0, T ],

u(t) ∈ U(t), for any t ∈ [0, T ].

(Pm)
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Let us recall that a feasible process (x̄, ū) for problem (Pm) is said to be a strong
local minimizer if there exists ) > 0 such that
-

max
t∈[0,T ]

ϕ(t, x̄(t))
!

ψT (x̄(T ))

.
+ψ0(x̄(0)) ≤

-
max
t∈[0,T ]

ϕ(t, x(t))
!

ψT (x(T ))

.
+ψ0(x(0))

for any feasible process (x, u) for problem (Pm) such that ‖x− x̄‖L∞ ≤ ).
Optimality conditions for minimax optimal control problems such as (Pm) in

form of a maximum principle are well-known nowadays; see for instance [6]. The
following is a suitable version for the case we are considering.

Lemma 1. Let (x̄, ū) be a strong local minimizer for the problem (Pm). Assume
that for some ) > 0 the following conditions hold:

(A1) the mapping (t, u) !→ F(t, x, u) is L × Bm measurable on [0, T ] × Rm for
x ∈ Rn fixed, and there are κF , cF ∈ L1 ([0, T ];R) such that

‖F(t, x, u)− F(t, y, u)‖ ≤ κF (t)‖x− y‖ and ‖F(t, x, u)‖ ≤ cF (t)

for all x, y ∈ Bn(x̄(t), )), u ∈ U(t) and for a.e. t ∈ [0, T ].
(A2) ψ0 and ψT are Lipschitz continuous on B(x̄(0), )) and B(x̄(T ), )), respec-

tively. Also, ϕ is Lipschitz continuous on the )-tube around x̄.
(A3) Gr(U) ⊆ Rm+1 is a nonempty L× Bm measurable set.
(A4) For a.e. t ∈ [0, T ] fixed, x !→ F(t, x, u) is continuously differentiable on

B(x̄(t), )) for all u ∈ U(t) fixed and F(t, x,U(t)) is a compact set for all
x ∈ B(x̄(t), )).

Then there exist p ∈ W 1,1 ([0, T ];Rn), λ ∈ [0, 1], a finite regular (nonnegative) Borel
measure µ on [0, T ] and a Borel measurable function γ : [0, T ] → Rn such that the
following conditions hold:

(i) Non-triviality: λ+ µ([0, T ]) = 1 with
"
#$

#%

λ = 1 if ψT (x̄(T )) > max
t∈[0,T ]

ϕ(t, x̄(t)),

λ = 0 if ψT (x̄(T )) < max
t∈[0,T ]

ϕ(t, x̄(t));

(ii) γ(t) ∈ ∂xϕ(t, x̄(t)) for µ-a.e. t ∈ [0, T ];

(iii) supp(µ) ⊆
/
t ∈ [0, T ] | ϕ(t, x̄(t)) = max

s∈[0,T ]
ϕ(s, x̄(s))

0
.

(iv) Costate equation: −ṗ(t) = q(t)DxF(t, x̄(t), ū(t)) for a.e. t ∈ [0, T ];
(v) Transversality condition: p(0) ∈ ∂ψ0(x̄(0)) and −q(T ) ∈ λ∂ψT (x̄(T ));
(vi) Maximum principle: q(t) · F(t, x̄(t), ū(t)) = max

u∈U(t)
q(t) · F(t, x̄(t), u) for a.e.

t ∈ [0, T ];

Here

q(t) =

"
##$

##%

p(t) +

1

[0,t[

γ(s)µ(ds) if t ∈ [0, T [

p(T ) +

1

[0,T ]

γ(s)µ(ds) if t = T

Proof. This is a straightforward consecuence of [24, Proposition 9.5.4]. Indeed, it
is enough to take the data g̃(x, y, z) = h(y, z) + ψ0(x) with h(y, z) := z ∨ ψT (y) in
[24, Proposition 9.5.4]. Then, by the sum rule ([11, Theorem 10.13]) we get

∂g̃(x, y, z) ⊆ ∂g̃1(x, y, z) + ∂g̃2(x, y, z),
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where g̃1(x, y, z) := h◦π(y,z)(x, y, z) and g̃2(x, y, z) := ψ0◦πx(x, y, z); here π(y,z)(x, y, z) =
(y, z) and πx(x, y, z) = x. Therefore, by the chain rule ([11, Theorem 10.19]), it
follows that

∂g̃(x, y, z) ⊆ ∂ψ0(x)× ∂h(y, z).

Notice too that by the max rule ([24, Theorem 5.5.2]), we also have

∂h(y, z) ⊆
/
λ∂ψT (y)× {0}+ (0, 1− λ) | λ = 0 if ψT (y) < z

λ = 1 if ψT (y) > z

0
.

Using this and the transversality condition in [24, Proposition 9.5.4], we get the
non-triviality condition in the lemma. □ □

The preceding result will be our vehicle for establishing a relationship between
the maximum principle and the dynamic programming principle.

3. Statement of the problem

3.1. Control systems. Consider the following dynamical system:

(8) ẏ(t) = F(t,y(t),u(t)), for a.e. t ∈ [0, T ],

where the control input u : [0, T ] −→ Rm is a measurable function such that
u(t) ∈ U(t) for a.e. t ∈ [0, T ] and U : [0, T ] ⇒ Rm is a given set-valued map with
nonempty images. Throughout this paper, we assume that:

(H1) (a) the mapping (t, u) !→ F(t, y, u) is L × Bm measurable on [0, T ] × Rm

for every y ∈ RN fixed.
(b) there exists kF > 0 such that

‖F(t, x, u)− F(t, y, u)‖ ≤ kF‖x− y‖, ∀x, y ∈ RN , (t, u) ∈ Gr(U).

(c) there exists cF > 0 such that

‖F(t, y, u)‖ ≤ cF(1 + ‖y‖), ∀y ∈ RN , (t, u) ∈ Gr(U).

(H2) Gr(U) ⊆ Rm+1 is a nonempty L× Bm measurable set.

We denote by U the set of all admissible controls, that is, all the possible
(Lebesgue) measurable selections of the set-valued mapping t !→ U(t); U is nonempty
thanks to Aumann’s Measurable Selection Theorem ([24, Theorem 2.3.12]). Notice
that assumption (H1) guarantees that for every u ∈ U , the mapping (t, y) !→
F(t, y, u(t)) is a Carathéodory function ([24, Corollary 2.3.3]), and so, by the
Generalized Filippov Existence Theorem ([24, Theorem 2.4.3]), there exists an
absolutely continuous curve y : [0, T ] → RN satisfying the dynamic equation
(8), which can be uniquely determined if some intermediate data is fixed. Given
(t, x) ∈ [0, T ] × RN , let us denote by XF(t, x) the set of all state-control pairs
(y,u) ∈ W 1,1

&
[0, T ];RN

'
× U that satisfy (8) and such that y(t) = x.

By (H1) and the Gronwall’s inequality (see [24, Lemma 2.4.4]), it follows that
for every (y,u) ∈ XF(t, x) we have

1 + ‖y(s)‖ ≤ (1 + ‖x‖)ecF(s−t), ∀s ∈ [t, T ].(9)

‖ẏ(s)‖ ≤ cF(1 + ‖x‖)ecF(s−t), for a.e. s ∈ [t, T ].(10)
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3.2. Minimax optimal control problems. Let us consider now the following
optimal control problem with maximum running cost:

"
####$

####%

Minimize max
t∈[0,T ]

Φ(t,y(t))
!

Ψ(y(T ))

over all y ∈ W 1,1
&
[0, T ];RN

'
and u ∈ U

such that ẏ(t) = F(t,y(t),u(t)), a.e. on [0, T ],

y(0) = y0.

(P)

In addition to the assumptions on the dynamical system, we consider as well the
following conditions on the costs:

(H3) Φ and Ψ are locally Lipschitz continuous.

Notice that in problem (P) the initial condition is fixed, while in (Pm), it is free
but it has an associated cost. It is important to note that [24, Proposition 9.5.4]
can also be used for deriving a maximum principle for (P) with the appropriate
modifications; namely, the initial condition for the coextremal p(0) being free. In
particular, under an additional smoothness assumption that we specified later, we
can deduce the following maximum principle: if (ȳ, ū) is a minimizer of problem
(P), then there exist p ∈ W 1,1

&
[0, T ];RN

'
, λ ∈ [0, 1], a finite regular (nonnegative)

Borel measure µ on [0, T ] and a Borel measurable function γ : [0, T ] → RN such
that

(MPi) Non-triviality: λ+ µ([0, T ]) = 1 with
"
#$

#%

λ = 1 if Ψ(ȳ(T )) > max
t∈[0,T ]

Φ(t, ȳ(t))

λ = 0 if Ψ(ȳ(T )) < max
t∈[0,T ]

Φ(t, ȳ(t));

(MPii) γ(t) ∈ ∂yΦ(t, ȳ(t)) for µ-a.e. t ∈ [0, T ];

(MPiii) supp(µ) ⊆
/
t ∈ [0, T ] | Φ(t, ȳ(t)) = max

s∈[0,T ]
Φ(s, ȳ(s))

0
;

(MPiv) Costate equation and transversality condition:
2
−ṗ(t) = q(t)DyF(t, ȳ(t), ū(t)), for a.e. t ∈ [0, T ],

−q(T ) ∈ λ∂Ψ(ȳ(T )),

with

q(t) =

"
##$

##%

p(t) +

1

[0,t[

γ(s)µ(ds) if t ∈ [0, T [

p(T ) +

1

[0,T ]

γ(s)µ(ds) if t = T

(MPv) Maximality condition:

HF(t, ȳ(t), ū(t),q(t)) = max
u∈U(t)

HF(t, ȳ(t), u,q(t)) for a.e. t ∈ [0, T ].

where the Hamiltonian HF : [0, T ]× RN × Rm × RN → R is given by

HF(t, y, u, q) := q · F(t, y, u) ∀(t, y, u, q) ∈ [0, T ]× RN × Rm × RN .

The aim of this work is to study the relationship between the dynamic pro-
gramming principle and the maximum principle for this type of optimal control
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problems. To do so, let us consider the value function corresponding to problem
(P), which is given by

V(t, x) = inf
(y,u)∈XF(t,x)

/
max
s∈[t,T ]

Φ(s,y(s))
!

Ψ(y(T ))

0
.

It is not difficult to see that V satisfies the dynamic programming principle, which
in this case reads as follows: for any t ∈ [0, T ] and h ≥ 0 such that t+ h ≤ T , and
for all x ∈ RN we have

(11) V(t, x) = inf
(y,u)∈XF(t,x)

/
V(t+ h,y(t+ h))

!
max

s∈[t,t+h]
Φ(s,y(s))

0
.

Similarly as done in [1], it can be proven that this value function is locally
Lipschitz continuous. For convenience of the reader, we provide the details of the
proof of the following lemma in the appendix.

Lemma 2. Assume that the hypotheses (H1), (H2) and (H3) hold, then V is
locally Lipschitz continuous on [0, T ]× RN .

Consequently, ∂V(t, x) and ∂xV(t, x), the Clarke’s sub-differentials of the func-
tions (t, x) !→ V(t, x) and x !→ V(t, x) for t ∈ [0, T ] fixed, respectively, are well-
defined compact convex and non-empty sets. Taking this into account, our main
theorem reads as follows.

Theorem 3.1. Assume that the hypotheses (H1), (H2) and (H3) hold. Let (ȳ, ū)
be a minimizer of problem (P) and suppose in addition that:

(A1) for every (t, u) ∈ Gr(U), y !→ F(t, y, u) is continuously differentiable;
(A2) there is a finite set D ⊆ [0, T ] such that the map (t, u) !→ F(t, y, u) is

continuous on {(t, u) ∈ Gr(U) | t /∈ D} for every y ∈ RN fixed;1

(A3) U is a locally selectionable set-valued map.

Then there exist p ∈ W 1,1
&
[0, T ];RN

'
, λ ∈ [0, 1], a finite regular (nonnegative)

Borel measure µ on [0, T ] and a Borel measurable function γ : [0, T ] → RN such
that (MPi), (MPii), (MPiii), (MPiv) and (MPv) hold together with the following
sensitivity relations:

−p(0) ∈ ∂xV(0, ȳ(0))
and for a.e. t ∈ [0, T ]

−q(t) ∈ ν(t)∂xV(t, ȳ(t)) and (HF(t, ȳ(t), ū(t),q(t)),−q(t)) ∈ ν(t)∂V(t, ȳ(t)).
where ν(s) := 1− µ([0, s[) for any s ∈ [0, T ].

Remark 1. The sensitivity relations for the minimax problem involve an addi-
tional multiplier ν(t) := 1− µ([0, t[) ∈ [0, 1]. Taking into account the non-triviality
condition (MPi), some direct consequences can be drawn.

(i) Let us consider the case when Ψ(ȳ(T )) > maxs∈[0,T ] Φ(s, ȳ(s)). In this situ-
ation, the optimal solution is also optimal for the problem with only the final cost
Ψ (a Mayer type problem). By (MPi), we get that λ = 1 and the measure µ ≡ 0.
Therefore, ν ≡ −1 and p = q on [0, T ]. The sensitivity relations reduce to the
classical relations known for Mayer problems:

−p(t) ∈ ∂xV(t, ȳ(t)) and (HF(t, ȳ(t), ū(t),p(t)),−p(t)) ∈ ∂V(t, ȳ(t)).

1This holds for instance if F that is piecewise continuous with respect to t in the sense that
there are t1, . . . tn ∈ [0, T ] such that F is continuous on [0, T ] \ {t1, . . . tn}× RN × Rm.
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(ii) Now, assume that Ψ(ȳ(T )) < maxs∈[0,T ] Φ(s, ȳ(s)) = Φ(t0, ȳ(t0)), and set

t̄ := max

/
t ∈ [0, T ] | Φ(t, ȳ(t)) = max

s∈[0,T ]
Φ(s, ȳ(s))

0
.

Here again, the non-triviality condition gives more information on λ and ν(·). In-
deed, (MPi) implies, in this case, that λ = 0 and µ([0, T ]) = 1. This property
combined with (MPiii) imply that in fact µ([0, t[) = 1 for every t > t̄. Therefore
ν(t) = 0 on ]t̄, T ], and the sensitivity relations hold along the optimal trajectory un-
til the time t̄, which corresponds to the last time when the maximal cost is reached.
Moreover, we have q(t) = 0 on ]t̄, T ].

(iii) Consider the specific case when

{t̄} =

/
t ∈ [0, T ] | Φ(t, ȳ(t)) = max

s∈[0,T ]
Φ(s, ȳ(s))

0
,

and assume that Ψ(ȳ(T )) < Φ(t̄, ȳ(t̄)). Notice that in this case t̄ < T , the measure

is atomic (i.e., µ = δt̄) and we have ν(t) =

2
−1 for t ≤ t̄,

0 for t > t̄.

4. Proof of Theorem 3.1

The proof of Theorem 3.1 includes several technical arguments, so for this reason
we have subdivided it into several stages.

In what follows, let (ȳ, ū) ∈ XF(t, x) be a minimizer of problem (P). We also
assume that the assumptions of Theorem 3.1 are in force.

4.1. Basic definitions and perturbed problem. For a given ε > 0 small enough
and t ∈ [0, T ], we set:

Gε
0(t) := {(α,β) ∈ ∂V(t, x) | x ∈ BN ((ȳ(t); ε)}

and
Gε

1(t) := {β ∈ ∂yV(t, x) | x ∈ BN (ȳ(t); ε)} .
Since V is locally Lipschitz continuous (Lemma 2), for any bounded set S of RN ,

∂V is bounded on [0, T ] × S, hence Gε
0(t) and Gε

1(t) are bounded sets, uniformly
w.r.t. the t variable.

Now, let us introduce the support functions σε
0 : [0, T ] × R × RN → R and

σε
1 : [0, T ]× RN → R defined as:

σε
0(t,ω, θ) := sup

(α,β)∈Gε
0(t)

(α,β) · (ω,−θ), ∀t ∈ [0, T ], ω ∈ R, θ ∈ RN

and
σε
1(t, b) := sup

β∈Gε
1(t)

β · (−b), ∀t ∈ [0, T ], b ∈ RN .

The function σε
1 will play a fundamental role when it comes to obtaining the

partial sensitivity relations, that is, the sensitivity relations associated only with
the state variable.

By similar arguments as the ones pointed out in [23, Lemma 3.1], since the sub-
differential of a locally Lipschitz continuous function has a closed graph when it
is seen as a set-valued map ([11, Proposition 10.10]), it also follows that Gε

0 and
Gε

1 have closed graphs. This fact implies in turn that the functions σε
0 and σε

1 are
both upper semi-continuous. Moreover, for any t ∈ [0, T ], the mapping (ω, θ) !→
σε
0(t,ω, θ) is continuous on R×RN . On the other hand, the function σε

0 is bounded
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on any bounded set of [0, T ]×R×RN . In particular, for any essentially bounded and
measurable functions (ω,θ) : [0, T ] → R × RN , the function t !→ σε

0(t,ω(t),θ(t))
is integrable. Similarly, for any measurable mapping b : [0, T ] → RN , the function
t !→ σε

1(t,b(t)) is measurable and bounded on [0, T ].
Consider now the following perturbed optimal control problem:

"
##########$

##########%

Minimize J(y, ζ)

over all (y, ζ) ∈ W 1,1
&
[0, T ];RN+1

'
, u ∈ U and measurable

functions (ω,θ,b) : [0, T ] → R× RN × RN

such that ẏ(t) = (1 + ω(t))F(t,y(t),u(t)) + θ(t) + b(t),

ζ̇(t) = σε
0(t,ω(t),θ(t)) + σε

1(t,b(t)),

|ω(t)| ≤ ε, ‖θ(t)‖ ≤ ε, ‖b(t)‖ ≤ ε,

for a.e. t ∈ [0, T ].

(Pε)

where the perturbed cost function is defined via the formula:

J(y, ζ) :=

3
max
t∈[0,T ]

(Φ(t,y(t)) + ζ(t))
!

(Ψ(y(T )) + ζ(T ))

4
− V(0,y(0))− ζ(0).

Notice that in problem (Pε) the initial position for the state variable is free. Besides,
the perturbations (u,ω,θ,b) are considered as control inputs that enrich the class
of variations for this new optimal control problem.

4.2. Persistence of optimality. In what follows let us consider ζ̄ ≡ 0, ω̄ ≡ 0,
θ̄ ≡ 0 and b̄ ≡ 0. For any given ε ∈]0, 1], let us show that ((ȳ, ζ̄), (ū, ω̄, θ̄, b̄)) is
a strong local minimizer of the problem (Pε). For this, we first remark that (ȳ, ζ̄)
is a feasible trajectory for problem (Pε) associated with the control law (ū, ω̄, θ̄, b̄)
and also

J(ȳ, ζ̄) =

3
max
t∈[0,T ]

Φ(t, ȳ(t))
!

Ψ(ȳ(T )

4
− V(0, ȳ(0)) = 0.

Now, consider any feasible process (y, ζ,u,ω,θ,b) for problem (Pε), such that y
lies in the ε-tube around ȳ, i.e.,

‖y(t)− ȳ(t)‖ < ε, ∀t ∈ [0, T ].

We will show that

(12) J(y, ζ) ≥ 0,

which in turn will lead directly to the desired conclusion that ((ȳ, ζ̄), (ū, ω̄, θ̄, b̄))
is a strong local minimizer of the problem (Pε).

As t !→ V(t,y(t)) is an absolutely continuous function on [0, T ] (thanks to Lemma
2), it is then almost everywhere differentiable on [0, T ]. Furthermore, in the same
spirit as [9, Proposition 5.4], we have the following key result.

Lemma 3. Under the assumptions of Theorem 3.1,, there is a measurable set Θ ⊆
[0, T ] of full measure (i.e., [0, T ]\Θ is a null set) such that for every (t, x) ∈ Θ×RN

and u ∈ U(t), we have

(13) min
&
D◦V

&
(t, x);−(1,F(t, x, u))

'
,V(t, x)− Φ(t, y)

'
≤ 0,
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and therefore, for almost every t ∈ [0, T ], we have

-
d

dt
V(t,y(t)) + σε

0(t,ω(t),θ(t)) + σε
1(t,b(t))

.!
(Φ(t,y(t))− V(t,y(t))) ≥ 0.

(14)

Proof. Let (t, x) ∈ [0, T ]×RN . By definition, we know that V(t, x) ≥ Φ(t, x). Thus,
to prove (13), we only need to consider the case V(t, x) > Φ(t, x). In this case, since
Φ and V are locally Lipschitz continuous ((H3) and Lemma 2), there is δ0 > 0 such
that

V(s, y) > Φ(s, y), ∀(s, y) ∈ [0, T ]× RN
5

BN+1((t, x); δ0).

Let D ⊆ [0, T ] be a discrete set such that (s, u) !→ F(s, y, u) is continuous on
{(s, u) ∈ Gr(U) | s /∈ D} for every y ∈ RN fixed. Let Θ = [0, T ] \ D, and take
u ∈ U(t) and (s, y) ∈]0, T ] × RN

6
BN+1((t, x); δ0). Notice that it is possible to

take δ0 > 0 such that s ∈ Θ and such that there is a continuous selection v of U on
[0, T ]∩(t−δ0, t+δ0) that satisfies v(t) = u; the existence of such selection is thanks
to the fact that U is locally selectionable. Let y ∈ W 1,1

&
[0, T ];RN

'
be the unique

solution to (8) that satisfies the condition y(s) = y associated with the control

u(τ) :=

2
v(τ) if τ ∈ (t− δ0, t+ δ0),

ū(τ) otherwise,
∀τ ∈ [0, T ].

It follows then that y is continuously differentiable at τ = s with ẏ(s) = F(s, y, v(s)).
This last assertion comes from the fact that (τ, z) !→ F(τ, z, v(τ)) is continuous at
(τ, z) = (s, y) because the following inequality holds

‖F(τ, z, v(τ))− F(s, y, v(s))‖ ≤ ‖F(τ, y, v(τ))− F(s, y, v(s))‖+ kF‖z − y‖

Since V satisfies the dynamic programming principle (11), for any h > 0 small
enough we have

(15) V(s, y) ≥ V(s, y)
!

max
τ∈[s−h,s]

Φ(τ,y(τ)) ≥ V(s− h,y(s− h)).

Assume that V is differentiable at (s, y), then from (15) we get

−ϑ′(s) = lim
h→0

V(s− h,y(s− h))− V(s,y(s))
h

≤ 0.

where ϑ′(s) is the derivative of the function τ !→ ϑ(τ) := V(τ,y(τ)) at τ = s. It
follows then that

∇V(s, y) · (−1,−F(s, y, u)) = ∇V(s,y(s)) · (−1,−ẏ(s)) = −ϑ′(s) ≤ 0.

Therefore, by the continuity properties of F , given (t, x) ∈ Θ×RN and u ∈ U(t),
we also have that ξ · (−1,−F(t, x, u)) ≤ 0 for any ξ belonging to the set

co
(
ξ ∈ RN+1 | ∃(si, yi) → (t, x), si ∈ Θ, ∇V(si, yi) exists and ∇V(si, yi) → ξ

)
.

Thus the proof of the first claim of the lemma follows from (4) combined with
(5).

Notice that for a.e. t ∈ [0, T ] it holds:

d

dt
V(t,y(t)) = D↓V((t,y(t)); (1, ẏ(t)))
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because, since ẏ is essentially bounded (by Gronwall’s inequality (9)) and the value
function V is locally Lipschitz continuous, we have

lim
h↓0

1

h

7
V(t+ h,y(t+ h))− V(t,y(t))

8
= lim

h↓0

1

h

7
V(t+ h,y(t) + hẏ(t))− V(t,y(t))

8
.

Furthermore (with the notation F = F(t,y(t),u(t))) we have
-
1
ẏ

.
=

-
1

(1 + ω)F+ θ + b

.
=

-
0
b

.
+ (1 + ω)

-
1
F

.
+

-
−ω
θ

.
.

By using (7) and the relation D◦φ(x;λv) = λD◦φ(x; v) (for λ ≥ 0), we get:

d

dt
V(t,y(t)) = D↓V((t,y(t)); (1, ẏ(t)))

≥ D↓V((t,y(t)); (0,b(t)))
− D◦V((t,y(t)); (ω(t),−θ(t)))

− (1 + ω(t))D◦V((t,y(t));−(1,F(t,y(t),u(t)))(16)

Notice that for any given values of ω, θ and b, it holds

(17) D◦V((t,y(t)); (ω,−θ)) = max
(α,β)∈∂V(t,y(t))

(α,β) · (ω,−θ) ≤ σε
0(t,ω, θ).

and

(18)

D↓V((t,y(t)); (0,b)) = D↓
xV(t, ·)(y(t);b) = − lim sup

h↓0

V(t,y(t))− V(t,y(t) + hb)

h

= − lim sup
h↓0

V(t,y(t) + hb+ h(−b))− V(t,y(t) + hb)

h

≥ −D◦
xV(t, ·)(y(t);−b) = − max

β∈∂xV(t,y(t))
β · (−b) ≥ −σε

1(t,b).

Finally, by combining inequalities (13),(16), (17), (18) and by using the fact that
1 + ω(t) ≥ 0, we conclude that (14) is satisfied. □ □

Let J := {t ∈]0, T [| V(t,y(t)) > Φ(t,y(t))}. Since V, Φ and y are continuous
functions, J is an open subset of ]0, T [. If J = ∅, then for every s ∈ [0, T ],
V(t,y(t)) = Φ(t,y(t)). In this situation we have

V(0,y(0))+ζ(0) = Φ(0,y(0))+ζ(0) ≤ max
s∈[0,T ]

(Φ(t,y(t)) + ζ(s))
!

(Ψ(y(T )) + ζ(T )) ,

which implies that J(y, ζ,u,ω,θ,b) ≥ 0, and then claim (12) is proved.
Now, assume that J ∕= ∅. Introduce

ā := inf{t | t ∈ J }, b̄ := sup{t | t ∈ J }.
First, we can show that either ā = 0 or V(ā,y(ā)) = Φ(ā,y(ā)). Indeed, if ā > 0
and V(ā,y(ā)) > Φ(ā,y(ā)), then by continuity of t !→ V(t,y(t))−Φ(t,y(t)), there
exists δ > 0 small enough such that 0 ≤ ā−δ and V(t,y(t)) > Φ(t,y(t)) on ]ā−δ, ā[,
which contradicts the definition of ā. By similar arguments, we can also show that
b̄ = T or V(b̄,y(b̄)) = Φ(b̄,y(b̄)). Since J is an open nonempty set, there exist
two non-decreasing sequences (αi)i∈N and (βi)i∈N in [0, T ] such that

9
i ]αi,βi[⊆ J

with αi < βi, satisfying

V(αi,y(αi)) = Φ(αi,y(αi)) and V(βi,y(βi)) = Φ(βi,y(βi)), ∀i ∈ N.
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The sequence (βi)i∈N can be taken such that either βi = b̄ for any i ∈ N large
enough or (βi)i∈N is strictly increasing with βi ↗ b̄ if i → +∞. Notice that this
cover the case when J is the union of a finite number of open and disjoint intervals
(α0 = ā and βi = b̄ for any i ∈ N large enough). From (14), we deduce that on
every sub-interval ]αi,βi[

d

dt
V(t,y(t)) + σε

0(t,ω(t),θ(t)) + σε
1(t,b(t)) ≥ 0.

By integrating this inequality over [αi,βi], we get

V(αi,y(αi)) + ζ(αi) ≤ V(βi,y(βi)) + ζ(βi),

which implies

V(αi,y(αi)) + ζ(αi) ≤ (V(βi,y(βi)) + ζ(βi))
!

max
t∈[αi,βi]

(Φ(t,y(t)) + ζ(t)).

Besides, on every sub-interval [βi,αi+1] such that βi < b̄, we have:

V(βi,y(βi)) + ζ(βi) = Φ(βi,y(βi)) + ζ(bi) ≤ max
t∈[βi,αi+1]

(Φ(t,y(t)) + ζ(t))

≤(V(αi+1,y(αi+1)) + ζ(αi+1))
!

max
t∈[βi,αi+1]

(Φ(t,y(t)) + ζ(t))

≤ (V(βi+1,y(βi+1)) + ζ(βi+1))
!

max
t∈[βi,βi+1]

(Φ(t,y(t)) + ζ(t)).

By induction, for any i ∈ N fixed we get then for any k ∈ N

V(βi,y(βi)) + ζ(βi) ≤ (V(βi+k,y(βi+k)) + ζ(βi+k))
!

max
t∈[βi,βi+k]

(Φ(t,y(t)) + ζ(t)).

Therefore, since [αi,βi+k] ⊆ [ā, b̄] for any i ∈ N and k ∈ N, we get

V(αi,y(αi)) + ζ(αi) ≤
&
V(βi+k,y(βi+k)) + ζ(βi+k)

'!
max
t∈[ā,b̄]

&
Φ(t,y(t)) + ζ(t)

'
.

Thus, for any i ∈ N fixed, letting k → +∞ we obtain

V(αi,y(αi)) + ζ(αi) ≤ (V(b̄,y(b̄)) + ζ(b̄))
!

max
t∈[ā,b̄]

(Φ(t,y(t)) + ζ(t)), ∀i ∈ N.

If α0 = ā, then it follows that

(19) V(ā,y(ā)) + ζ(ā) ≤ (V(b̄,y(b̄)) + ζ(b̄))
!

max
t∈[ā,b̄]

(Φ(t,y(t)) + ζ(t)).

This inequality can also be deduced if ā < α0. Indeed, it is enough to consider
the case in which J is not the union of a finite number of open and disjoint intervals;
recall that this case can be covered by the preceding analysis. In particular, we
can find two strictly decreasing sequences (aj)j∈N and (bj)j∈N in [0, T ] such that9

j ]aj , bj [⊆ J with a0 = α0, b0 = β0, aj < bj and aj ↘ ā if j → +∞, satisfying as
well

V(aj ,y(aj)) = Φ(aj ,y(aj)) and V(bj ,y(bj)) = Φ(bj ,y(bj)), ∀j ∈ N.
Repeating the arguments exposed above, but using ai+j and bi+j instead of αi and
βi, respectively, it follows that

V(aj ,y(aj)) + ζ(aj) ≤ (V(b̄,y(b̄)) + ζ(b̄))
!

max
t∈[ā,b̄]

(Φ(t,y(t)) + ζ(t)), ∀j ∈ N.

Therefore, letting j → +∞ we get (19) as claimed above.
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Now, we have several cases to consider:

(1) Suppose that ā = 0 and b̄ = T . Since V(T, x) = Φ(T, x) ∨Ψ(x), then

(20) V(0,y(0)) + ζ(0) ≤ (Ψ(y(T )) + ζ(T ))
!

max
t∈[0,T ]

(Φ(t,y(t)) + ζ(t)).

(2) If ā = 0 and b̄ < T . In this case, we know that V(t,y(t)) = Φ(t,y(t)) on
[b̄, T ]. Therefore, from (19), we get

V(0,y(0)) + ζ(0) ≤ (V(b̄,y(b̄)) + ζ(b̄))
!

max
t∈[0,b̄]

(Φ(t,y(t)) + ζ(t))

= max
t∈[0,b̄]

(Φ(t,y(t)) + ζ(t)) ≤ max
t∈[0,T ]

(Φ(t,y(t)) + ζ(t)).

From this inequalities, we deduce that (20) holds also in this case.
(3) If ā > 0, in this case we have V(t,y(t)) = Φ(t,y(t)) on [0, ā]. Hence,

V(0,y(0)) + ζ(0) = (Φ(0,y(0)) + ζ(0)) ≤ max
t∈[0,T ]

(Φ(t,y(t)) + ζ(t))

≤ max
t∈[0,T ]

(Φ(t,y(t)) + ζ(t))
!

(Ψ(y(T )) + ζ(T )).

In all cases, we conclude that J(y, ζ,u,ω,θ,b) ≥ 0 which is the desired claim
to prove in this step.

4.3. Optimality conditions for the perturbed problem. Since (ȳ, ζ̄) is a
strong local minimizer of the optimal control problem (Pε), which is a min-max
problem, such as (Pm), with the data

x̄ = (ȳ, ζ̄), ū = (ū, ω̄, θ̄, b̄), U(t) = U(t)× [−ε, ε]× BN (0; ε)× BN (0; ε),

the dynamics

F(t, (y, ζ), (u,ω, θ, b)) = ((1 + ω)F(t, y, u) + θ + b,σε
0(t,ω, θ) + σε

1(t, b))

and the costs

ψ0(y, ζ) = −V(0, y)− ζ, ψT (y, ζ) = Ψ(y) + ζ, ϕ(t, (y, ζ)) = Φ(t, y) + ζ.

It is not difficult to see that the assumptions of Lemma 1 hold for these data,
and so we can apply it to obtain a set of optimality conditions that depends on
the penalization parameter ε. It follows then that, by Lemma 1 there exist pε

y ∈
W 1,1

&
[0, T ];RN

'
, pε

ζ ∈ W 1,1 ([0, T ];R), λε ∈ [0, 1], a finite regular (nonnegative)

Borel measure µε on [0, T ] and some Borel measurable functions γε
y : [0, T ] → RN

and γε
ζ : [0, T ] → RN such that:

(i-ε) λε + µε([0, T ]) = 1 with
"
#$

#%

λε = 1 if Ψ(ȳ(T )) > max
t∈[0,T ]

Φ(t, ȳ(t))

λε = 0 if Ψ(ȳ(T )) < max
t∈[0,T ]

Φ(t, ȳ(t))

(ii-ε) γε
y(t) ∈ ∂yΦ(t, ȳ(t)) and γε

ζ (t) = 1 for µε-a.e. t ∈ [0, T ];

(iii-ε) supp(µε) ⊆
/
t ∈ [0, T ] | Φ(t, ȳ(t)) = max

s∈[0,T ]
Φ(s, ȳ(s))

0
.

(iv-ε) −ṗε
y(t) = qε

y(t)DyF(t, ȳ(t), ū(t)) and ṗε
ζ(t) = 0 for a.e. t ∈ [0, T ];

(v-ε) −pε
y(0) ∈ ∂yV(0, ȳ(0)), pε

ζ(0) = −1, −qε
y(T ) ∈ λε∂Ψ(ȳ(T )) and −qε

ζ(T ) =
λε;
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(vi-ε) qε
y(t) · F(t, ȳ(t), ū(t)) = max

(u,ω,θ,b)∈U(t)
Hε(t, ȳ(t), ζ̄(t), u, θ,ω, b,q

ε
y(t),q

ε
ζ(t)),

a.e. on [0, T ], where

Hε(t, y, ζ, u, θ,ω, b, qy, qζ) := qy · ((1 + ω)F(t, y, u) + θ + b)

+ qζ (σ
ε
0(t, θ,ω) + σε

1(t, b)) .

Here,

qε
y(t) =

"
##$

##%

pε
y(t) +

1

[0,t[

γε
y(s))µ

ε(ds) if t ∈ [0, T [,

pε
y(T ) +

1

[0,T ]

γε
y(s))µ

ε(ds) if t = T,

and

qε
ζ(t) =

"
##$

##%

pε
ζ(t) +

1

[0,t[

γε
ζ (s))µ

ε(ds) if t ∈ [0, T [,

pε
ζ(T ) +

1

[0,T ]

γε
ζ (s))µ

ε(ds) if t = T.

Notice that from (iv-ε) and (v-ε) we get pε
ζ ≡ −1, and so from (ii-ε) we get

(21) qε
ζ(t) = −1 + µε([0, t[) for any t ∈ [0, T [.

Assertion (vi-ε) means that for every (ω, θ, b) ∈ R×RN ×RN with |ω| ≤ ε, ‖θ‖ ≤ ε,
‖b‖ ≤ ε, for a.e. t ∈ [0, T ] and every u ∈ U(t), we have

(22) (1 + ω)qε
y(t) · F(t, ȳ(t), u) + qε

y(t) · (θ + b) + qε
ζ(t)(σ

ε
0(t, θ,ω) + σε

1(t, b))

≤ qε
y(t) · F(t, ȳ(t), ū(t)).

In particular, taking θ = 0, ω = 0 and b = 0 in (22), it follows that for a.e. t ∈ [0, T ]
and every u ∈ U(t)

qε
y(t) · F(t, ȳ(t), u) ≤ qε

y(t) · F(t, ȳ(t), ū(t)),

that is, we get the maximality condition:

(23) HF(t, ȳ(t), ū(t),qε
y(t)) = max

u∈U(t)
HF(t, ȳ(t), u,qε

y(t)) a.e. on [0, T ].

On the other hand, with u = ū(t) in (22), for every (ω, θ) ∈ RN+1 such that
|ω| ≤ ε, ‖θ‖ ≤ ε and ‖b‖ ≤ ε, we obtain for a.e. t ∈ [0, T ]

ωqε
y(t) · F(t, ȳ(t), ū(t)) + qε

y(t) · (θ + b) + qε
ζ(t)(σ

ε
0(t, θ,ω) + σε

1(t, b)) ≤ 0.(24)

Now, by setting b = 0, the inequality (24) implies that for every (ω, θ) ∈ RN+1 such
that |ω| ≤ ε, ‖θ‖ ≤ ε,

ωqε
y(t) · F(t, ȳ(t), ū(t)) + qε

y(t) · θ + qε
ζ(t)σ

ε
0(t, θ,ω) ≤ 0.

Notice that since 0 ≤ µε([0, T ]) ≤ 1, by (21), we deduce that −qε
ζ ≥ 0. Thus,

since the support function σε
0 is positively homogeneous on the variables (θ,ω) for

t ∈ [0, T ] fixed, it follows that for every (ω, θ) ∈ RN+1 we have

(HF(t, ȳ(t), ū(t),qε
y(t)),−qε

y(t)) · (ω,−θ) ≤ sup
(α,β)∈−qε

ζ(t)G
ε
0(t)

(α,β) · (ω,−θ).

By [20, Theorem 13.1], we conclude that

(25)
&
HF(t, ȳ(t), ū(t),qε

y(t)),−qε
y(t)

'
∈ −qε

ζ(t)co (G
ε
0(t)), a.e. t ∈ [0, T ].
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On the other hand, if we set θ = 0 and ω = 0 in (24), and use the fact that the
support function σε

1 is positively homogeneous on the variable b for t ∈ [0, T ] fixed,
we obtain

−qε
y(t) · b ≤ −qε

ζ(t)σ
ε
1(t,−b) = sup

β∈−qε
ζ(t)G

ε
1(t)

β · b, ∀b ∈ RN .

Similarly as done before, by [20, Theorem 13.1] we conclude that

(26) −qε
y(t) ∈ −qε

ζ(t)co (G
ε
1(t)), a.e. t ∈ [0, T ].

4.4. Passage to the limit and conclusion. All the previous properties were
established for a given ε ∈]0, 1]. Now let us consider a monotonically decreasing
sequence εk ↘ 0 and let us study the convergence when k goes to +∞. In what
follows we will use the same arguments as in [24, Chapter 9]. First notice that, since
pεk
y (0) ∈ ∂xV(0, ȳ(0)) for any k ∈ N and y !→ V(0, y) is locally Lipschitz continuous,

the sequence {pεk
y (0)}k∈N is bounded. Moreover, from (iv-ε), the definition of qεk

y

and (H1), it follows that

‖ṗεk
y (t)‖ ≤ kF

*
‖pεk

y (t)‖+
1

[0,t[

‖γεk
y (s)‖µεk(ds)

,
, for a.e. t ∈ [0, T ].

By the non-triviality condition and the fact that Φ is Locally Lipschitz continuous,
we get that the integral terms in the above inequality is uniformly bounded w.r.t.
k. Therefore, by Gronwall’s inequality and [2, Theorem 0.3.4], it follows that,
along a sub-sequence which we do not relabel, pεk

y converges uniformly to some p ∈
W 1,1

&
[0, T ];RN

'
and ṗεk

y converges weakly in L1
&
[0, T ];RN

'
to ṗ, when k → +∞.

Besides, since {λεk}k∈N is bounded and 0 ≤ µεk([0, T ]) ≤ 1 for any k ∈ N, we
deduce that for a sub-sequence (which again we do not relabel), there exist λ ∈ [0, 1]
and a finite regular (nonnegative) Borel measure µ such that

λεk → λ, and µεk ⇀∗ µ for the weak∗ topology on C ([0, T ];R)
∗
.

In particular, it follows that µεk([0, T ]) → µ([0, T ]), and so we recover the non-
triviality condition (MPi). It also follows that for any relatively open set B ⊆ [0, T ],
we have

µ(B) ≤ lim inf
k→+∞

µεk(B).

Therefore, by (iii-ε) we obtain (MPiii). Furthermore, since ∂yΦ(t, ȳ(t)) is a com-
pact non-empty set and (γεk

y )n is a sequence of Borel measurable functions sat-
isfying γεk

y (t) ∈ ∂yΦ(t, ȳ(t)), by [24, Proposition 9.2.1], we can arrange another
sub-sequence extraction (which we do not relabel) such that

µεk(ds) ⇀∗ µ(ds) and γεk
y (s)µεk(ds) ⇀∗ γ(s)µ(ds),

for the weak∗ topology on C ([0, T ];R)
∗
, where γ : [0, T ] −→ RN is a Borel mea-

surable function that satisfies

γ(t) ∈ ∂yΦ(t, ȳ(t)) for µ-a.e. t ∈ [0, T ].

Notice that for a.e. t ∈ [0, T [
1

[0,t[

γεk(s)µεk(ds) →
1

[0,t[

γ(s)µ(ds) and µεk([0, t[) → µ([0, t[).
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Thus, by defining the function q via the formula

q(t) =

"
##$

##%

p(t) +

1

[0,t[

γ(s)µ(ds) if t ∈ [0, T [,

p(T ) +

1

[0,T ]

γ(s)µ(ds) if t = T,

we deduce with the help of [2, Theorem 1.4.1], that (p,q) verifies
2
−ṗ(t) = q(t)DyF(t, ȳ(t), ū(t)) for a.e. t ∈ [0, T ],

q(T ) ∈ −λ∂Ψ(ȳ(T )).

Now, we can pass to the limit in (25) and in (26) using similar arguments as in [23].
For this, we set

ν(t) :=

2
1− µ([0, t[) if t ∈ [0, T [,

1− µ([0, T ]) if t = T.

Let S ⊆ [0, T ] of full measure such that (25) and (26) hold for each ε = εk and
such that

qεk
y (t) → q(t) and µεk([0, t[) → µ([0, t[), ∀t ∈ S.

In particular, we may also assume from (21) that −qεk
ζ (t) → ν(t) and

&
HF(t, ȳ(t), ū(t),qε

y(t)),−qε
y(t)

'
→

&
HF(t, ȳ(t), ū(t),q(t)),−q(t)

'
, ∀t ∈ S.

Notice that ν is a non-negative function. So, let us consider first the case in which
ν(t) > 0 for all t ∈ S. We may assume as well, from (21), that −qεk

ζ (t) > 0 for any
t ∈ S.

Take t ∈ S fixed. From (25) and (26) we get

(27)
1

−qεk
ζ (t)

&
HF(t, ȳ(t), ū(t),qεk

y (t)),−qεk
y (t)

'
∈ co (Gεk

0 (t)), ∀k ∈ N

and

(28) − 1

−qεk
ζ (t)

qεk
y (t) ∈ co (Gεk

1 (t)), ∀k ∈ N.

Notice that by definition we have

G
εk+1

0 (t) ⊆ Gεk
0 (t) and G

εk+1

1 (t) ⊆ Gεk
1 (t), ∀k ∈ N.

Therefore, the pointwise convergence of the multipliers combined with (27) and
(28), lead to

(29) (H(t),−q(t)) ∈ ν(t)
5

k∈N
co (Gεk

0 (t)) and − q(t) ∈ ν(t)
5

k∈N
co (Gεk

1 (t)).

where H(t) = HF(t, ȳ(t), ū(t),q(t)) for any t ∈ S. Assume now that

(H(t),−q(t)) /∈ ν(t)∂V(t, ȳ(t)).

Since ν(t)∂V(t, ȳ(t)) is a compact convex and nonempty subset of R×RN and (4)
holds, there are ω ∈ R, θ ∈ RN and ρ > 0 such that

H(t)ω + q(t) · θ − ρ > ν(t)D◦V((t, ȳ(t)); (ω,−θ)).
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Moreover, given that the generalized directional derivative is upper semicontinuous
([11, 10.2 Proposition]), it follows that there is k̄ ∈ N so that

1

ν(t)
(H(t)ω + q(t) · θ − ρ) > D◦V((t, x); (ω,−θ)), ∀x ∈ BN (ȳ(t); εk̄).

Therefore, from (4) and the preceding inequality we get

H(t)ω + q(t) · θ > ρ+ ν(t) sup
(α,β)∈G

ε
k̄

0 (t)

(α,β) · (ω,−θ).

The latter inequality implies that

(H(t),−q(t)) /∈ ν(t)co
&
G

εk̄
0 (t)

'
,

which, in the light of (29), is absurd. Therefore, the global sensibility relation holds
true for any t ∈ S such that ν(t) > 0.

On the other hand, if for some τ ∈ S we have ν(τ) = 0, then since Gεk
0 (τ) is

uniformly bounded w.r.t. k ∈ N, from (25) it follows that

(H(τ),−q(τ)) = 0 ∈ ν(τ)∂V(t, ȳ(t)).

Thus, the global sensibility relation holds as well in this case.
A similar argument can be used to prove the partial sensitivity relation

−q(t) ∈ ν(t)∂xV(t, ȳ(t)), a.e. on [0, T ].

This concludes therefore the proof of Theorem 3.1.

5. Application to problems with state constraints

Consider the following control problem with state constraints:

(Psc)

"
######$

######%

Minimize ψ(x(T )) +

1 T

0

ℓ(t,x(t),u(t)) dt,

ẋ(t) = f(t,x(t),u(t)), a.e. on [0, T ]
ϕ(t,x(t)) ≤ 0 for every s ∈ [0, T ],
x(0) = x0

u ∈ U ,
Our goal in this section is to derive sensitivity relations for this type of problems.
The main difficulty one may encounter in doing so is that, in general, the value
function associated with problem (Psc) is not continuous, or even finite on the state
constraint set {ϕ ≤ 0}. It is well-known that to obtain the Lipschitz character of the
value function one may be forced to adopt rather strong controllability assumptions.
To avoid these issues we consider an auxiliary optimal control problem of minimax
type, whose main feature is that its value function is Lipschitz continuous under
mild assumptions.

Following ideas introduced in [1], we consider the auxiliary minimax optimal
control problem

(Paux)

"
#####$

#####%

Minimize max
t∈[0,T ]

ϕ(t,x(t))
!

(ψ(x(T ))− z(T ))

ẋ(t) = f(t,x(t),u(t)), a.e. on [0, T ]
ż(t) = −ℓ(t,x(t),u(t)), a.e. on [0, T ]
x(0) = x0, , z(0) = z0
u ∈ U ,
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Notice that the connection between (Psc) and (Paux) is the following: Let u ∈ U be
a given control and x be the corresponding solution of the dynamical equation that
defines (Psc). Let ϑ0(x0) and ω0(x0, z0) be the value of the optimization problem
(Psc) and (Paux), respectively. It follows then that if u is an optimal control for
(Psc) then it is also optimal for (Paux) provided z0 = ϑ0(x0). In this case, we also
have ω0(x0,ϑ0(x0)) = 0. Notice that the condition ϑ0(x0) < +∞ is equivalent to
saying that the (Psc) is feasible.

The sensitivity relations for problem (Psc) can be then written in terms of

W(t, x, z) := inf
u∈U

"
##$

##%
max
s∈[t,T ]

ϕ(s,x(s))
!

(ψ(x(T ))− z(T )) |

for a.e. s ∈ [t, T ] :
ẋ(s) = f(s,x(s),u(s)),
ż(s) = −ℓ(s,x(s),u(s)),
and x(t) = x, z(t) = z

:
##;

##<

the value function of the problem (Paux) and the Hamiltonian function Hλ : [0, T ]×
Rn × Rm × Rn → R defined for any λ ∈ R via the formula

Hλ(t, x, u, q) := q · f(t, x, u)− λℓ(t, x, u), ∀(t, x, u, q) ∈ [0, T ]× Rn × Rm × Rn.

Theorem 5.1. Assume that (H2) holds in addition to

(C1) (a) For every x ∈ Rn, (t, u) !→ (f(t, x, u), ℓ(t, x, u)) is L× Bm measurable
on [0, T ]× Rm;

(b) there exist kf , kℓ > 0 such that

‖f(t, x, u)− f(t, y, u)‖ ≤ kf‖x− y‖ ∀x, y ∈ Rn, (t, u) ∈ Gr(U),

|ℓ(t, x, u)− ℓ(t, y, u)| ≤ kℓ‖x− y‖ ∀x, y ∈ Rn, (t, u) ∈ Gr(U);

(c) there exist cf , cℓ > 0 and α ∈ N such that

‖f(t, x, u)‖ ≤ cf (1 + ‖x‖), ∀x ∈ Rn, (t, u) ∈ Gr(U).

|ℓ(t, x, u)| ≤ cℓ(1 + ‖x‖α), ∀x ∈ Rn, (t, u) ∈ Gr(U).

(C2) ϕ and ψ are locally Lipschitz continuous.

Let x0 ∈ Rn be such that ϑ0(x0) < +∞, and assume that (x̄, ū) ∈ X[0,T ](x0) is a
solution to the control problem (Psc). Assume as well that

(1) x !→ (f(t, x, u), ℓ(t, x, u)) is continuously differentiable for any (t, u) ∈
Gr(U) fixed;

(2) there is a finite set D ⊆ [0, T ] such that the map (t, u) !→ (f(t, x, u), ℓ(t, x, u))
is continuous on {(t, u) ∈ Gr(U) | t /∈ D} for every x ∈ Rn fixed;

(3) U is a locally selectionable set-valued map.

Let z̄(t) = ϑ(t, x̄(t)) for every t ∈ [0, T ]. Then there exist p ∈ W 1,1 ([0, T ];Rn),
λ ∈ [0, 1], a finite regular (nonnegative) Borel measure µ on [0, T ] and a Borel
measurable function γ : [0, T ] → RN such that:

(SC-MPi) Non-triviality: λ+ µ([0, T ]) = 1 with λ = 1 if max
t∈[0,T ]

ϕ(t, x̄(t)) < 0;

(SC-MPii) γ(t) ∈ ∂xϕ(t, x̄(t)) for µ-a.e. t ∈ [0, T ];
(SC-MPiii) supp(µ) ⊆ {t ∈ [0, T ] | ϕ(t, x̄(t)) = 0};
(SC-MPiv) Costate equation and transversality condition:

2
−ṗ(t) = ∂xHλ(t, x̄(t), ū(t),q(t)) for a.e. t ∈ [0, T ],

−q(T ) ∈ λ∂ψ(x̄(T )),
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where

q(t) =

"
##$

##%

p(t) +

1

[0,t[

γ(s)µ(ds) if t ∈ [0, T [

p(T ) +

1

[0,T ]

γ(s)µ(ds) if t = T

(SC-MPv) Maximality condition:

Hλ(t, x̄(t), ū(t),q(t)) = max
u∈U(t)

Hλ(t, x̄(t), u,q(t)), for a.e. t ∈ [0, T ];

(SC-MPvi) Sensitivity relations: (−p(0),−λ) ∈ ∂(x,z)W(0, x0, z0), where z0 = ϑ0(x0),
and for a.e. t ∈ [0, T ]

(−q(t),−λ) ∈ ν(t)∂(x,z)W(t, x̄(t), z̄(t)),

(Hλ(t, x̄(t), ū(t),q(t)),−q(t),−λ) ∈ ν(t)∂W(t, x̄(t), z̄(t)),

where ν(s) = (1− µ([0, s[) for any s ∈ [0, T ].

Proof. Let r ∈ R such that

r > ecfT (‖x0‖+ 1)

and let us define

(30) F(t, (x, z), u) :=

2
(f(t, x, u),−ℓ(t, x, u)) if ‖x‖ < r7
(f(t, x, u),−ℓ

7
t, rx

‖x‖ , u
88

if ‖x‖ ≥ r

Using the fact that the mapping

x !→
2
x if ‖x‖ < r
rx
‖x‖ if ‖x‖ ≥ r

is Lipschitz continuous on Rn, it is not difficult to see that (C1) implies that F
satisfies (H1), with y = (x, z). Let y = (x, z) be a solution of (8) defined on [0, T ]
such that y(0) = y0, where y0 = (x0, z0). By Gronwall’s inequality we have

‖x(t)‖ < ‖x(t)‖+ 1 ≤ ecfT (‖x0‖+ 1) < r, ∀t ∈ [0, T ].

This means in particular that

z(t) = z0 −
1 t

0

ℓ(s,x(s),u(s))ds, ∀t ∈ [0, T ].

It follows then that ȳ = (x̄, z̄) is a minimizer of (P) with the dynamics F given by
(30) and the cost

Φ(t, (x, z)) = ϕ(t, x) and Ψ(x, z) = ψ(x)− z, ∀(x, z) ∈ Rn+1.

Notice too that for every (t, u) ∈ Gr(U), (x, z) !→ F(t, (x, z), u) is continuously
differentiable on a tube around ȳ = (x̄, z̄), because F agrees with (f,−ℓ) on BN (0, r)
and x !→ (f(t, x, u), ℓ(t, x, u)) is continuously differentiable on a tube around x̄.
Therefore, by Theorem 3.1 we can deduce that there exist px ∈ W 1,1([0, T ];Rn),
pz ∈ W 1,1([0, T ];R), λ ∈ [0, 1], a finite regular (nonnegative) Borel measure µ on
[0, T ] and measurable functions γx : [0, T ] → Rn and γz : [0, T ] → R such that
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(I) Non-triviality: λ+ µ([0, T ]) = 1 with
"
###$

###%

λ = 1 if ψ(x̄(T ))− ϑ(0, x0) +

1 T

0

ℓ(t, x̄(t), ū(t))dt > max
t∈[0,T ]

ϕ(t, x̄(t))

λ = 0 if ψ(x̄(T ))− ϑ(0, x0) +

1 T

0

ℓ(t, x̄(t), ū(t))dt < max
t∈[0,T ]

ϕ(t, x̄(t))

(II) (γx(t), γz(t)) ∈ ∂ϕx(t, x̄(t))× {0} for µ-a.e. t ∈ [0, T ];

(III) supp(µ) ⊆
/
t ∈ [0, T ] | ϕ(t, x̄(t)) = max

s∈[0,T ]
ϕ(s, x̄(s))

0

(IV) Costate equation and transversality condition:
"
#$

#%

−ṗx(t) = ∇xH
F(t, x̄(t), z̄(t), ū(t),qx(t),qz(t)) for a.e. t ∈ [0, T ],

−ṗz(t) = ∇zH
F(t, x̄(t), z̄(t), ū(t),qx(t),qz(t)) for a.e. t ∈ [0, T ],

(−qx(T ),−qz(T )) ∈ λ∂ψ(x̄(T ))× {−1},
where

(qx(t),qz(t)) =

"
##$

##%

(px(t),pz(t)) +

1

[0,t[

(γx(t), γz(t))µ(ds) if t ∈ [0, T [,

(px(T ),pz(T )) +

1

[0,T ]

(γx(t), γz(t))µ(ds) if t = T ;

(V) Maximality condition: for a.e. t ∈ [0, T ]

HF(t, x̄(t), z̄(t), ū(t),qx(t),qz(t)) = max
u∈U(t)

HF(t, x̄(t), z̄(t), ū(t),qx(t),qz(t)).

(VI) Sensitivity relations: −(px(0),pz(0)) ∈ ∂(x,z)W(0, x0, z0) and for a.e. t ∈
[0, T ]

(−px(t),−pz(t)) ∈ ν(t)∂(x,z)W(t, x̄(t), z̄(t)),

(HF(t, x̄(t), z̄(t), ū(t),qx(t),qz(t)),−qx(t),−qz(t)) ∈ ν(t)∂W(t, x̄(t), z̄(t)).

Now, since

ϑ(0, x0) = ψ(x̄(T )) +

1 T

0

ℓ(t, x̄(t), ū(t))dt and max
t∈[0,T ]

ϕ(t, x̄(t)) ≤ 0,

from (I) and (III), we obtain (SC-MPi) and (SC-MPiii). Also, from (II), (IV)
and the fact that the dynamics doesn’t depend on the z variable, we have that
pz = qz ≡ λ, and consequently,

HF(t, x̄(t), z̄(t), ū(t),qx(t),qz(t)) = Hλ(t, x̄(t), ū(t),qx(t)), a.e. on [0, T ].

Therefore, defining q := qx, p := px and γ := γx we get from (II), (IV), (V),
(VI) the remainder conditions (SC-MPii), (SC-MPiv), (SC-MPv), (SC-MPvi) on
the statement of the theorem. □ □

6. Discussion about the assumptions

To conclude, we provide a short discussion about the assumptions we have done
in our main results. The focus will be on Theorem 3.1, however it extends in a
natural way to Theorem 5.1.

The hypotheses (H1) and (H2) are rather standard assumptions made in the
literature over the data that comprise the control system, although (H1)(b) can
be weakened to be satisfied in a local sense. Moreover, the hypothesis (H3) is
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somewhat essential in our setting since, otherwise, it may not be possible to ensure
the Lipschitz continuous character of the value function.

One of the main contributions of this work is that we are able to provide a global
and a partial sensitivity relation with a single perturbed problem, that are valid
for the same costate. To accomplish this, it is fundamental that one is able to
ensure the existence of continuously differentiable trajectories of the control system
for any given initial state and initial velocity. At this point is where assumptions
(A2) and (A3) start playing a major role. If one drops these assumptions, it is still
possible to get the global sensitivity relation, but not the partial one. To see this
one needs to set the control b ≡ 0 in the perturbed problem (Pε), use [25, Lemma
4.3] to argue the existence a subset Θ ⊆ [0, T ] of full measure such that for every
(t, x) ∈ Θ× RN and v ∈ co(F(t, x, U(t))) there is (y,u) ∈ XF

[t,T ](x) for which

lim
h↓0

====
y(t+ h)− x

h
− v

==== = 0.

And finally, instead of (16) use

d

dt
V(t,y) ≥ − D◦V((t,y); (ω,−θ)) + (1 + ω)D↓V((t,y); (1,F(t,y,u)).

A similar argument, but setting the control (ω,θ) ≡ (0, 0) in the perturbed problem
(Pε) may be used to get the partial sensitivity relation. However, the problem in
this case is that, contrary to the lower Dini derivative, in general one does not have

D◦V((t,y(t)); (0,b)) = D◦
xV(t, ·)(y(t);b),

a fact that is essential in the proof of Lemma 3.
Finally, let us point out that the smoothness assumption over the dynamics (A1)

in Theorem 3.1 has been done only for the sake of the exposition. A nonsmooth
version of Theorem 3.1, would have instead of (MPiv) the following differential
inclusion

−ṗ(t) ∈ co ∂yH
F(t, ȳ(t), ū(t),q(t)), for a.e. t ∈ [0, T ],

which can be obtained by considering the following perturbed optimal control prob-
lem with state constraints

"
###############$

###############%

Minimize J ′(y, ζ, z)

over all (y, ζ, z) ∈ W 1,1
&
[0, T ];RN+2

'
, u ∈ U and measurable

functions (ω,θ,b) : [0, T ] → R× RN × RN

such that ẏ(t) = (1 + ω(t))F(t,y(t),u(t)) + θ(t) + b(t),

ζ̇(t) = σε
0(t,ω(t),θ(t)) + σε

1(t,b(t)),

ż(t) = 0,

|ω(t)| ≤ ε, ‖θ(t)‖ ≤ ε, ‖b(t)‖ ≤ ε,

for a.e. t ∈ [0, T ],

Φ(t,y(t)) + ζ(t)− z(t) ≤ 0, for all t ∈ [0, T ].

(P ′
ε)

where the perturbed cost function is now defined via the formula:

J ′(y, ζ, z) :=
>
z(T )

!
(Ψ(y(T )) + ζ(T ))

?
− V(0,y(0))− ζ(0).
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It is not difficult to see that setting ζ̄ ≡ 0, ω̄ ≡ 0, θ̄ ≡ 0 and b̄ ≡ 0 as before and

z̄ ≡ max
t∈[0,T ]

Φ(t, ȳ(t)),

for any given ε ∈]0, 1], we have that ((ȳ, ζ̄, z̄), (ū, ω̄, θ̄, b̄)) is a strong local minimizer
of the problem (P ′

ε); similar arguments used to prove that the functional J is non-
negative can be used to show that the functional J ′ is also non-negative for any
feasible trajectory. Finally, instead of using Lemma 1 for getting a set of optimality
conditions for the perturbed problem, one needs to use the nonsmooth maximum
principle for problems with state constraints ([24, Theorem 9.3.1]). The convergence
analysis is rather standard and almost the same we have provided in our proof.

Appendix A. Proof of Lemma 2

Proof. Let r > 0 and LΦ,Ψ ≥ 0 be a common Lipschitz constants for Φ(t, ·) and Ψ
on the closed ball of radius r̃ = (1 + r)ecFT − 1. Let us define e(kF) := exp (kFT ),
where kF > 0 is the Lipschitz modulus of F given by (H1).

Notice that for any t ∈ [0, T ], x ∈ BN (0; r) and (y,u) ∈ XF(t, x), we have by
(9) that y(s) ∈ BN (0; r̃) for any s ∈ [t, T ]. Similarly, ỹ(s) ∈ BN (0; r̃) for any
(ỹ, ũ) ∈ XF(t̃, x̃) such that ỹ(t) = x, for some t̃ ∈ [0, t] and x̃ ∈ RN .

Let t ∈ [0, T ] and x, x′ ∈ BN (0; r). Notice that V(t, x) ≥ Φ(t, x), and so since
XF(t, x) ∕= ∅, we have that V(t, x) ∈ R. Therefore, for any ε > 0 there is (yε,uε) ∈
XF(t, x) such that

V(t, x) ≥ max
s∈[t,T ]

Φ(s,yε(s))
!

Ψ(yε(T ))− ε.

It follows then that

V(t, x′)−V(t, x) ≤ max
s∈[t,T ]

(Φ(s,y′
ε(s))− Φ(s,yε(s)))

!
(Ψ(y′

ε(T ))−Ψ(yε(T ))) + ε,

where y′
ε is such that (y′

ε,uε) ∈ XF(t, x′). Here we have also used the fact that

(a∨b)−(c∨d) ≤ (a−c)∨(b−d) and sup
a∈A

φ1(a)−sup
a∈A

φ2(a) ≤ sup
a∈A

(φ1(a)−φ2(a)).

Using the fact that yε(s),y
′
ε(s) ∈ BN (0; r̃) for any s ∈ [t, T ], we get that

V(t, x′)− V(t, x) ≤ LΦ,Ψ max
s∈[t,T ]

‖y′
ε(s))− yε(s)‖+ ε,

Since we also have a.e. on [t, T ] that

‖ẏ′
ε(s)− ẏε(s)‖ = ‖F(s,y′

ε(s),uε(s))− F(s,yε(s),uε(s))‖ ≤ kF‖y′
ε(s)− yε(s)‖,

by Gronwall’s inequality we have

‖y′
ε(s)− yε(s)‖ ≤ ekF(s−t)‖y′

ε(t)− yε(t)‖ ≤ e(kF)‖x′ − x‖, ∀s ∈ [t, T ],

and consequently,

V(t, x′)− V(t, x) ≤ LΦ,Ψe(kF)‖x′ − x‖+ ε.

Since ε > 0 is arbitrary, by switching the roles of x and x′ we get

(31) |V(t, x′)− V(t, x)| ≤ LΦ,Ψe(kF)‖x′ − x‖, ∀t ∈ [0, T ], x, x′ ∈ BN (0; r).

Take now also t′ ∈ [0, T ], then it follows from (31) that

|V(t′, x′)− V(t, x)| ≤ |V(t′, x′)− V(t′, x)|+ |V(t′, x)− V(t, x)|
≤ LΦ,Ψe(kF)‖x′ − x‖+ |V(t′, x)− V(t, x)|.
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Take again ε > 0 arbitrary and (yε,uε) ∈ XF(t, x) such that

V(t, x) ≥ max
s∈[t,T ]

Φ(s,yε(s))
!

Ψ(yε(T ))− ε.

Suppose in addition that t′ > t, then

V(t, x) ≥ max
s∈[t′,T ]

Φ(s,yε(s))
!

Ψ(yε(T ))− ε.

Therefore,

V(t′, x)−V(t, x) ≤ max
s∈[t′,T ]

(Φ(s,y′
ε(s))− Φ(s,yε(s)))

!
(Ψ(y′

ε(T ))−Ψ(yε(T )))+ε,

where y′
ε is such that (y′

ε,uε|[t′,T ]) ∈ XF(t′, x). From here, we obtain

V(t′, x)− V(t, x) ≤ LΦ,Ψe
kF(T−t′)‖x− yε(t

′)‖+ ε

≤ LΦ,Ψe(kF)

1 t′

t

‖F(s,yε(s),uε(s))‖ds+ ε

≤ LΦ,Ψe(kF)cF(1 + r̃)|t− t′|+ ε.

Suppose now that t′ < t. Let u ∈ U be a measurable selection of U , whose existence
is justified by the Aumann’s Measurable Selection Theorem ([24, Theorem 2.3.12]).
Let y be the unique solution of the Cauchy problem

ẏ(s) = F(s,y(s),u(s)), a.e. s ∈ (t′, t), y(t) = x

and define

y-
ε(s) =

2
y(s) if s ∈ [t′, t)

yε(s) if s ∈ [t, T ]
and u-

ε(s) =

2
u(s) if s ∈ [t′, t)

uε(s) if s ∈ [t, T ]

Notice that

max
s∈[t′,T ]

Φ(s,y-
ε(s)) = max

s∈[t′,t]
Φ(s,y(s))

!
max
s∈[t,T ]

Φ(s,yε(s))

and that for any s ∈ [t′, t] we have

Φ(s,y(s)) ≤ Φ(t, x) + LΦ,Ψ (|s− t|+ ‖y(s)− x‖)

≤ Φ(t, x) + LΦ,Ψ

-
|t′ − t|+

1 t

t′
‖F(s,y(s),u(s))‖ds

.

≤ Φ(t, x) + L̃V |t′ − t| ≤ max
s∈[t,T ]

Φ(s,yε(s)) + L̃V |t′ − t|,

where L̃V := LΦ,Ψ(1 + cF(1 + r̃)). Therefore,

max
s∈[t′,T ]

Φ(s,y-
ε(s)) ≤ max

s∈[t,T ]
Φ(s,yε(s)) + L̃V |t′ − t|

and so

V(t, x) ≥
-

max
s∈[t′,T ]

Φ(s,y-
ε(s))− L̃V |t′ − t|

.!
Ψ(y-

ε(T ))− ε.



26 CRISTOPHER HERMOSILLA AND HASNAA ZIDANI

Let y′
ε be such that (y′

ε,u
-
ε) ∈ XF(t′, x). Then, we have

V(t′, x)− V(t, x) ≤ max
s∈[t′,T ]

Φ(s,y′
ε(s))

!
Ψ(y′

ε(T ))

−
-

max
s∈[t′,T ]

Φ(s,y-
ε(s))− L̃V |t′ − t|

.!
Ψ(y-

ε(T )) + ε

≤
-

max
s∈[t′,T ]

&
Φ(s,y′

ε(s))− Φ(s,y-
ε(s))

'
+ L̃V |t′ − t|

.!&
Ψ(y′

ε(T ))−Ψ(y-
ε(T ))

'
+ ε

Since we also have a.e. on [t′, T ] that

‖ẏ′
ε(s)− ẏ-

ε(s)‖ = ‖F(s,y′
ε(s),u

-
ε(s))− F(s,y-

ε(s),u
-
ε(s))‖ ≤ kF‖y′

ε(s)− y-
ε(s)‖,

by Gronwall’s inequality we have

‖y′
ε(s)− y-

ε(s)‖ ≤ ekF(s−t)‖y′
ε(t

′)− y-
ε(t

′)‖ = e(kF)‖x− y-
ε(t

′)‖, ∀s ∈ [t′, T ].

Given that

‖x− y-
ε(t

′)‖ ≤ cF(1 + r̃)|t′ − t|,
we get

V(t′, x)− V(t, x) ≤ L̃V |t′ − t| (e(kF) + 1) + ε.

Since ε > 0 is arbitrary, by switching the roles of t and t′, and using either case
1 or 2 described above, we get

|V(t′, x)− V(t, x)| ≤ L̃V |t′ − t| (e(kF) + 1)

and so

|V(t′, x′)− V(t, x)| ≤ LΦ,Ψe(kF)‖x′ − x‖+ L̃V (e(kF) + 1) |t′ − t|,
which leads to the conclusion. □ □
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