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Chemical reaction systems operating in nonequilibrium open-system states arise in a great number of contexts, including the
study of living organisms, in which chemical reactions, in general, are far from equilibrium. Here we introduce a theorem that
relates forward and reverse fluxes and free energy for any chemical process operating in a steady state. This relationship,
which is a generalization of equilibrium conditions to the case of a chemical process occurring in a nonequilibrium steady state
in dilute solution, provides a novel equivalent definition for chemical reaction free energy. In addition, it is shown that
previously unrelated theories introduced by Ussing and Hodgkin and Huxley for transport of ions across membranes, Hill for
catalytic cycle fluxes, and Crooks for entropy production in microscopically reversible systems, are united in a common
framework based on this relationship.
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INTRODUCTION
For a reaction occurring in an isothermal and isobaric system the

chemical driving force DG—the Gibbs free energy difference—

characterizes how far a chemical reaction is away from equilibrium.

If we take a simple bimolecular reaction in a dilute solution

AzB '
kz1

k{1

CzD ð1Þ

as an example, then DG is related to the concentrations of the

reactants and products, as well as the equilibrium constant Keq,

through the well-known thermodynamic equation

DG~{RT ln ½A�½B�Keq=½C�½D�
� �

: ð2Þ

If we further assume that the law of mass action governs the

reaction’s kinetics, then the forward and reverse reaction fluxes and

equilibrium constant are

Jz~kz1½A�½B�, J{~k{1½C�½D�, Keq~kz1=k{1, ð3Þ

where k+1 and k21 are constants that do not depend on the

concentrations. Combining Equations (2) and (3) yields

DG~{RT ln Jz=J{ð Þ: ð4Þ

Expressing DG in terms of Equation (4) has many advantages: It is

apparent that if DG = 0, then J+ = J2. This equilibrium relationship

is required by the principle of detailed balance, which states that at

equilibrium the forward and reverse fluxes are equal for all existing

independent mechanisms for the reaction A=B [1]. Furthermore,

Equation (4) can be generalized to many other situations. For

example, for reversible enzyme reactions governed by Michaelis-

Menten kinetics, although both J+ and J2 are complex, nonlinear

functions of reactant and substrate concentrations, Equation (4) still

holds true.

Another nontrivial example of Equation (4) that arises in cycle

kinetics in unimolecular systems is due to T.L. Hill [2–5]. As in the

example above, the law of mass action is assumed in all of Hill’s

work. The novelty of this note is to show a wide range of validity of

Equation (4) based solely on conservation of mass, without

invoking any assumptions of rate laws such as Equation (3).

Hence, Equation (4) is in fact a fundamental relation for any

chemical process operating in an open-system steady state.

The relation is also intimately related to the fluctuation theorem

[6,7,8,9]. However, the most significant insight from the present

work is that the relation between one-way-fluxes and DG can be

established without any supposition on the dynamics of a system.

ANALYSIS

Flux and Free Energy in a Nonequilibrium Open

System
For the reaction A=B, the Gibbs free energy change per mole of

molecules that transform from state A to state B is expressed

DG~DGozRTln(NB=NA), ð5Þ

where NA and NB are the number of molecules in states A and B,

respectively. In equilibrium, the ratio NB/NA is equal to

e{DG
o
=RT~Keq and the net reaction flux is J = J+2J2 = 0, where

J+ and J2 are the forward and reverse reaction fluxes, respectively.

When DG,0, the net flux J from A to B is positive.

To determine how flux and free energy are related for systems not

in equilibrium we consider, without loss of generality, the case where

NB/NA,Keq and J.0. In a nonequilibrium steady state NA and NB
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are held constant by pumping A molecules into the system, and

pumping B molecules out of the system, at the steady-state flux J.

Next imagine that we are able to place a label on each molecule

that converts from state B to state A. These particles we denote by

A*. Apart from the label, A* molecules are identical in every way

to unlabeled A molecules in this thought experiment. In addition,

imagine that A* molecules lose their label when they convert to B

molecules. Thus if we continue to pump A and B molecules into

and out of the system at the constant flux J, then a steady state will

be reached for which NA*, the number of labeled molecules in state

A*, is less than or equal to NA, the total number of labeled plus

unlabeled molecules in state A.

The steady state is reached when the rate of conversion of

labeled A* molecules into state B is equal to the rate of conversion

from B to A*. Since there is no transport of A* into or out of the

system, then in the steady state the NA* molecules in state A* will

be in equilibrium with the NB molecules in state B: NB/NA* = Keq.

Mass conservation requires that the forward flux of A*RB equal

the reverse flux of BRA*, or Jz NA�
NA

~J{. Combining these

equations, we have:

Jz

J{
~

NA

NB

Keq: ð6Þ

This relationships hold for a reaction operating in any steady state,

including thermodynamic equilibrium. In equilibrium, J+ = J2,

and

NA

NB

Keq~1: ð7Þ

Thus it is trivial that Equation (6) holds in equilibrium. The more

interesting case is a nonequilibrium steady state for which

Equations (5) and (6) yield Equation (4). Therefore Equation (4)

is a condition that does not depend on the details of the kinetic

reaction mechanism that is operating in a particular system. In

addition, the above proof is easily generalized to apply to

multimolecular (non-uni-unimolecular) chemical reactions or any

spontaneous process transforming or transporting mass from one

state to another. Therefore Equation (4) represents a fundamental

property of any chemical process in dilute solution.

Relationship to other Theories
Hill Equation for Catalytic Cycles For the case of a catalytic

cycle with J+/J2 equal to the ratio of the forward-to-reverse cycle

flux and DG equal to the thermodynamic driving force for the

cycle, Equation (4) is identical to the relationship introduced by

Hill [2,5,10] and proved by Kohler and Vollmerhaus [11] and by

Qian et al. [12] for cycles in Markov systems. (See Equations (3.7)

and (7.8) in [5].) Therefore the relationship between J+/J2 and

DG introduced by Hill for linear cycle kinetics is a special case of

Equation (4).

As specific example, consider the well known Michaelis-Menten

enzyme mechanism:

AzE '
kz1

k{1

C '
kz2

k{2

BzE, ð8Þ

in which E is an enzyme involved in converting substrate A into

product B. The steady-state flux through this mechanism is

JMM (a,b)~Jz{J{~
kf a{krb

1za=Kazb=Kb

, ð9Þ

where Eo is the total enzyme concentration, a = [A], b = [B],

kf = Eok+1k+2/(k21+k+2), kr = Eok21k22/(k21+k+2), Ka = (k21+k+2)/

k+1, and Kb = (k21+k+2)/k22. Identifying J+ as the positive term

and J2 as the negative term in Equation (9), it is straightforward to

verify that J+ and J2 satisfy Equation (4), where DGo = 2RTln

(k+1k+2/k21k22). In application in biochemical enzyme kinetics, it

is sometimes assumed that k22[B] = 0, resulting in the well known

Michaelis-Menten equation for an irreversible reaction (see below).

Crooks Fluctuation Theorem Again, we consider a system

made up of molecules that can transition between two states:

A=B. The system is sustained in a steady-state with constant

numbers of A and B; therefore, each transition brings the system

back to its starting state in a cyclic fashion. If C+ is the mean

forward transition rate (number of transitions per unit time)

for which the system is driven in the forward direction, then the

probability of n forward transitions in a finite time period t
is given by the Poisson distribution: Pz(n)~ tCzð Þne{tCz

.
n!.

Likewise, the probability of m reverse transitions is

P{(m)~ tC{ð Þme{tC{�
m!, where C– is the reverse transition

rate. Hence, the probability of net forward turnover l = m 2 n is

given by

PF (l)~
X?
n~l

Pz(n):P{(n{l)~ tC{ð Þ{l

X?
n~l

t2CzC
{� �n

e{t C
z

{C
{ð Þ

n!(n{l)!

ð10Þ

and the probability of l net reverse turnovers is

PR(l)~
X?
m~l

Pz(m{l):P{(m)~ tCzð Þ{l

X?
m~l

t2C
z

C
{� �m

e{t C
z

{C
{ð Þ

(m{l)!m!

ð11Þ

Associated with net l forward turnover cycles is the isothermal heat

dissipation which is equal to the entropy production (e.p.) of

2(lDG); the net l reverse turnovers have an e.p. of +(lDG).

Therefore, the ratio of the probability of e.p. =s to the probability

of e.p. = 2s, within a finite time interval, is

Pr (e:p:~zs)

Pr (e:p:~{s)
~

PF l~zs=DGð Þ
PR l~{s=DGð Þ~

Cz

C{

� �{s
DG

ð12Þ

Since the chemical flux is proportional to the number of transi-

tions per unit time, C+/C2 = J+/J2. Connecting this result with

Equation (4), we have

Pr (e:p:~zs)

Pr (e:p:~{s)
~e

s
RT, ð13Þ

which is known as the Crooks fluctuation theorem [6].

Ussing Flux Ratio When a charged species is transported

across a biological membrane, the ionic flux is influenced by any

electrostatic potential difference that exists across the membrane.

Using the convention that the electrostatic potential across a cell is

measured as the outside potential subtracted from inside potential,

Equation (4) is expressed

Jout

Jin
~ exp

{DG

RT

� �
~

ci

co

exp
zFDY

RT

� �
ð14Þ

for passive transport of a single ion across a cell membrane. Here,

Free Energy-Flux Relation
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ci and co in Equation (14) denote the concentrations of the ion on

the inside and outside of the cell, respectively; z is the valence

number of the ion; F is Faraday’s constant; DY is the electrostatic

potential (defined as inside potential minus outside potential); and

Jin and Jout are in inward and outward one-way fluxes. The flux

ratio in form of Equation (14) was introduced in 1949 by Ussing

[13] for the case of passive transport of single ions and is known as

the Ussing flux ratio. Based on the assumption that Jout is

independent of co and that Jin is independent of ci, Hodgkin and

Huxley derived the same expression in 1952 [14].

The current work shows that the theory of Ussing and Hodgkin

and Huxley is a special case of Equation (4). In addition to single-

ion channel fluxes for which the Ussing flux ratio has been

developed and applied, the flux ratio of Equation (4) applies to all

active and passive transport processes as well as multiple-ion

transporters.

Additional Consequences
Net Flux for Nearly Irreversible Reactions is Proportional

to Reverse Flux We can study nearly irreversible systems based

on Equation (4). The net flux through a chemical process is

J = J+2J2; thus, e2DG/RT = J/J2+1, which leads to the

approximation

J~J{e{DG=RT ð15Þ

for nearly irreversible reactions (J&J21). Thus the net flux

through an enzyme in a reaction operating far from equilibrium is

proportional to the reverse flux.

For the quasi-steady approximation of Equation (9) the reverse

flux is J2 = krb/(1+a/Ka+b/Kb); thus for a nearly irreversible

reaction

J~J{Keq
a

b
~

kf a

1za=Kazb=Kb

, ð16Þ

which is the expression that we would arrive at by setting kr = 0 in

Equation (9). Note that the usual irreversible Michaelis-Menten

equation derives from the assumption that k22 = 0, which results in

J~
kf a

1za=Ka

: ð17Þ

This analysis illustrates that the assumption k22 = 0 is a special

case of the irreversible single-substrate enzyme. Equation (16) is

the general approximation for the case of |DG/RT|&1, where

k22 may be finite.

Net Flux for Highly Reversible Reactions is Proportional

to Reverse Flux Near equilibrium (for |DG|%RT) the flux can

be approximated as linearly proportional to the thermodynamic

driving force: J = 2XDG, where X is the Onsager coefficient

[15,16]. When the near-equilibrium approximation |DG|%RT

holds, the flux ratio J+/J2 is approximately equal to 1. In this case

Equation (4) is approximated

DG~{RT(Jz=J{{1)~{
RT

J{
(Jz{J{): ð18Þ

From this expression, we have

J~{
J{

RT
DG: ð19Þ

Therefore for highly reversible systems, the net flux is proportional

to the reverse flux times the thermodynamic driving force; the

Onsager coefficient is equal to J2/RT.

Application to Transport Processes In addition to

application to chemical reactions, Equation (4) is directly applied

to transport processes. For example, one-dimensional transport of

particles in a complex medium is governed by a Fokker-Planck

equation with spatially dependent diffusion coefficient D(x) and

potential function u(x) [17]:

Lc(x,t)

Lt
~

L
Lx

D

RT
c
Lu

Lx
zD

Lc

Lx

� �
, ð20Þ

over the domain 0#x#1. The steady-state transport flux predicted

by this equation is [17]

J~Jz{J{~{
D

RT
c
Lu

Lx
{D

Lc

Lx
~

c0eu(0)=RT{c1eu(1)=RT
� 	 ð1

0

eu(x)=RT dx

D(x)

� �{1

,

ð21Þ

where c0 and c1 are the concentrations of the two reservoirs at

x = 0 and x = 1. Recognizing that DG = 2{u(1)2u(0)+RTln(c1/c0)}

for this system, we have Equation (4).

Exchange of Isotope Labels A variety of isotope labeling

methods are used to determine in vivo metabolic fluxes. In some

cases, it is possible to estimate not only the net flux of a given

reaction, but also the forward and reverse rate at which an isotope

label exchanges between species involved in a chemical reaction

[18]. Consider as examples the enzyme-mediated catalysis

schemes for the reaction A=B illustrated in Figure 1.

For the reversible Michaelis-Menten example of the left panel,

which is described by Equations (8) and (9), the exchange flux

ratio—the rate at which a label on A molecules is transferred to B

molecules divided by the rate at which a label on B molecules is

transferred to A molecules is given by Equation (4),

Jz

J{

� �
exchange

~ exp
{DGAB

RT

� �
~Keq

: a

b
, ð22Þ

where DGAB and Keq are the Gibbs free energy and equilibrium

constant for the reaction.

Figure 1. Example enzyme mechanisms for the reaction A=B. The left
panel illustrates the Michaelis-Menten scheme of Equation (8), in which
enzyme binds to substrate A, forming a complex C. The product B
reversibly dissociates from the complex C, forming unbound enzyme E.
The right panel illustrates a more complex mechanism involving three
enzyme states E1, E2, and E3. Enzyme kinetic theory assumes that the
state transitions follow mass-action kinetics, as described by Equation
(8) for the left panel and Equation (23) for the right panel.
doi:10.1371/journal.pone.0000144.g001
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For the mechanism illustrated in the right panel of the figure,

the exchange flux ratio takes a slightly different form. This enzyme

mechanism has the following elementary steps:

AzE1 '
kz1

k{1

E2

E2 '
kz2

k{2

E3zB

E3 '
kz3

k{3

E1

ð23Þ

where Keq = (k+1?k+2?k+3)/ (k21?k22?k23). The overall flux ratio for

the enzyme cycle E1+A=E1+B, has the same form as Equation

(22)

Jz

J{

� �
cycle

~ exp
{DGAB

RT

� �
~Keq

: a

b
: ð24Þ

The exchange flux ratio follows from applying Equation (4) or (6)

to the reaction E1+A>E3+B:

Jz

J{

� �
exchange

~Keq

a

b
: k{3½E1�
kz3½E3�

ƒ

{DGAB

RT
ð25Þ

where the apparent equilibrium constant for the reaction

E1+A=E3+B is K = Keqk23/k+3. The inequality in Equation (25)

is for the case that the net flux is positive and therefore

k23[E1]#k+3[E3].

DISCUSSION
In summary, we have demonstrated that Equation (4) is

a fundamental condition that is satisfied by any chemical process

operating in a steady state in dilute solution. This equation is

a generalization of the well known equilibrium conditions DG = 0

and J2 = J+ to the case of a chemical process occurring in

a nonequilibrium steady state, such as a chemical reaction in an

open system [19,20]. It provides a novel equivalent definition for

the reaction free energy, or thermodynamic driving force. Based

on this relationship, related theories of Ussing [13] and Hodgkin

and Huxley [14] for ionic transport across membranes, Hill [2–

5,10] for enzyme cycle kinetics, and Crooks [6] for entropy

production and work done by microscopically reversible systems,

are united in a common framework.
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