Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 9240843, 16 pages
https://doi.org/10.1155/2022/9240843

Research Article

@ Hindawi

Relationship Discovery and Hierarchical Embedding for Web

Service Quality Prediction

Hualong Bu ! Jing Xia ,2 Qilin Wu ®,' and Liping Chen !

ISchool of Information Engineering, Chaohu University, Hefei 238000, China
2School of Mathematics and Statistics, Chaohu University, Hefei 238000, China

Correspondence should be addressed to Qilin Wu; lingqiw@126.com

Received 20 April 2022; Accepted 24 September 2022; Published 5 October 2022

Academic Editor: Ripon Chakrabortty

Copyright © 2022 Hualong Bu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Web Services Quality Prediction has become a popular research theme in Cloud Computing and the Internet of Things. Graph
Convolutional Network (GCN)-based methods are more efficient by aggregating feature information from the local graph
neighborhood. Despite the fact that these prior works have demonstrated better prediction performance, they are still challenged
as follows: (1) first, the user-service bipartite graph is essentially a heterogeneous graph that contains four kinds of relationships.
Previous GCN-based models have only focused on using some of these relationships. Therefore, how to fully mine and use the
above relationships is critical to improving the prediction accuracy. (2) After the embedding is obtained from the GCNSs, the
commonly used similarity calculation methods for downstream prediction need to traverse the data one by one, which is time-
consuming. To address these challenges, this work proposes a novel relationship discovery and hierarchical embedding method
based on GCNs (named as RDHE), which designs a dual mechanism to represent services and users, respectively, designs a new
community discovery method and a fast similarity calculation process, which can fully mine and utilize the relationships in the
graph. The results of the experiment on the real data set show that this method greatly improved the accuracy of the web service

quality prediction.

1. Introduction

More and more developers have paid attention to web
services in the form of Web APIs [1]. By the end of March 22,
2022, ProgrammableWeb (the largest web service platform)
has registered more than 24,417 APIs. Developers can access
services through simple APIs, which provide a great con-
venience for development. As the number of services is
increasing, users have only called a small number of services
in reality, resulting in most service qualities being unknown
in advance. Therefore, how to appropriately predict the
quality of the web service becomes a serious issue [2].
Accompanied by the rising of deep learning technology,
various deep web service quality prediction models have
been continuously proposed [3-5]. Deep learning methods
such as CNN and RNN can extract hidden information that
cannot be treated by traditional matrix decomposition
technology [6, 7] to improve the accuracy, but these methods

do not take the topology information into account at all. In
recent years, numerous graph convolutional networks
(GCNs) have been proposed [8-12]. GCNs can integrate
feature information from local graph neighborhood, which
have been demonstrated to be powerful for graphical rep-
resentation [13-15]. Neural Graph Collaborative Filtering
(NGCF) [13] exploits the user-service graph structure and
integrates the users and services interactions into the em-
bedding process. PinSage [14] designs an efficient random
walk method with graph convolutions to generate node
embedding that incorporates both graph structure and node
information. LDNM [15] transforms each service document
into feature vectors by using LDA and Doc2vec, then applies
Node2vec and MLP neural network for Web Service
Classification.

Although GCNs have achieved great achievements in
web service quality prediction, we argue that there are still
suffering from the following challenges.

mailto:lingqiw@126.com
https://orcid.org/0000-0002-1451-2424
https://orcid.org/0000-0001-5452-5732
https://orcid.org/0000-0002-4559-9315
https://orcid.org/0000-0002-7237-0479
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9240843

First, the user-service bipartite graph is essentially a
heterogeneous graph. As shown in Figure 1, the bipartite
user-service graph contains four types of relationships such
as (1) user-user shared-invoking relationship; (2) user-user
potential relationship; (3) user-server relationship; and (4)
server-server relationship.

Taking the user node ul as an example, the first-order
neighborhood of user ul contains the service nodes s1 and
s2 which indicates the user-server relationship, and the
second-order neighborhood contains the user node u2 that
has called the service s2 before, which indicates the user-user
shared-invoking relationship.

Taking the service node sl as an example, the first-order
neighborhood of sl contains the user nodes sl, and the
second-order neighborhood contains the service node s2.
Node sl and node s2 form the server-server relationship.

Furthermore, taking user ul, user u5, and user u6 as an
example, these users share characteristics (e.g., they may
have common interests), but they have not revoked the same
service in the past. In this way, users ul, u5, and u6 form a
user-user potential relationship with each other. Generally
speaking, without prior domain knowledge, the user-user
potential relationships are unknown in advance.

Previous GCN-based models have only focused on using
one or more of these relationships. Therefore, how to fully
mine the above relationships and make use of these rela-
tionships is critical to improve the prediction accuracy.

Second, when aggregating node features with the help of
topology information, traditional methods must calculate
the similarity. The existing similarity calculation research
mainly focuses on how to improve the accuracy of down-
stream tasks, and it is necessary to traverse all samples one by
one during traversal [16, 17]. Obviously, similarity calcu-
lation is a very time-consuming process when the number of
samples is large. In order to reduce the computational
complexity, a more efficient similarity calculation method
needs to be adopted.

In addition, we notice that the web service quality
prediction methods based on GCN have also faced the
matrix sparsity problem to be solved. To address the
aforementioned challenges simultaneously, this article
proposes a novel relationship discovery and hierarchical
embedding method (RDHE) based on GCNs for web service
quality prediction, which can fully utilize four kinds of
relationships to achieve better prediction accuracy. Given a
user-service bipartite graph or QoS matrix, we first recon-
struct the user-neighborhood graph and the service-
neighborhood graph, respectively. Second, we propagate and
aggregate the features of nodes from their local neighbor-
hood by user embedding module and service embedding
module, respectively. Third, we cluster the user embedding
and service embedding with the help of clustering com-
ponent. In addition, we conduct the communities using the
community discovery module to instruct the downstream
clustering. After these, we fuse the user-based and server-
based predictions for the ultimate prediction. The experi-
mental results show that our RDHE method can greatly
improve the accuracy. The main contributions of this work
are summarized as follows.

Computational Intelligence and Neuroscience

----- user —service bipartite
- — - user clusters

FIGURE 1: An illustration of the user and service relationships.

(1) A dual model to effectively learn neighborhood
embedding from the user perspective and service
perspective independently, which can lighten the
damage caused by sparsity.

(2) Two community discovery methods are proposed to
instruct the user- and service-based predictions to
improve the accuracy of the final prediction, which
can fully mine and use the above four kinds of
relationship.

(3) A fast similarity calculation method to handle large-
scale data, which can avoid the curse of dimen-
sionality for downstream clustering tasks.

(4) A large number of experiments are carried out on the
real WS-Dream data set. The experimental results show
that compared with the classic methods, the prediction
precision of our RDHE method improves a lot.

The remainder of this article is organized as follows:
Section 2 introduces the related work for Web Service
Quality prediction. Section 3 shows the whole framework.
Section 4 explains in detail the implementation process of
the RDHE algorithm. Section 5 presents the experimental
results and analysis. We summarize the full text in the
Conclusion section.

2. Related Work

2.1. Deep Learning Models for Embedding. With the devel-
opment of cloud computing and the Internet of things,
various web services are registered and invoked on the
network, and the prediction of web service quality has be-
come a popular research direction. Our work builds on some
recent advances in graph neural network representation
learning methods.

The concept of neural networks for graph data was first
outlined by Gori et al. [18] and further elaborated by Scarselli
et al. [19]. However, these initial methods required running
expensive neural “message passing” algorithms to converge
and were constrained by the scale of graph data, which was
further improved by gated graph sequential neural networks
[20] to graphs with <10,000 nodes, but the cost is still high.

Computational Intelligence and Neuroscience

A large number of approaches to “graph convolution” or
graph convolutional networks (GCNs) have recently
emerged, originating from the work of Bruna et al., which
developed a graph convolution based on spectral graph
theory [21]. Since then, many authors have proposed im-
provements, extensions, and approximations to these
spectral convolutions [8-12, 22, 23], and achieved good
results on tasks such as node classification and link pre-
diction. These methods have consistently outperformed
matrix factorization or random walk-based techniques (e.g.,
node2vec [24] and DeepWalk [25]), and their success has led
to a surge of interest in applying GCN-based methods to
applications such as recommender systems, of which
Hamilton et al. [26] and Bronstein et al. [27] conducted a
comprehensive survey of recent progress.

However, despite the success of GCN algorithms, the
above works are mainly based on homogeneous graphs,
ignoring the heterogeneous structure effects of graphs. Since
the representation learning of heterogeneous graph neural
network has the strong expressive ability and the charac-
teristics of effectively combining node attribute features and
structural information, it can not only solve the problems of
network data such as data sparse [28], but also has achieved
remarkable results in various downstream tasks, such as
node classification [29], link prediction [30], node clustering
[31, 32], and recommendation [33-35].

We found that the heterogeneity of the graph structure
causes different node types to have different semantic fea-
tures, and even if the node types are the same, there may be
different community attributes (e.g., although they are all
user nodes, their implied points of interest are different).
Inspired by the community discovery algorithm [36], our
work introduces community discovery (further discovering
distinct communities of cohorts to guide downstream work)
into graph neural network representation learning.

2.2. Similarity Calculation. Our method is also relevant to
the field of similarity calculation. Similarity calculation in-
dicators can evaluate the similarity between data, and
provide an accurate and effective basis for data analysis.
Previous studies on similarity calculation mainly focus on
the following aspects:

(1) The design of basic measurement indicators, which
can be divided into distance-based measurement
methods and similarity coefficient-based measure-
ment methods [37, 38]. Distance-based measure-
ment methods mainly include Euclidean distance,
Manhattan distance, etc., while similarity coefficient-
based measurement methods mainly include Cosine
similarity, Pearson correlation coeflicient, etc.
Among them, the most common methods are the
application of Euclidean distance and Cosine
similarity.

(2) Embedding similarity strategy design, this type of
method mainly studies how to improve the guidance
of similarity calculation for downstream tasks [16],

such as ontology-based methods, semantic-based
methods, and some other hybrid methods [17].

The above methods mainly consider the effectiveness or
learning accuracy of the similarity measurement method
itself, but due to the large amount of current data, the time
performance of similarity calculation is insufficient. To this
end, this article proposes a similarity calculation method
based on a neural network. The main idea is to reduce the
time required for similarity calculation as much as possible
under the premise of ensuring accuracy.

3. The Whole Framework

We will briefly describe the framework of our proposed
method RDHE, as shown in Figure 2. The entire framework
consists of six components:

(i) User embedding module, which contains the re-
construction of the User Neighborhood component,
Wide and Deep Embedding component, and
GraphSAGE Embedding components.

(ii) Service embedding module, which contains similar
components as user embedding module.

(iii) User-community discovery module, in which a new
community discovery method is proposed to in-
struct the service-based clustering.

(iv) User clustering module, in which a clustering
method is proposed for user clustering.

(v) Service clustering module, in which we get the
service cluster and the user-cluster affiliation degree
matrix.

(vi) At last, a fusion operation is used to fuse the user-
based prediction and server-based prediction.

4. The Proposed Prediction Method

4.1. Reconstruction of Neighborhood Graph. Given a QoS
matrix Q™", m and n are the number of users and services,
respectively. X "4 is the feature matrix and d is the
dimension of features. The corresponding bipartite graph
G (U, S, E, X) can be simply derived from Q™. The bipartite
graph G(U, S, E, X) is a typical heterogeneous graph, the
direct neighbors of users are the service nodes and the direct
neighbors of services are the user nodes.

Assume that it is more efficient to learn different
neighborhood embedding from the user perspective and
service perspective independently, rather than recursively
updating neighborhood embedding regardless of the node
types. Based on this, we reconstruct a user-neighborhood
graph and a service-neighborhood graph from the
G(U,S,E, X) or its corresponding QoS matrix directly. If
user u; and user u, are connected to the same service, they
become direct neighbors in the user-neighborhood graph. In
other words, if the elements of the i-th column in the QoS
matrix are nonzero, then corresponding users of service i
become direct neighbors in the user-neighborhood graph.

4 Computational Intelligence and Neuroscience
R T Tt ety ey | T User Clustering |
| User Embedding | : ser Clustering
1 ! !
' 18 8
| 8 | ' &) !
18 28 Lo i
I 84 | ! I
1 8 | : :
| I
| e S
| User Neighborhood W&G GraphSAGE 1 : !
e ! e
_______________ l]
Fo- - | -------:C 1I : User Community Discovery : : 8 ® :
__________ Input 1 | 1 I |
I : 8 /® 1 : 1 | I 8 \ ® I
ojlofo]ofo} ! , : ! @ a 6‘3 | | v |
ojojo|ofof Iﬁ,’¢®.| i o o1 .8\\,®,
L ! R SRS S LI SSE —
1 ! :
Lpofoloe=1 8"/ @ 1 L pne PTAY S d
I . I 1 \
ojtjrjrjoy '8L/—®|' | O @‘l ' :8// V@i
ofofof1]1] i [N i . L a ® |
I <L | I
ST TT T '_& _ __@ ! : 1 Similarity : : :
_______________________ \Calculation __ _ ____ _ ! : Fusion :
T e R Vo TemieChrermed
| Service Embedding | : service Clustering |
1 1 I !
1 1 !
: e O
: 8 {3’/46 : : :
| &4 X ! :
I I
| I X ® ® !
| K ! ® |
| Service Neighborhood W&G GraphSAGE | | : :
| |

FIGURE 2: The framework of web service quality prediction. The input can be QoS matrix or corresponding bipartite graph. The output is the

prediction of missing QoS values.

Likewise, if two services connect to the same user (the
corresponding row’s elements are nonzero), they become
direct neighbors in the service-neighborhood graph. In this
way, we can reconstruct the user-neighborhood graph
G(U,E, X,), X, e R™4 and service-neighborhood
graphG' (S, E", X,), X, € R™,

It should be noted that G(U, E’, X,) contains two kinds
of user relationship information, one is the user-user shared-
invoking relationship which is constructed by the above
method and is reflected in the topological structure of
G (U, E', X,); the other is the user-user potential relationship
which contains the latent community-sharing information,
and we will discover it through the community discovery
module (more details will be discussed in Section 4.3).

4.2. Sparsity and Large-Scale Handling. In general, the fea-
ture matrixes of X, and X, are sparse and high-rank, which
will lead to the failure of methods which directly based on
the feature matrixes. Here, we adopt the Wide & Deep [39]
learning model to better represent sparse features by si-
multaneously training a linear LDA model and a neural
network model.

Given a user-neighborhood graph G (U, E', X,,) and its
nodes feature matrix X,,, we can get the representation as,

EY=WD,X,, (1)

where WD, (*) is a Wide & Deep learning module for users.
Similarly, the service representation can be obtained by the
Wide & Deep learning module as

EY =WDX.. (2)

We then output ElYand E¥ as inputs of GraphSAGE [40],
which is a general framework that takes advantage of the
node feature to efficiently embed large-scale data, and can
generate embedding by sampling and aggregating features
from a node’s neighborhood as follows:

Ht/,/u = aggregatei({Hf‘l,i € /Vu}),
H = G(WL . concat(Htu_l,Ht/V)),
! 3
Ht/Vs = aggregatei({H;_l,j € ./VS}), ®
H = O’(Wi . concat(Hz_l, Ht/VS)>,

where aggregate! (°) and aggregate!(*) are aggregating
functions, ¢ is the activate function, W!, and W' are the
parameter matrixes which can be trained. H? = E* and
HY = E¥ as original inputs.

Note that concat(®) is referring to the layer-aggregation
mechanism. Since concatenation does not require additional
parameters to learn, it has been shown quite simply and
effectively for graph neural networks. In addition to con-
catenation, other strategies such as max pooling, can also be
applied. Here, we adapt the concatenation for its simplicity.

4.3. Clustering with the Instruction of Community Discovery

4.3.1. Fast Similarity Calculation Process. Clustering di-
vides a data set into different clusters according to a
certain distance criterion so that the similarity of samples
in the same cluster is as large as possible, and the dif-
terence of samples not in the same cluster is also as large as
possible.

Computational Intelligence and Neuroscience

Traditionally, a clustering algorithm usually only needs a
similarity calculation function sim(s;s;) to get started.
Traditional similar calculation process needs to traverse the
embedding one by one when calculating sim (s;, s;), which
are suitable for small-scale data sets, but the operating time
will increase exponentially with the expansion of the dataset
size [38]. In this work, a neural network-based similarity
calculation process is designed for downstream similarity
calculation and reduced the time complexity as shown in
Figure 3.

In Figure 3, in order to improve the similarity calculation
performance, a network model that can fit the similarity
mapping relationship of the dataset is established. BP neural
network has excellent nonlinear approximation, self-learn-
ing, self-adaptation, and generalization ability. According to
the universal approximation theorem, if a feedforward
neural network has a linear output layer and at least one
hidden layer with an activation function, as long as there are
enough hidden neurons, it can approximate any continuous
function in a finite-dimensional space with arbitrary pre-
cision. In actual use, the computational time and space
overhead must be considered, the exact representation is
usually abandoned, and the nonlinear mapping relationship
between the dataset and the label set is approximated by
finding suitable parameters on the basis of the approximate
representation. This provides a theoretical basis for using BP
neural network for fast similarity calculation.

After the similarity calculation formula is selected, the
numerical value of the data and the similarity between the
data can constitute a definite multi-input and multi-output
nonlinear mapping relationship, so the BP neural network
can be used to fit this mapping relationship. In order to
reduce the time of traversal calculation, the model is trained
based on the similarity of some samples, and the accuracy is
exchanged for speed, and the nonlinear similarity mapping
relationship of the complete data set is represented within
the allowable error range, so as to calculate the approximate
similarity of the complete data set.

We give a brief complexity analysis here. Set X € R™™.
For tradition calculating method, the total time complexity
is O(mn?). The time complexity of the neural network
method can be divided into precise calculation part and
network part. In the precise calculation part, let b be the
sampling ratio, 0 < b < 0.5, the precise calculation complexity
is O (b*mn?). Assuming the number of the inputted neurons
per hidden layer is m, the hidden layer number is ¢, and the
number of output neurons is 1, the time complexity of the
neural network method is O ((1 — b)mnt). Generally, t < n,
so the neural network method is more efficient than the
traversal calculation method.

4.3.2. User Clustering. We note the cluster center vector as
the mean vector of the feature vectors of all the users in the
cluster, and calculate the similarity between the feature
vector of the user u in cluster i and the rating vector of
cluster i as the user u’s interest in the cluster i.

The similarity calculation function is the widely used
Pearson Correlation Coefficient (PCC). We use PCC to

measure the similarities between vector r; and r;, and get the
user clusters UC on the user embedding H!,. We use the
function f (x) = (x + 1)/2 to project the PCC into range [0,
1]. The PCC is defined as:

ZpeP(xip a Ei)("jp a Ej) ’
\/ZPGP(xip - yi) (xjp - Ej)

where P is the interaction of the two vectors.

Based on the assumption that users with more social
relationships are more representative, we can derive the
weighted cluster center vectors.

sim (i, j) =

(4)

we, = deUc(i) |relatzoni (.g)|rug
Y geucUC ()]

where C(i) represents the set of users in cluster i,
relation; (g) represents the set of users who have a direct
relationship with user u in cluster i.r, is the feature vector
of user u,. !

Finally, we can obtain the user clusters UC and the rating
matrix UCR by formula (4) and (5).

; (5)

g

4.3.3. Service Clustering with the Instruction of Community
Discovery. Finding and utilizing community information
on the original input QoS matrix without prior knowledge
can be connected to the concept of community discovery.
A fuzzy clustering algorithm based on interest preference
is proposed here. The algorithm uses the user’s behavior
records and the clusters to which the services belong to
find a set of users similar to the target user’s interest
preference.

Given the original input QoS matrix Q™", the users’
ratings on services form a m xn rating matrix R = [r;;],
where r;; is the rating of user ; on service s;, r; is the rating
vector of user u;. We note the community rating vector as
the mean vector of the rating vectors of all the users in the
community.

First, we use the PCC to calculate the similarity of the
service embedding H' to get the service clusters SC.

Next, we derive the distribution of clusters SC which
have been rated by u; can be described as:

sc
SC,| | SC, »
s s]S

IS 187 0S|

Dist (i) = , (6)

where S;represents the set of services rated by user u;, and
§5Ck . .
. * represents the set of services rated by user u;in cluster
Cy.
Next, due to the sparse data of the user-service rating
matrix, the user category preference vector also has a

sparseness problem, we define a more effective similarity

function than traditional Minkowski distance as
follows:
1 P
sim(Dist(i), gj) = Tik(Dist O gjyk), (7)
i k=1

6 Computational Intelligence and Neuroscience
DataSet
Randomly Sample o
10% of the Dataset Training Data
}r . 7S;n71i71airi7t;l o Calculate the Similarity of
| .
! Function | Each Data in the Sample Labels
! | Dataset
Training
Trained NN
Similarity
FIGURE 3: Fast similarity calculation.
1, Dist (i), £ 0 where u; is the i-th user in the cluster UC, which user u;
where 7, = { > kTN g = ¥P 7, 1is the number bel h S value of UCR.
! 0, Dist (i), =0" ! =1 "1 elongs to, gos, represents the QoS value of user u;, it

of clusters, g; represents a certain cluster center
vector, j = 1,2,. . Lo gik i§ thg k-th el.ement in g;.
Then we derive the objective function:

m
Objective (USA,G) = Y Y ulsim(Dist (i), g;). (8

i=1 j=1

where u;; € [0, 1] represents the affiliation degree of user u;

to cluster C; and 22:1 uj;=1. USA = ufg-‘x’ represents the
user-cluster affiliation degree matrix. G = (g, s> ---» g1)"
represents the center cluster matrix.

Finally, we update the values of the user-cluster affilia-
tion matrix USA and cluster center matrix G through it-
erative operation, and gradually reduce the error of the
objective function to the pre-set convergence threshold and
terminate the iteration.

4.4. Joint Prediction. In order to reduce the influence of the
redundant neighbors on the prediction, we predict the
missing QoS values P, (i, j) of user j as follows:

it *(qos,, x UCRy)
top — k

P, (i, j) = , 9

means the rating score of user u; to cluster UC,, and top — k
represents the number of how many neighbors to be
selected.

The formula for predicting missing values P (i, j) of

service j based on the service clustering result is as follows:
top—k
p (l,]) _ Zi:l (qosui x USit) i (10)
s top — k

where u; is the i-th affiliated user of the server cluster SC,
which user u; affiliated to, qos,, represents the QoS value of
user u;, US;, means the affiliation degree of user u; to cluster
SC,, and top —k represents the number of how many
neighbors to be selected.

To fully consider the similarity of similar users and
similar services, this article combines formulas (9) and (10)
to propose a hybrid prediction method as follows:

P, (i) =Ax P, Gy) +(1 =) x P,(i,j). (11)

The parameter A € [0,1] indicates that the predicted
value depends on the proportion of similar users and similar
services. When A =1, only the user-based method is used for
prediction; when A =0, only the service-based method is
used for prediction. If user u does not call any service that
has been used or service s has not been called by any user, the
average of all service QoS values will be used for prediction.

%

Computational Intelligence and Neuroscience

4.5. Model Training. To optimize the model parameters of
RDHE, we need to optimize an objective function. In the
training process, we denote S* as positive samples and
denote S™ as negative samples, respectively. Given user u,y,,
is the ground truth label, if user u has invoked the service s,
then y, . =1, otherwise y, =0, J,, is the predicted label
for service s. The loss function is derived as:

- Z Z {yu,slog P(;T/u,s = 1) +(1 - yu,s)log P(j‘/u’S = 0)}

u fjestuUs-

(12)

Our model contains service embedding Ef and user
embedding EF, they are hierarchical trained and learned
together. Since the raw features are very large and highly
sparse for large-scale graphs, we do not use one-hot vectors
to represent the nodes. By embedding high-dimensional
sparse features into a low-dimensional latent space, the
model can be easy to train. It is worth noting that, in terms of
model size, the majority of the RDHE model parameters
come from the embedding. We adopted the Cluster-GCN
Mini-batch Trick [41] and Adam [42] optimization for
GCNs.

Overfitting is another long-term problem for optimizing
deep neural network models. The dropout strategy [43] is a
common method to solve the overfitting of the neural
network, which has the characteristics of simplicity and good
effect. Here, we employ node and feature dropout strategies
to prevent RDHE from overfitting. When the parameters,
only part of them will be updated. Moreover, as a dropout is
disabled during testing, the whole network is used for
prediction.

5. Experiment

In this work, we performed a lot of experiments on real-
world datasets to evaluate our RDHE method. We hope to
answer the following questions:

(i) How does RDHE perform compared to the state-of-
the-art methods?

(ii) How do different hyper-parameter settings affect
RDHE?

5.1. Experimental Data and Evaluation Indicators. In our
experiments, in order to evaluate the effectiveness of the
prediction method proposed in this article, we use the WS-
Dream dataset [44]. The two matrices in this dataset contain
1974675 response time (RT) and throughput (TP) data
generated by 339 users calling 5825 services. There is a QoS
record generated by invoking between each user and each
Web service. The real recorded values of RT are between [0,
1].

To evaluate the effectiveness of service quality prediction,
this work uses the mean absolute error (MAE) and the root
mean square error (RMSE) indicators for test, which are
defined as follows.

7
MAE = z”,slr(u, S) - p(u, S)l)
N
(13)
RMSE = Zu,s (r(u,s) - p(u’ S))Z’

N

where r(u,s) and p(u,s) represent the actual QoS and
predicted QoS values, respectively, and N represents the
number of predictions. It can be seen from the formula that
the smaller the values of MAE and RMSE, the better the
prediction performance, and the RMSE is more sensitive to
the prediction error.

5.2. Baselines. We compare our proposed RDHE method
with 10 state-of-the-art methods, which is described as
follows:

(1) LDA [45]: LDA is an unsupervised topic modeling
algorithm, which has been widely used in recom-
mender systems. Here, each service is associated
with a distribution on the topic of users, each user
group is a distribution of users, and we use LDA to
discover hidden relationships between users and
services in the prediction task.

(2) Node2Vec [24]: Node2Vec is an improved version
of DeepWalk that takes into account structure and
homogeneity. In this method, we use the Node2vec
model to maintain node neighbor information from
the user- and service-neighborhood graphs for
downstream tasks.

(3) GCN [8]: GCN is a classic semi-supervised model
for extracting graph features. In this article, we treat
both the services and users as nodes, then use the
GCN to obtain the embedded representation of the
graph.

(4) Wide & Deep [39]: in this method, we only use the
Wide & Deep method to obtain user and service
embedding for downstream similarity calculation
and prediction tasks.

(5) GraphSAGE [40]: in this method, we only use the
GraphSAGE module to obtain user and service
feature representations for downstream tasks.

(6) NGCF [13]: in this method, we use the NGCF
module to exploit the user-service graph structure
by propagating high-order connectivity embedding
on it; next the prediction task is imposed on it.

(7) PinSage [14]: in this method, we use a PinSage
module to combine to generate embedding of nodes
that incorporate both graph structure as well as
node feature information. Then we perform simi-
larity calculation and prediction tasks on it.

(8) KGAT [34]: in this method, we use a KGAT module
to propagate the embedding by aggregating infor-
mation from the constructed knowledge graph for
prediction.

(9) GraphRec [12]: in this method, we use a GraphRec
module to capture interactions and heterogeneous
strengths in the user-service graph for prediction.

(10) NIA-GCN [35]: in this method, we adopt the NIA-
GCN module to capture relationships between pairs
of neighbors at each GCN layer for prediction.

LDNM is a fusion method of LDA, Doc2vec, and
Node2vec, which have been adopted, respectively, thus we
will not compare it.

5.3. Parameter Setting. We implement our method on the
basis of Pytorch2 and use the Adam optimizer for all neural
network-based methods. All the baselines and our algorithm
are fully trained with up to 500 epochs, and the number of
negative samples is 20. Moreover, we use validation set data
for parameter tuning for all the methods.

In the real world, most of the users have only called a few
services, therefore, in this work, to make the experiments
more realistic, we randomly delete a certain number of QoS
values from the initial RT and TP matrices to generate low-
density matrices. For example, a matrix density of 5% means
that we randomly select 5% of the QoS values to predict the
remaining 95% of the QoS values. The removed QoS values
are used as expected values to study prediction accuracy.
Each training set data contain 10% of the validation set data;
for example, 50% of the training set size means that 40% of
the data are used for training and the remaining 10% of data
are for validation.

The default values of the parameters and hyper-pa-
rameters of the baselines are shown in Table 1. If there are
multiple datasets and the parameters are not specified, then
the default parameters are the same. Specifically, we set the
number of topics to 20 for all LDA-contained methods,
where each latent topic corresponds to a specific service
cluster. For our method, the Wide & Deep and GraphSAGE
parameters are the same as in Table 1. We set the hidden
layer the same as the embedding size and the activation
function as ReLU. We used four hidden layers for the NN
components of the Similarity Calculation and Prediction
Module and its learning rate=0.03, dropout=0.5, and
optimizable parameter § = 0.6. The effect of different values
of A, top-k, and other hyper-parameters will be shown in
chapter 5.4.

5.4. Experiment Result. We first compare the prediction
accuracy of different methods and then compare the effect of
different parameters in RDHE, all the results and details will
be discussed below.

5.4.1. Prediction Accuracy Comparison. In the experiment,
the matrix density is set to 0.1-0.3 on the WS-Dream dataset
(divided into RT and TP sub-datasets), and gradually in-
creases at an interval of 0.05. We set k =3 and 1 = 0.4 to
obtain the MAE and RMSE results. The experimental results
are compared in Tables 2 and 3.

Computational Intelligence and Neuroscience

Tables 2 and 3 compare the prediction accuracy of 10
state-of-the-art methods with RDHD. It can be seen that our
RDHE method has obtained better experimental results with
both MAE and RMSE indicators, compared to all other
baseline methods. Take the result of the MAE indicator as an
example, the RDHE method is better than the four classic
graph algorithms (Node2vec, GCN, Wide & Deep, and
GraphSAGE) with 18.84%, 21.50%, 15.47%, and 12.50%
achievements, respectively; it also achieves 11.11%, 9.19%,
9.19%, 5.62%, and 3.45% improvement than NGCEF, PinSage,
KGAT, GraphRec, and NIA-GCN, respectively. Similarly,
take the result of the RMSE indicator in Table 3 as an ex-
ample, the RDHE method achieved 14.48%, 16.85%, 14.19%,
13.74%, 12.33%, 8.51%, 7.98%, 11.21%, and 8.04% accuracy
improvement than the nine GCNs methods based on the
RMSE indicators.

Tables 2 and 3 also show the prediction accuracy changes
of the different methods as the matrix density increases. As
the matrix density increases, each method achieves better
results than at lower densities, and the RDHE method
improves even more.

5.4.2. The Influence of A for Prediction Accuracy. As shown
in (11), the parameter A is a weight parameter, which de-
termines the degree of dependence of the results based on
the user’s similarity and service’s similarity. For example, if
A =1, only the user-based method is used for prediction, and
if A =0, only the service-based method is used for prediction.
In order to study the influence of A on the prediction results,
the matrix density is set to 0.1, the number of similar users
and the number of similar services is 6, and the A ranges from
0.1 to 0.9 with an interval of 0.05. The experimental results
are shown in Figure 4.

Among them, Figures 4(a) and 4(b) are the experimental
results of the response time attribute, and Figures 4(c) and
4(d) are the experimental results of the throughput attribute.
The experimental results in Figure 4 show that A is one of the
decisive factors for RDHE prediction accuracy. As shown in
Figures 4(a) and 4(c), as the value of A increases, the pre-
diction accuracy reaches the maximum value when A =0.3.
Meanwhile, as shown in Figures 4(b) and 4(d), the pre-
diction accuracy reaches the maximum value when A =0.4.
This shows that a suitable A value can achieve better pre-
diction accuracy. At the same time, the results in Figure 4
show that when the datasets are different, the optimal value
of A is also different.

5.4.3. The Influence of Top-k for Prediction Accuracy. The
parameter k can determine how many similar users or
similar services of the selected target are to be used. Here, in
order to study the influence of top k-th values on prediction
accuracy, we set the matrix density to 0.05 and A =0.4, and
set the Top-k value from 1 to 10 and gradually increase at
intervals of 1, the results are shown in Figure 5. Among
them, Figures 5(a) and 5(b) are the experimental results in
the response time attribute, and Figures 5(c) and 5(d) are the
experimental results in the throughput attribute. It can be
seen from Figures 5(a) and 5(d) that with increasing the top-

Computational Intelligence and Neuroscience 9
TaBLE 1: Default main hyper parameters setting.
Modules Main hyper parameters Value
LDA Number of topics in LDA 20
Dirichlet parameter 0.1
Length of Node2vec walk 80
Node2vec Number of Node2vec walks 10
Window size of Node2vec walk 10
Number of layers 2
GCN Size of layer convolution layer 64
. Number of layers 2
Wide & deep Dimensions 128
GraphSAGE Neighborhood deep neighborhood sample sizes 225
Embedding propagation layers 3
NGCF Depth of the NGCF 3
Top-k 20
. Top-k 2
PinSage Size of hidden dimension size 512
Top-k 20
KGAT Tower structure of hidden layer size 512/256/128/64
Size of the hidden layer 128
GraphRec Number of three hidden layers 3
Size of first layer/second layer 40/2
NIA-GCN Dimension of each layer 64
TaBLE 2: Overall performance comparison of RT on average.
Method MAE/matrix density RMSE/matrix density
etho
0.10 0.15 0.20 0.25 0.30 Average 0.10 0.15 0.20 0.25 0.30 Average
LDA 0.49 0.46 0.45 0.43 0.42 0.4500 1.48 1.45 1.44 1.43 1.41 1.4420
Node2vec 0.44 0.43 0.41 0.40 0.39 0.4140 1.43 1.41 14 1.38 1.37 1.3980
GCN 0.45 0.43 0.43 0.42 0.41 0.4280 1.47 1.45 1.43 1.41 1.39 1.4300
Wide & deep 0.42 0.41 0.39 0.38 0.37 0.3975 1.39 1.36 1.32 1.30 1.28 1.3300
GraphSAGE 0.41 0.4 0.38 0.37 0.36 0.3840 1.38 1.37 1.35 1.34 1.32 1.3520
NGCF 0.4 0.38 0.37 0.38 0.36 0.3780 1.37 1.36 1.35 1.34 1.33 1.3500
PinSage 0.4 0.38 0.36 0.36 0.35 0.3700 1.35 1.34 1.32 1.31 1.30 1.3240
KGAT 0.39 0.38 0.37 0.36 0.35 0.3700 1.31 1.29 1.27 1.26 1.25 1.2760
GraphRec 0.38 0.36 0.35 0.35 0.34 0.3560 1.3 1.27 1.25 1.23 1.22 1.2540
NIA-GCN 0.39 0.36 0.34 0.33 0.32 0.3480 1.29 1.26 1.23 1.22 1.21 1.2420
RDHE 0.37 0.35 0.34 0.32 0.3 0.3360 1.24 1.22 1.21 1.20 1.20 1.2140
TaBLE 3: Overall performance comparison of TP on average.
Method MAE/matrix density RMSE/matrix density
etho
0.10 0.15 0.20 0.25 0.30 Average 0.10 0.15 0.20 0.25 0.30 Average
LDA 16.29 15.10 14.02 13.97 13.73 14.6220 58.25 57.2 56.56 55.1 54.55 56.3320
Node2vec 14.85 13.76 13.35 13.19 12.82 13.5940 56.85 55.98 54.15 53.29 51.18 54.2900
GCN 15.25 14.30 14.01 13.83 13.55 14.1880 57.93 57.1 55.97 54.35 53.83 55.8360
Wide & deep 14.98 14.21 14.02 13.87 13.85 14.1860 56.09 55.12 54.4 52.97 51.95 54.1060
GraphSAGE 14.76 14.10 13.66 13.11 12.97 13.7200 55.57 54.04 53.52 52.81 53.19 53.8260
NGCF 14.85 14.20 13.86 13.31 12.85 13.8140 55.06 54.02 53.21 51.56 50.94 52.9580
PinSage 14.69 14.15 13.78 13.23 12.95 13.7600 52.87 51.83 50.3 49.78 48.96 50.7480
KGAT 14.76 14.10 13.66 13.11 12.97 13.7200 51.87 51.33 50.25 49.98 48.85 50.4560
GraphRec 14.18 13.53 12.95 12.86 12.75 13.2540 54.23 53.6 52.15 51.42 50.07 52.2940
NIA-GCN 13.58 13.22 13.05 12.99 12.87 13.1420 52.23 51.73 50.05 49.68 48.77 50.4920
RDHE 12.58 12.49 12.45 12.40 12.17 12.4180 48.26 47.41 46.16 45.32 45.01 46.4300

10

0.44

0.41

~ 038

MAE

-10.35

0.32

18

15

MAE

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12
01 02 03 04 05 06 07 08 09

(c)

Computational Intelligence and Neuroscience

13

RMSE

65

60

55

RMSE

|50

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 45
01 02 03 04 05 06 07 08 09

(d)

FIGURE 4: The influence of parameter A. (a) RT attribute. (b) RT attribute. (c) TP attribute. (d) TP attribute.

k value, the prediction accuracy first increases, then de-
creases, and reaches the maximum when k is 4. This shows
that the number of similar users or similar services is not
always beneficial to improving the prediction accuracy, too
few or too many similar users and similar services can both
reduce the prediction accuracy.

5.4.4. The Influence of Matrix Density. The matrix density
represents what proportion of the QoS matrix is used as
training data. Figure 6 shows the effects of matrix density on
two QoS attributes, response time, and throughput, re-
spectively. Here, we set the density of the matrix from 0.05 to
0.25, increasing in 0.05 intervals, 1=0.4, the number of
similar users, and the top-k is 4.

We can see from Figure 6 that, as the density of the
matrix increases, the service prediction accuracy of the
RDHE method gradually improves. This is because the larger
the matrix density is, the more users have invoked more
services, and the generated data set contains more user
information and service information, from which more
useful information can be mined to improve prediction
accuracy.

5.4.5. The Influence of Hyperparameters. Our method in-
cludes three neural networks (wide & Deep, GraphSAGE,
and MLP for clustering), among which the default values of
the parameters have been depicted in Table 1, more dis-
cussion can be referred in [39, 40]. Here, we mainly discuss
the key parameters of NN, which are crucial for clustering,

including the number of hidden layers, learning rate, and
dropout.

(1) Impact of Hidden Layers. In theory, the multi-hidden
layer network structure can learn patterns from the original
data, and express the data more abstractly through layer-by-
layer feature extraction. Therefore, the more layers, the
stronger the expressive ability of the data and the stronger
the prediction ability. But this improvement is not without
an upper limit, and when the number of hidden layers is too
high, the accuracy may drop.

To study the number of impact of the hidden layers, we
vary the number of hidden layers from 1 to 8, and the di-
mension of the hidden layer is set to 64. As shown in
Figure 7, in both the RT and TP attributes, when the number
of hidden layer increases, the value of MAE also increases.
When the number of hidden layers is 4, the optimal pre-
diction effect can be achieved. Therefore, we choose the
number of hidden layers as 4 in our method.

(2) Impact of Learning Rate. The learning rate is one of the
key hyper-parameters for training neural networks. When
the learning rate is relatively small, the loss curve converges
very slowly, but the amplitude of the loss swing is relatively
small because the amplitude of the weight update amplitude
is small. Otherwise, when the learning rate is relatively large,
the loss curve converges quickly. Therefore, it is very im-
portant to choose the learning rate carefully for our method.
In order to find the optimal value of the learning rate, we set
the learning rate as 0.01, 0.02, 0.03, 0.04, 0.05, and 0.1.
Figure 8 shows the performance change of RDHE.

Computational Intelligence and Neuroscience 11

0.4 - - : - - - - - : 1.6
0.375 L 15

FE ~..om B B B 1.4

MAE

R 035

RMSE

1 0.325 S B EEE R BE

18 e 57
oo omo M 16s oo sa

< | . NN R 15 o M N R 51

M
RMSE

e BB ELR R R HeE P HEEHRHIF

(0) (d)

FiGure 5: The influence of parameter top-k. (a) Top-k on RT attribute. (b) Top-k on RT attribute. (c) Top-k on TP attribute. (d) Top-k on TP
attribute.

0.4 : : 14
0.38
0.36

0.34

0.32

24 : : : : 65

RMSE

1 | 1 | 1 | 1 | 1 12
005 010 015 020 025

(0 (d)

FIGURE 6: The effect of parameter matrix density. (a) Matrix density on RT. (b) Matrix density on RT. (c) Matrix density on TP. (d) Matrix
density on TP.

12

0.44

0.41

1 0.38

MAE

0.35

0.32

20

118

16

MAE

14

L Il L 1 1 1 1 1 L I} L 1 1 1 L 12

Computational Intelligence and Neuroscience

1.44

RMSE
&
[38}

A S PR SR PP

57

| 54

51

RMSE

48

1 1 L I} L 1 1 1 1 1 Il 1 1 1 45

FiGUure 7: Comparison of the hidden layer numbers. (a) Hidden layer number on RT. (b) Hidden layer number on RT. (c) Hidden layer

number on TP. (d) Hidden layer number on TP.

From Figures 8(a) and 8(b), we can observe that the
learning rate improves the performance when the value
range from 0.01 to 0.03 on the RT attribute, and the im-
provement of the classification effect in the TP attribute does
not stop until the learning rate is set to 0.03, this is because a
learning rate that is too small can cause the process to get
stuck and the method cannot approach the local minima.
However, as the value of the learning rate varies from 0.03 to
0.1 on the RT attribute and the TP attribute, the classification
performance gradually decreased; the possible cause of this
phenomenon is that a learning rate too large will cause the
model to converge too quickly to a suboptimal solution.
Therefore, in our experiments, the default learning rate is set
to 0.03.

(3) Comparative Results of Node and Feature Dropout. Al-
though GCN-based learning models have strong represen-
tation ability, they are usually affected by overfitting. The
dropout strategy is a common method for solving the
overfitting of the neural network, which has the charac-
teristics of simplicity and good effect. Here, we employ node
and feature dropout strategies to prevent RDHE from
overfitting. The feature dropout strategy randomly removes
the output information with a probability of p,. As a result,
only partial information contributes to the refined repre-
sentations in the /-th propagation layer. We also run a node
dropout strategy to randomly block a particular node and
discard all its output information with a probability p;.
Figure 9 shows the effect of the node dropout ratio and
the feature dropout on different attributes of the WS-Dream

dataset. From Figure 9, we can find that the node dropout
strategy gets better accuracy than feature dropout both on
(a), (¢), and (d). Taking (a) Dropout Ratio on RT as an
example, setting the radio as 0.4 will lead to the highest MAE
result of 0.329, which is better than that of the feature
dropout result of 0.362. One possible reason is that dropping
some features of user or service nodes can make the rep-
resentation more robust; therefore, node dropout is more
effective than feature dropout, which means that the node
dropout strategy can be a solution to graph neural network
overfitting.

5.4.6. Experimental Analysis of Fast Similarity Calculation
Method. In this work, a neural network-based similarity
calculation process is designed for downstream similarity
calculation and reduced the time complexity. In order to
verify the effectiveness of our method, we designed two
comparison experiments on TP, (1) FSCM, which had fast
similarity calculation component and (2) Non-FSCM,
which traversed the embedding one by one directly when
calculating sim(s;s;), the experiment selected five
models: LDA, GraphSage, GCN, NGCF, and RDHE for
comparison, the unit of Runtime is hours, and the runtime
required for the comparison experiment is shown in
Table 4.

It can be seen from Table 4 that the addition of the fast
similarity calculation component is 4 hours (25.48% less
than Non-FSCM) less than the Non-FSCM method on RT
and 3.9 hours (24.69% less than Non-FSCM) on TP. It is

Computational Intelligence and Neuroscience

0.36
0.35
= 0.34
5 .
0.33
1 1 1 1 1 1 1 I 1 1 1 032
0.01 002 003 004 005 0.10
(a)
16
3]
=<
=)

1.44

1.2

53

RMSE

51

49

47

45

0.02 0.03 0.04 0.05 0.10

(d)

0.01

13

FiGURe 8: Comparison of the learning rate. (a) Learning rate on RT. (b) Learning rate on RT. (c) Learning rate on TP. (d) Learning rate on

1 1 1 1 1 1 12
0.01 0.02 0.03 0.04 0.05 0.10
(©
TP.
0.5
0.45
ﬁ 0.4
S .
0.35
T P S T S S SR S Pt
00 01 02 03 04 05 06 07 08
—m- node-dropout
—o— feature-dropout
m
<
=

12

. P L1 ! P .
00 01 02 03 04 05 06 0.7 038

—m- node-dropout
—o— feature-dropout

(c)

m
:

PR TS T T T T N S S SO S T TR S
00 01 02 03 04 05 06 07 08
—#- node-dropout
—o— feature-dropout

®)

1.6

1 1.5

1.4

1.3

1.2

61

RMSE

45

PR . - . | . 1
00 01 02 03 04 05 06 0.7 038

—m- node-dropout
—o— feature-dropout

(d)

FiGure 9: Comparison of dropout ratio. (a) Dropout ratio on RT. (b) Dropout ratio on RT. (c) Dropout ratio on TP. (d) Dropout ratio on

TP.

14 Computational Intelligence and Neuroscience
TaBLE 4: Runtime comparison of TP on average (hour).
RT TP

Models

FSCM (h) Non-FSCM (h) FSCM (h) Non-FSCM (h)
LDA 7.5 10.7 7.6 10.9
GraphSage 8.9 14.3 9.1 14.6
GCN 121 16.5 12.5 15.9
NGCF 14.7 18.2 14.9 18.4
RDHE 15.2 18.4 15.4 18.6
Average 11.7 15.7 11.9 15.8

clear that at the scale of our dataset, the fast similarity
calculation method we designed is effective.

6. Conclusions and Future Work

This article proposes a novel community discovery and
hierarchical embedding method for web service prediction
based on a dual representation and similarity calculation
mechanism, which can both utilizes attribute information
and structural information to achieve a better prediction
effect. We also propose a fast similarity calculation method
to improve the algorithm’s ability to handle large-scale data,
which can avoid the curse of dimensionality of traversing all
data samples and reduce the time complexity of similarity
calculation. A huge amount of experiments had been carried
out on the WS-Dream. The experimental results show that
compared to the classic methods (NGCF, PinSage, KGAT,
GraphRec, and NIA-GCN), the precision of our RDHE
method is up to 11.11%, 9.19%, 9.19%, 5.62%, and 3.45%
higher.

Although the experiments have verified the effectiveness
of the community discovery method introduced in this
article, our method is based on the multi-layer represen-
tation of Wide &Deep and GraphSage, the architecture is
more complex, and it is based on the convenience of label
acquisition, but it is actually a difficult task to obtain labels.
According to our analysis and cognition, the next im-
provement directions are: (1) further research on semi-su-
pervised and even unsupervised methods and (2) further
research on end-to-end training, without sub-module or
staged training in the learning process to directly optimize
the tasks.

Data Availability

The WS-Dream dataset can be obtained at https://github.
com/wsdream/wsdream-dataset.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by Key Projects of Natural Sciences
Research in Anhui Universities of China (KJ2016A502), Key
research projects of Chaohu University (XLZ-202106), the
Key Research and Development Plan of Anhui Province,
China (201904205020091), Anhui Province Teaching

Demonstration Course Project (2020SJJXSFK17), and
Anhui Province Teaching Research Project (2019jyxm1187).

References

[1] S. A. Mcllraith, T. C. Son, and H. Zeng, “Semantic web
services,” IEEE Intelligent Systems, vol. 16, no. 2, pp. 46-53,
2001.

[2] Y. Syu and C. M. Wang, “QoS time series modelling and
forecasting for web services: a comprehensive survey,” IEEE
Transactions on Network and Service Management, vol. 18,
2021.

[3] S. Mokarizadeh, P. Kiingas, and M. Matskin, “Utilizing web
services networks for web service innovation,” in Proceedings
of the 2014 IEEE International Conference on Web Services,
pp- 646-653, Anchorage, Alaska, July, 2014.

[4] Y. Cao, J. Liu, M. Shi, B. Cao, X. Zhang, and Y. Wang,
“Relationship network augmented web services clustering,” in
Proceedings of the 2019 IEEE International Conference on Web
Services (ICWS), pp. 247-254, Milan, Italy, July, 2019.

[5] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang,
“Deepinf: social influence prediction with deep learning,” in
Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp. 2110-
2119, London, UK, August, 2018.

[6] M. Tang, Z. Zheng, G. Kang, J. Liu, Y. Yang, and T. Zhang,

“Collaborative web service quality prediction via exploiting

matrix factorization and network map,” IEEE Transactions on

Network and Service Management, vol. 13, no. 1, pp. 126-137,

2016.

Z. Zheng, H. Ma, M. R. Lyu, and L. King, “Collaborative web

service QoS prediction via neighborhood integrated matrix

factorization,” IEEE Transactions on Services Computing,

vol. 6, no. 3, pp. 289-299, 2013.

[8] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” 2016, https://arxiv.org/
abs/1609.02907.

[9] W. Fan, Q. Li, and M. Cheng, “Deep modeling of social re-
lations for recommendation,” Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 32, no. 1, April, 2018.

[10] M. Defferrard, X. Bresson, and P. Vandergheynst, “Con-
volutional neural networks on graphs with fast localized

spectral filtering,” Advances in Neural Information Processing
Systems, vol. 29, 2016.

[11] M. Wang, X. Zheng, Y. Yang, and K. Zhang, “Collaborative
filtering with social exposure: a modular approach to social
recommendation,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, 2018.

[12] W. Fan, Y. Ma, Q. Li et al., “Graph neural networks for social
recommendation,” in Proceedings of the World Wide Web
Conference, pp. 417-426, Lyon, France, May, 2019.

[7

https://github.com/wsdream/wsdream-dataset
https://github.com/wsdream/wsdream-dataset
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907

Computational Intelligence and Neuroscience

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]

X. Wang, X. He, M. Wang, F. Feng, and T. S. Chua, “Neural
graph collaborative filtering,” in Proceedings of the 42nd In-
ternational ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 165-174, Paris, July,
2019.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton,
and J. Leskovec, “Graph convolutional neural networks for
web-scale recommender systems,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pp. 974-983, London, UK, July, 2018.
Y. Xiao, J. Liu, G. Kang, and B. Cao, “LDNM: a general web
service classification framework via deep fusion of structured
and unstructured features,” IEEE Transactions on Network
and Service Management, vol. 18, no. 3, pp. 3858-3872, 2021.
R. A. H. M. Rupasingha, I. Paik, and B. T. G. S. Kumara,
“Specificity-aware ontology generation for improving web
service clustering,” IEICE - Transactions on Info and Systems,
vol. E101.D, no. 8, pp. 2035-2043, 2018.

B. T. Kumara, 1. Paik, T. H. A. S. Siriweera, and
K. R. Koswatte, “QoS aware service clustering to bootstrap the
web service selection,” in Proceedings of the 2017 IEEE In-
ternational Conference on Services Computing (SCC),
pp- 233-240, IEEE, Honolulu, HI, USA, June, 2017.

M. Gori, G. Monfardini, and F. Scarselli, “A new model for
learning in graph domains,” in Proceedings of the IEEE In-
ternational Joint Conference on Neural Networks, Shenzhen,
China, July, 2005.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini, “The graph neural network model,” IEEE
Transactions on Neural Networks, vol. 20, no. 1, pp. 61-80,
2009.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated
graph sequence neural networks,” in Proceedings of the ICLR,
Austria, April, 2015.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral
networks and locally connected networks on graphs,” in
Proceedings of the ICLR, Vancouver, BC, Canada, August,
2014.

F. Monti, M. M. Bronstein, and X. Bresson, “Geometric
Matrix Completion with Recurrent Multi-Graph Neural
Networks,” in Proceedings of the NIPS, Barcelona, Spain,
December, 2017.

M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling poly-
pharmacy side effects with graph convolutional networks,”
Bioinformatics, vol. 34, no. 13, pp. i457-1466, 2018.

A. Grover and J. Leskovec, “node2vec: scalable feature
learning for networks,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 855-864, San Francisco, CA, USA,
August, 2016.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online
learning of social representations,” in Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 701-710, New York USA, Au-
gust, 2014.

W. L. Hamilton, R. Ying, and J. Leskovec, “Representation
Learning on Graphs: Methods and Applications,” IEEE Data
Engineering Bulletin, vol. 40, no. 3, pp. 52-74, 2017.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and
P. Vandergheynst, “Geometric deep learning: going beyond
euclidean data,” IEEE Signal Processing Magazine, vol. 34,
pp. 18-42, 2017.

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

15

C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla,
“Heterogeneous graph neural network,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 793-803, Anchorage AK USA,
July, 2019.

Y. Jacob, L. Denoyer, and P. Gallinari, “Learning latent
representations of nodes for classifying in heterogeneous
social networks,” in Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, pp. 373-382,
Tempe, AZ, USA, February, 2014.

P. Pham and P. Do, “W-MMP2Vec: topic-driven network
embedding model for link prediction in content-based het-
erogeneous information network,” Intelligent Data Analysis,
vol. 25, no. 3, pp. 711-738, 2021.

Q. Yu, H. Wang, and L. Chen, “Learning sparse functional
factors for large-scale service clustering,” in Proceedings of the
2015 IEEE International Conference on Web Services,
pp. 201-208, IEEE, New York USA, July, 2015.

K. Zeng and 1. Paik, “Semantic service clustering with
lightweight bert-based service embedding using invocation
sequences,” IEEE Access, vol. 9, Article ID 54298, 2021.

J. Xu, Z. Zhu, J. Zhao, X. Liu, M. Shan, and J. Guo, “Gemini: a
novel and universal heterogeneous graph information fusing
framework for online recommendations,” in Proceedings of
the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery ¢ Data Mining, pp. 3356-3365, CA USA,
August, 2020.

X. Wang, X. He, Y. Cao, M. Liu, and T. S. Chua, “Kgat:
knowledge graph attention network for recommendation,” in
Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp. 950-958,
Anchorage, AK, USA, August, 2019.

J. Sun, Y. Zhang, W. Guo et al., “Neighbour interaction aware
graph convolution networks for recommendation,” in Pro-
ceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pp- 1289-1298, Xi’an, China, July, 2020.

J. Yang and J. Leskovec, “Overlapping community detection at
scale: a nonnegative matrix factorization approach,” in Pro-
ceedings of the Sixth ACM International Conference on Web
Search and Data Mining, pp. 587-596, Tempe, AZ, USA, July,
2013.

L. Lin, G. Wang, W. Zuo, X. Feng, and L. Zhang, “Cross-
domain visual matching via generalized similarity measure
and feature learning,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, no. 6, pp. 1089-1102, 2017.
S. Eghbali and L. Tahvildari, “Fast cosine similarity search in
binary space with angular multi-index hashing,” IEEE
Transactions on Knowledge and Data Engineering, vol. 31,
no. 2, pp. 329-342, 2019.

H. T. Cheng, L. Koc, J. Harmsen et al., “Wide & deep learning
for recommender systems,” in Proceedings of the 1st Workshop
on Deep Learning for Recommender Systems, pp. 7-10, Boston,
MA, USA, September, 2016.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive repre-
sentation learning on large graphs,” Advances in Neural In-
formation Processing Systems, vol. 30, 2017.

W. L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C. J. Hsieh,
“Cluster-gen: an efficient algorithm for training deep and
large graph convolutional networks,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge

16

Discovery & Data Mining, pp. 257-266, Anchorage AK USA,
August, 2019.

[42] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” 2014, https://arxiv.org/abs/1412.6980.

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929-1958, 2014.

[44] Z.Zheng, Y. Zhang, and M. R. Lyu, “Investigating QoS of real-
world web services,” IEEE transactions on services computing,
vol. 7, no. 1, pp. 32-39, 2014.

[45] D. M. Blei, A. Y. Ng, and M. L Jordan, “Latent
dirichlet allocation,” Journal of Machine Learning Research,
vol. 3, no. Jan, pp. 993-1022, 2003.

Computational Intelligence and Neuroscience

https://arxiv.org/abs/1412.6980

