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Abstract. As process-orientation continues to be broadly adopted – ev-
idenced by the increasing number of large business process repositories,
managing changes in such complex repositories becomes a growing issue.
A critical aspect in evolving business processes is change propagation:
given a set of primary changes made to a process in a repository, what
additional changes are needed to maintain consistency of relationships
between various processes in the repository. In this paper, we view a col-
lection of interrelated processes as an ecosystem in which inter-process
relationships are formally defined through their annotated semantic ef-
fects. We also argue that change propagation is in fact the process of
restoring consistency-equilibrium of a process ecosystem. In addition, the
underlying change propagation mechanism of our framework is leveraged
upon the well-known Constraint Satisfaction Problem (CSP) technology.
Our initial experimental results indicate the efficiency of our approach
in propagating changes within medium-sized process repositories.

Keywords: inter-process relationship, semantic effect, process ecosys-
tem, change propagation, constraint network.

1 Introduction

Nowadays, modeling and managing business processes is an important approach
for managing organizations from an operational perspective. In fact, a recent
study [11] has shown that the business process management (BPM) software
market reached nearly $1.7 billion in total software revenue in 2006 and this
number continues to grow. In addition, today’s medium to large organizations
may have collections of hundreds or even thousands of business process models
(e.g. 6,000+ process models in Suncorp’s process model repository for insur-
ance [16]). Therefore, it becomes increasingly critical for those organizations to
effectively manage such large business process repositories.

In recent years, the ever-changing business environment demands an orga-
nization to continue improving and evolving its business processes to remain
competitive. As a result, the most challenging aspect of managing a repository
of business processes is dealing with changes. Since business processes within
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a repository can be inter-dependent (in terms of both design and execution),
changes to one process can potentially have impact on a range of other pro-
cesses. For example, changes initially made to a sub-process (e.g. removing an
activity) may lead to secondary changes made to the processes that contain this
sub-process. Such changes may lead to further changes in other dependent pro-
cesses. The ripple effect that an initial change may cause in a process repository
is termed change propagation. In a large business process repository, it becomes
costly and labor intensive to correctly propagate changes to maintain the consis-
tency among the inter-dependent process models. Therefore, there is an emerg-
ing need for techniques and tools that provide more effective (semi-)automated
support for change propagation within a complex process repository.

There has been however very little work on supporting change propagation
in process model collections [7]. Our proposed framework aims to fill that gap.
We view a collection of interrelated process models as an ecosystem [9]. In such
ecosystem, process models play a role analogous to that of biological entities in
a biological ecosystem. They are created (or discovered, using automated toolk-
its [10]), constantly changed during their lifetimes, and eventually discarded.
Changes made to a process may cause perturbations (i.e. inconsistencies) in the
ecosystem in the form of critical inter-process relationships being violated. In this
view, a process ecosystem is considered to be in an (consistency-)equilibrium if
its all inter-process relationships are mutually consistent. Change propagation is
therefore reduced to finding an equilibrium in a process ecosystem.

We further view the problem of finding an equilibrium in a process ecosys-
tem as a constraint satisfaction problem (CSP) in which each process model
is mapped to a node and each relationship (between two process models) is a
constraint (between the corresponding nodes) in a CSP. This paper is also built
on top of our previous work [15], which provides formal definitions for three
common types of inter-process relationships (namely part-whole, generalization-
specialization and inter-operation) based on concepts of semantic effect-annotated
business processes [12]. Specifically, in this paper we propose a machinery to
automatically establish relationships between process models in a process repos-
itory based on these formalizations. Based on these established relationships,
we construct a constraint network [6] of a process ecosystem containing a vio-
lated relationship. Candidate values for each individual process node in a CSP
can be obtained from the redesign of the process, which can be implemented
using existing business process redesign approaches (see, e.g. [13, 19]) or man-
ually produced by the analysts. The CSP encoding allows us to plug different
individual process redesign modules without affecting the remaining parts of the
architecture.

The rest of the paper is organized as follows. Sec. 2 briefly describes semantic
effect-annotated process model and inter-process relationships. Sec. 3 explains
how such relationships can be established. Sec. 4 proposes our approach to pre-
serve such relationships in propagating changes within a process ecosystem. In
Sec. 5, we present an empirical validation of our approach. We then discuss
related work in Sec. 6, and conclude and layout some future work in Sec. 7.
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2 Preliminaries

Semantic Effect-Annotated Process Model. An effect annotation relates
to a particular result or outcome to an activity in a process model [14]. An
activity represents the work performed within a process. Activities are either
atomic (called a task, i.e. they are at the lowest level of detail presented in the
diagram and can not be further broken down) or compound (called a sub-process,
i.e. they can be broken down to see another level of process below) [21]. In an
annotated BPMN process model, as our approach relies on, we annotate each
activity with its (immediate) effects. We define these immediate effects as the
immediate results or outcomes of executing an activity in a process model. We
consider that multiple effects can be immediately resulted in such execution.
We shall leverage the ProcessSEER [12] tool to annotate process model with
the semantic effects. This annotation allows us to determine, at design time,
the effects of the process if it were to be executed up to a certain point in the
model. These effects are necessarily non-deterministic, since a process might have
taken one of many possible alternative paths through a process design to get to
that point. We define a procedure for pair-wise effect accumulation, which, given
an ordered pair of activities with effect annotations, determines the cumulative
effect after both activities have been executed in contiguous sequence.

Let ti and tj be an ordered pair of activities connected by a sequence flow
such that ti precedes tj . Let ei = {ci1, . . . , cim} and ej = {cj1, . . . , cjn} be the
corresponding pair of effect annotations, respectively. If ei ∪ ej is consistent,
then the resulting cumulative effect is ei ∪ ej . Otherwise, we define e′i = {ck}
where ck ∈ ei and {ck} ∪ ej is consistent, and the resulting cumulative effect
to be e′i ∪ ej . In the following, we shall use ACC (ep, eq) to denote the result
of pair-wise effect accumulation of two contiguous activities tp and tq with the
immediate effects ep and eq, respectively.

Effects are only accumulated within participant lanes (i.e. role represented as
a pool) and are not including inter-participant within inter-operation business
process. In addition to the effect annotation of each activity, we also denote Et

as the cumulative effect of activity t. Et is defined as a set {est1, . . . , estm} of
alternative effect scenarios based on the 1, . . . ,m alternative paths reaching the
activity. Alternative effect scenarios are introduced by AND-joins or XOR-joins
or OR-joins. We accumulate effects through a left-to-right pass of a participant
lane, applying the pair-wise effect accumulation procedure on contiguous pairs
of activities connected via control flow links. The process continues without
modification over splits. Joins require special consideration. In the following, we
describe the procedure to be followed in the case of 2-way joins only, for brevity.
The procedure generalizes in a straightforward manner for n-way joins.

In the following, let tp and tq be two activities immediately preceding a join.
Let their cumulative effect annotations be Ep = {esp1, . . . , espm} and Eq =
{esq1, . . . , esqn}, respectively. Let e be immediate effect and E be cumulative
effect of an activity t immediately following the join.

For AND-joins, we define E = {ACC (espi, e) ∪ ACC (esqj , e)} where espi ∈
Ep and esqj ∈ Eq. Note that we do not consider the possibility of a pair of
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Fig. 1. Management of patients on arrival process

effect scenarios espi and esqj being inconsistent, since this would only hap-
pen in the case of intrinsically and obviously erroneously constructed process
models. The result of effect accumulation in the setting described here is de-
noted by ANDacc (Ep, Eq, e). For XOR-joins, we define E = {ACC (esr, e)}
where esr ∈ Ep or esr ∈ E2. The result of effect accumulation in the set-
ting described here is denoted by XORacc (Ep, Eq, e). For OR-joins, the re-
sult of effect accumulation in such setting is denoted by ORacc (Ep, Eq, e) =
ANDacc (Ep, Eq, e) ∪XORacc (Ep, Eq, e).

Figure 1 illustrates a semantic effect-annotated BPMN process model. The
immediate effect ei of each activity ti is represented in a Conjunctive Normal
Form (CNF) allowing us to describe such effect as a set of outcome clauses. Let p
be patient to be observed and treated. For example, activity t13 has an immediate
effect e13 = observed(p) which depicts the outcomes of executing such activity.
The cumulative effects of execution the process until t13 can be computed by
accumulating the effects starting from t11 until t13, i.e. assessed(p)∧observed(p).
We can also compute for the other activities in a similar way.

Inter-process Relationships. We recap relationships formalization described
in our previous work [15]. We classify these relationships into two categories:
functional dependencies and consistency links. A functional dependency exists
between a pair of processes when one process needs support from the other for
realizing some of its functionalities. In this category, we define two relationship
types, i.e. part-whole and inter-operation. A consistency link exists between a
pair of processes when both of them have intersecting parts which represent
the same functionality, i.e. the outcomes of these parts are exactly the same.
They are functionally independent. We identify one type in this category, i.e.
generalization-specialization. Our framework focuses on these three types.
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Fig. 2. Expansion of Patients in emergency sub-process in Figure 1

We use acc (P ) to denote the end cumulative effects of process P ; CE (P, ti)
to describe cumulative effect at the point of activity ti within process P ; and
esj to denote an effect scenario j-th. Noted, each of acc (P ) or CE (P, ti) is a set
of effect scenarios. Each effect scenario is represented as a set of clauses and will
be viewed, implicitly, as their conjunction.

(i) Part-Whole. A part-whole relationship exists between two processes when
one process is required by the other to fulfill some of its functionalities. More
specifically, there must be an activity in the ’whole’ process representing the
functionalities of the ’part’ process. The ’part’ process is also commonly referred
to as a sub-process within the ’whole’ process. Logically, there is an insertion of
the functionalities of the ’part’ into the ’whole’.

We define the insertion of process P2 in process P1 at activity t, P1 ↑t
P2, is a process design obtained by viewing P2 as the sub-process expan-
sion of t in P1. We then define the part-whole as follows: P2 is a direct part
of P1 iff there exists an activity t in P1 s.t. CE (P1, t) = CE (P1 ↑t P2, t).
Let us consider an example1 of the part-whole relationship which is illustrated
in Figures 1 and 2 (called P1 and P2, respectively). Such relationship is re-
flected by the activity Patients in emergency (t14) in P1 whose functional-
ity represents P2. This means that the result of executing activity t14 in P1
is solely the result of executing P2, and vice-versa. The insertion point here
is at t14 in P1. The cumulative effect of P1 at this point is CE (P1, t14) =
{es14}; es14 = assessed (p) ∧ to be operated (p) ∧ examined (p) ∧ operated (p) ∧
1 We will only exemplify the part-whole relationship due to space limitation. In this
paper, we only address direct relationships for the shake of efficiency in propagating
the changes. The indirect ones can be referred in our previous work [15].



68 T.A. Kurniawan et.al.

hospitalized (p)∧(recovered (p) ∨ dead (p)). We only have one effect scenario, i.e.
es14. Furthermore, the cumulative effect of P1 at t14 by inserting P2 at this ac-
tivity is CE (P1 ↑t14 P2, t14) = assessed (p)∧to be operated (p)∧examined (p)∧
operated (p)∧ hospitalized (p)∧ (recovered (p) ∨ dead (p)). Finally, we can infer
that P2 is a part of P1 since CE (P1, t14) = CE (P1 ↑t14 P2, t14).

(ii) Inter-operation. An inter-operation relationship exists between two pro-
cesses when there is at least one message exchanged between them and there is no
cumulative effect contradiction between tasks involved in exchanging messages.
Formally, given processes P1 and P2, an inter-operation relationship exists be-
tween them including activities ti and tj iff the following holds: (i) ∃ti in P1
∃tj in P2 such that ti ⇀ tj denotes that ti sends a message to tj , or tj ⇀ ti,
if the message is in the opposite direction; (ii) let Ei = {esi1, esi2, . . . , esim}
be the cumulative effects of process P1 at task ti, i.e. CE (P1, ti), and Ej =
{esj1, esj2, . . . , esjn} be the cumulative effects of process P2 at task tj , i.e.
CE (P2, tj). Then, there is no contradiction between Ei and Ej for all esip ∈ Ei

and esjq ∈ Ej s.t. esip∪esjq � ⊥ does not hold, where 1 ≤ p ≤ m and 1 ≤ q ≤ n.
Effect contradiction exists if the expected effects differ from the given effects.

If this is the case, we do not consider such relationship as an inter-operation one
even though there is a message between both processes.

(iii) Generalization-Specialization. A generalization-specialization relation-
ship exists between two processes when one process becomes the functional ex-
tension of the other. More specifically, the specialized process has the same func-
tionalities as in the generalized one and also extends it with some additional
functionalities. One way to extend the functionalities is by adding some addi-
tional activities so that the intended end cumulative effects of the process are
consequently extended. Another way involves enriching the immediate effects of
the existing activities. In this case, the number of activities remains the same
for both processes but the capabilities of the specialized process is extended.
Noted, the specialized process inherits all functionalities of the generalized pro-
cess, as formally defined as follows. Given process models P1 and P2, P2 is a
specialization of P1 iff ∀esi ∈ acc (P1), ∃esj ∈ acc (P2) such that esj |= esi;
and ∀esj ∈ acc (P2), ∃esi ∈ acc (P1) such that esi |= esj.

3 Establishing Inter-process Relationships

The formal definitions of inter-process relationships that we discussed in the pre-
vious section empower us to systematically specify (manually or automatically)
which process models are related to others in a process repository. To do so,
analysts who need to manage the large and complex process repositories must
effectively explore the space of all possible pairings of process designs to deter-
mine what relationships (if any) should hold in each instance. Note that this
generates a space of

(
n
2

)
possibilities, where n is the number of distinct process

designs in the repository. Clearly, this has the potential to be an error-prone ex-
ercise. An analyst may normatively specify a relationship that does not actually
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hold (with regard to our definition of the relationship) between a pair of process
designs. In some cases, an analyst might need help in deciding what relationship
ought to hold. We therefore develop a user-interactive machinery to assist ana-
lysts in deciding what type of normative relationship should hold between a pair
of processes. We consider two approaches in such assistance, i.e. checking and
generating modes. In the checking mode, we will assess whether a relationship
specified by an analyst does indeed hold with regard to our formal definition. If
this is the case, the relationship between the two processes can be established.
Otherwise, the tool would alert the analyst and also suggest the actual relation-
ship that may be found between the two processes2. In the generating mode, our
machinery systematically goes through all process models in the repository, gen-
erates all possible relationships between them, and present these to the analyst
for confirmation. Note that the space of alternative relationships can be large,
specially in the case of part-whole relationships. For example, given 4 processes
P1, P2, P3 and P4 where P2 is part of P1, P3 is part of P2 and P4 is part of P3.
Not only direct relationships, the tool would also suggest all indirect relation-
ships among them, e.g. P4 is (indirectly) part of P1, P4 is (indirectly) part of
P2. However, these indirect relationships would not be useful to be maintained
since change propagation can still be performed through the direct ones. Hence,
the decision should be made by the analyst in both approaches.

Once a relationship is established, a relationship descriptor is created. Such
a descriptor contains details that are relevant to its associated relationship in-
cluding identities of each pair of processes and their established relationship
type. However, a descriptor can also be enriched with any additional informa-
tion relevant to the existing relationship types, e.g. the insertion point activity in
a part-whole relationship. Relationship descriptors are maintained (i.e. created,
updated, and removed) during the relationships establishment and maintenance.

The relationship-establishing algorithms for both approaches, require trans-
formation of each process model into a graph, i.e. transforming each activity,
gateway and start/end events into a node and each flow into an edge. These
algorithms may involve two runs in evaluating a given pair of processes for each
relationship type excluding the inter-operation. On the first run, we evaluate the
first process with respect to a normative relationship constraint to the second
one. If the constraint does hold, we establish the relationship between the two
processes. Otherwise, in the second run we evaluate the second process with
respect to the constraint to the first one. For example, the part-whole estab-
lishment algorithm can be described as follows3. The inputs are two process
graphs, i.e. denoted pa and pb, and the outputs are either an instance of rela-
tionship descriptor or null. The algorithm will assess whether pa is part of pb by
computing CE (pb, n) and CE (pb ↑n pa, n) of each sub-process node n ∈ pb. If
CE (pb, n) = CE (pb ↑n pa, n) then it returns an instance of relationship descrip-
tor of such relationship. Otherwise, it returns null. On the first run, we evaluate
the first process to the second one. If it is not satisfied, we then evaluate the

2 If it is “unknown” relationship (refers to our formal definitions), it is not maintained.
3 Algorithms for the two other relationships are not explained due to space limitation.
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second process to the first one on the second run. If a given relationship type
cannot be established, we continue the evaluation with the other relationships
between the processes in consideration. Note that the part-whole relationship
evaluation must be performed before the generalization-specialization relation-
ship evaluation, since the former is a special case of the latter. Inappropriate
evaluation ordering of these two relationships might have unexpected result, i.e.
every part-whole will be suggested as generalization-specialization. There is no
evaluation ordering constraint for inter-operation relationship type.

4 Relationship-Preserving Change Propagation

To preserve the established relationships, the changes need to be propagated
across different processes. To do so, the process ecosystem containing the initial
changes should firstly defined as the boundary of such propagation. We then deal
with how to redesign a process for resolving the relationships violations. Further,
we apply our CSP approach to find an equilibrium in a process ecosystem.

Process Ecosystem.We view a collection of interrelated process models within
a process repository as an ecosystem [9]. However, we further restrict that any
process model in a process ecosystem must be traceable to any other process
models in the ecosystem. This traceability may involve many relationships with
regard to the relationships we formally defined earlier. A process model may have
more than one relationship with the others in the ecosystem. In addition, there
may be more than one process ecosystem within a process repository. Further-
more, since a change made to a process would only affect other processes in the
same ecosystem, we will only propagate changes within this process ecosystem.
A process ecosystem is in (consistency-)equilibrium if and only if every inter-
process relationship in the ecosystem is consistent with our earlier definitions.
We shall refer to a process ecosystem that violates the consistency equilibrium
condition a perturbed-equilibrium ecosystem. Consistency perturbation is often
the outcome of change to one or more process models in an ecosystem. Restoring
consistency-equilibrium involves making further changes to other process models
in the ecosystem and so on, which is, in fact, change propagation. We shall refer
to an ecosystem resulted from such restoration a restored-equilibrium ecosystem.

Resolving Relationship Violations. To resolve a relationship violation, the
processes involving in this relationship need to be changed. There can be many
options to do such changes, each of which results in a variant of the original
process (called process variant). Generating a process variant for a given process
can be done automatically by a machinery4 or manually by the analyst. The
procedure required to resolve a relationship violation between a pair of processes
P1 and P2 due to changes to one of them, e.g. P1, can be described as follows.

4 The techniques for automatically generating all process variants are out of scope of
this paper. We leave them as our future investigations. We have used only analyst-
mediated process redesign in our implementation and current evaluation.
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Fig. 3. Transforming a process ecosystem into a constraint graph

We identify such changes in P1 that can trigger the violation with regard to
our formal definitions. Based on the relationship type, the changes must be
propagated to P2 to get its variant such that the relationship constraint can be
re-satisfied. For example, let P1 and P2 be the whole and the part, respectively.
Let ti in P1, with immediate effects eti , be a sub-process representing P2 s.t.
the condition C is satisfied, i.e. CE (P1, ti) = CE (P1 ↑ti P2, ti). The possible
change introduced in P1 that can cause violations is a change to ti, i.e. either
by: (i) changing eti to be e′ti s.t. eti �= e′ti or (ii) dropping ti. In the first case,
we need to change P2 to be P2′ by either adding or deleting some activities or
reducing or extending some immediate effects of some particular activities s.t.
C is satisfied with e′ti . We no longer need to maintain the relationship for the
second case. Note that changing P1 by excluding ti will not cause any violation.

CSP in Process Ecosystems. A CSP consists of a set of variables X , for each
variable there exists a finite set of possible values D, and a set of constraints
C restricting the values that the variables can simultaneously take [2]. Each
constraint defines a relation between a subset of variables and constraints the
possible values for the involved variables. We consider a constraint involving only
one variable as a unary constraint, two variables as a binary, and so on.

A solution to a CSP is an assignment of a value from its domain to every
variable, in such a way that every constraint is satisfied. We may want to find
only one solution, all solutions or an optimal solution [2]. Solutions to a CSP can
be performed by searching systematically for the possible values which can be
assigned to a variable. There are generally two search methods. The first method
involves either traversing the space of partial solutions [2] (e.g. backtracking,
backjumping and backmarking algorithms) or reducing the search space through
constraint propagation (i.e. look-ahead). In variable selection, the look-ahead
strategy seeks to control the size of the remaining search space. In value selection,
it seeks a value that is most likely to lead to a consistent solution. Performing
constraint propagation at each variable will result a smaller search space, but
the overall cost can be higher since the cost for processing each variable will be
more expensive. The second method involves repairing an inconsistent complete
assignment/solution (e.g. min-conflicts and repair-based algorithms [17])
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Algorithm 1:Generating a restored-equilibrium process ecosystem : repair
approach

Input:
p, a changed process model
PEp, graph of a perturbed-equilibrium process ecosystem

Result: a restored-equilibrium PEx or null

1 begin
2 Vdone, a set of evaluated process identifiers, initially empty
3 pvar, the selected variant of a redesigned process, initially null
4 pm, the process to be changed, initially null
5 PEx ← PEp; pvar ← p;
6 Vdone ← Vdone ∪ {identifier of p};
7 pm ← GetNextProcess(PEx, Vdone);
8 while pm �= null and pvar �= null do
9 pvar ← ProcessChangeForMinConflicts(pm, PEx, Vdone);

10 if pvar �= null then
11 replace pm in PEx by pvar;
12 Vdone ← Vdone ∪ {identifier of pm};
13 pm ← GetNextProcess(PEx, Vdone);

14 else
15 PEx ← null;
16 end

17 end
18 return PEx;

19 end

Empirically, it is shown that ordering variables for value assignment can have
substantial impacts on the performance of finding CSP solution [2]. The ordering
variables could be either: (i) static ordering, the order of variables is defined
before the search starts and not be changed until the search complete or (ii)
dynamic ordering, the next variables to be assigned are dynamically defined at
any point depends on the current state of the search. There are some heuristics
in selecting variable ordering, i.e. variable with the smallest domain (in dynamic
ordering) or variable which participates in the most constraints.

We argue that maintaining the equilibrium in a process ecosystem can be
casted as a binary CSP. We can build a constraint network [6], represented in a
constraint graph, of the process ecosystems to depict a binary CSP in which each
node represents a process model, all possible variants of redesigning a process can
be considered as domain value of each node and each edge represents a relation-
ship constraint between processes, as in Figure 3. Process P1 in Figure 3a can
be mapped into a node P1 in Figure 3b, as well as its relationship to process P2,
i.e. R1, which is mapped into an edge between nodes P1 and P2, and so forth for
the remaining processes and relationships. Indeed, the domain value of each node
is finite since there exist constraints (at least, end cumulative effects and activ-
ity temporal constraints) that must be satisfied by process variants. We consider
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Algorithm 2: Generating a restored-equilibrium process ecosystem : con-
structive approach

Input:
p, a changed process model
PEp, graph of a perturbed-equilibrium process ecosystem

Result: a restored-equilibrium PEx or null

1 begin
2 Vdone, a set of evaluated process identifiers, initially empty
3 pvar, the selected variant of a redesigned process, initially null
4 pm, the process to be changed, initially null
5 PEx ← PEp; pvar ← p;
6 Vdone ← Vdone ∪ {identifier of p};
7 pm ← GetNextProcess(PEx, Vdone);
8 while pm �= null and pvar �= null do
9 pvar ← a process variant of pm which maintains the existing

relationships with other processes identified in Vdone, if no possible
variant then pvar = null;

10 if pvar �= null then
11 replace pm in PEx by pvar;
12 Vdone ← Vdone ∪ {identifier of pm};
13 pm ← GetNextProcess(PEx, Vdone);

14 else
15 Ipm ← a path running from p to pm;
16 pmdb ← the preceding of pm in Ipm ;
17 if pmdb = p then
18 PEx ← null;
19 else
20 remove identifier of pmdb from Vdone;
21 pm ← pmdb;
22 pvar ← pmdb;

23 end

24 end

25 end
26 return PEx;

27 end

constraint graph of a process ecosystem as a tuple Ge = (V,C) where V and C
denote a set of process nodes and a set of relationship constraints between pro-
cesses, respectively. In the resulting constraint graph Ge, each process node is of
the form (id, T, E,G, start, end) where id, T, E,G, start, end represent ID, set of
activities, set of edges, set of gateways, start and end events of a process, respec-
tively. And, each relationship constraint is of the form (id, source, target, type)
where id, source, target, type represent ID, source node, target node and type of
an inter-process relationship, respectively. An equilibrium in process ecosystem
then is considered as a solution in CSP once all constraints are satisfied by value
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assigned to each node, i.e. a variant of each process. We might not have a solution
for a given perturbed-equilibrium process ecosystem since there does not exist a
variant of a particular process node for resolving the violations5.

Algorithms. We propose two algorithms, i.e. repair and constructive, for gen-
erating a restored-equilibrium process ecosystem, as shown in Algorithms 1 and
2, respectively. The analyst can perform either one or both of them to generate
a restored-equilibrium process ecosystem. We implement dynamic ordering in
searching process to be evaluated through one which participates in the most
constraints, represented by GetNextProcess function. We search a process in
the perturbed-equilibrium process ecosystem which is in the following conditions:
(i) not yet evaluated, (ii) violates its relationship constraints with the previously
evaluated processes and (iii) participates in the most constraints.

In the repair approach, inspired by Min-Conflicts algorithm [17], we search the
new equilibrium of process ecosystems by minimizing conflicts between variants
of process being changed with the other processes which are not yet evaluated,
and satisfying relationship constraint with the previously evaluated processes. It
is represented by ProcessChangeForMinConflicts function which searches
a variant of changed process by satisfying the following criteria: (i) satisfies all
relationship constraints with the previously evaluated processes and (ii) has the
minimal violations with all the rest processes in the ecosystem. Finally, we would
select a variant which has the minimum conflict and continue until all constraints
satisfied, shown in Algorithm 1.

In the constructive approach, inspired by Graph-based backjumping algo-
rithm [5], we search a new equilibrium of a process ecosystem by redesigning
the process being evaluated to satisfy its constraint with the previous evaluated
process until all constraints are satisfied. Once there is no variant of the pro-
cess being evaluated to satisfy the constraint, we would jump back to the most
recent related process (with respect to the process being evaluated) which is
already evaluated, as shown in Algorithm 2. Then, this recent process should be
redesigned to make the following process to be evaluated satisfy its constraint.

5 Evaluation

We have performed an empirical validation6 to assess how the repair and
constructive approaches perform on different sizes of the process ecosystem.
Specifically, we established process ecosystems with sizes ranging from 10 to
80 processes. All these processes have 5-20 activities. We also annotated each
activity with immediate effects and had the tool compute the cumulative effects
in each process at every stage. The established process ecosystems are equipped
with the inter-process relationships discussed earlier. Our framework generates
all possible relationships between different processes and presents the constraint
graph of every process ecosystem.

5 Finding an optimal solution would be our next investigation.
6 All experiments were run on a i3 Intel Core-2.27 GHz, RAM 2.85 Gb laptop.
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The experiments are conducted as follows. A process, denoted as P1, was
selected to have some initial changes, which are then propagated to other re-
lated processes to maintain the consistency of the process ecosystem. In general,
the total time required to establish a restored-equilibrium process ecosystem is
(s+ nt) where s is the time our CSP algorithms compute, n is the number of
processes needing to be changed (as identified by our tool) and t is the average
time for making changes to a process. In our experiments, we assume that when
a process is flagged as needing changing, the actual changes would be done by
the analyst. As such, we are only interested in the time elapsed for propagating
changes in our CSP algorithms.

Table 1. Elapsed time for searching the process ordering and checking the constraints
of various sizes of process ecosystems

Elapsed time

No. of No. of No. of Repair Constructive
processes violated redesigned mode mode

constraints processes n (sec) (sec)

10 3 3 64 63
20 8 8 331 329
30 11 11 875 844
40 12 12 1,316 1,272
50 12 12 1,642 1,512
60 13 13 2,199 1,988
70 14 14 2,699 2,443
80 18 18 3,395 3,163

Table 1 describes how the repair and constructive approaches perform in pro-
portion to the size of the process ecosystem in terms of the elapsed time for
establishing a new equilibrium of process ecosystem. Our experimental results
suggest that the proposed approach is efficient (i.e. helps analysts propagate
changes regardless of the complexity of the inter-process relationships in the
process ecosystem) and scalable in propagating changes to maintain the equi-
librium of a medium-sized process ecosystem (up to 80 processes). Additionally,
performing the repair approach to get a restored-equilibrium process ecosystem
takes longer time than performing the constructive approach. This could be ex-
plained as follows. In the repair approach, we need to verify the consistency
between all processes that are related to the process being modified whereas in
constructive approach, we only check the consistency between the process being
modified and related processes that were already modified. However, we have not
taken into account the complexity of redesigning an individual process in our ex-
periments (i.e. how long it would take, for the analyst, to redesign a process that
needs changing). Furthermore, we have not analyzed the complexity of our algo-
rithms in order to correlate the elapsed time with parameters represented by the
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three leftmost columns of Table 1. The scalability of our framework for dealing
with a large-sized ecosystem will be addressed in our future investigations.

6 Related Work

Change propagation approaches have been intensively investigated in software
evolution/maintenance, engineering management and software modeling (see,
e.g. [1, 3, 4]). Recently, this approach has also been applied to BPM and service
computing (see, e.g. [18, 20]). However, there exist little work on change propa-
gation in process model collections [7], as can be seen in [8]. Weidlich et al. [20]
attempt to determine a change region in another model by exploiting the behav-
ioral profile of corresponding activities due to a model change. Their behavioral
profile relies on three relations, which are based on the notion of weak order,
between nodes in a process graph. Wang et al. [18] present analysis of dependen-
cies between services and their supporting business processes. On the top of this
analysis, they define change types and impact patterns which are used to analyze
the necessary change propagation occurring in business processes and services.
To the best of our understanding, these researches are only dealing with a pair of
business artifacts. The closely related work to our proposed framework is done
by Ekanayake et al. [8], which deals with processes in a collection. They propose
change propagation based on the shared fragments between process models. To
propagate changes, they develop a special data structure for storing these frag-
ments and process models. Once changes are made to a fragment, all processes
which this fragment belongs to are considered to be changed. This fragment-
based approach would be closely related to one of our research interests, namely
change propagation for the specialization-generalization relationship.

We leverage constraint networks [6] using CSP approach in propagating the
changes between processes. To the best of our knowledge, CSP technology has
not been used in the existing researches to deal with change propagation in
a complex process repository. We are interested in how changes on one process
can be properly propagated to the related processes to maintain the consistency-
equilibrium of a process ecosystem. We focus on three kind of relationships be-
tween semantic effect-annotated BPMN models, i.e. part-whole, specialization-
generalization and inter-operation.

7 Conclusion and Future Work

Being inspired by CSP approach, we have proposed a novel framework for man-
aging relationship-preserving change propagation in process ecosystems. This
framework can assist the process analysts in maintaining the equilibrium of
their process ecosystems within a complex process repository. Future work in-
cludes development of techniques for generating process variants for a given
process, finding the optimal solution with minimal change strategy of restored-
equilibrium process ecosystem and performing experiments on our framework
using case-studies taken from the industry.
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