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RELATIONSHIPS AMONG PL, #L, AND THE DETERMINANT (*)

by Eric ALLENDER "*" (l) and Mitsunori OGIHARA * (2)

Communicated by I. WEGENER

Abstract. - Recent results by Toda, Vinay, Damm, and Valiant have shown that the complexity of
the determinant is characterized by the complexity ofeounting the number ofaccepting computations
ofa nondeterministic logspace-bounded machine. (This class of fonctions is known as #L.) By using
that characterization and by establishing a few elementary closure properties, we give a very simple
proof of a theorem of Jung, showing that probabilistic logspace-bounded (PL) machines lose none
of their computational power if they are restricted to run in polynomial time.

We also present new results comparing and contrasting the classes of fonctions reducible to PL,
#L, and the determinant, using various notions of reducibility.

Résumé. - Nous donnons une épreuve très simple d'un résultat de Jung; ceci montre que la
classe PL ne change pas, même si Von impose la condition que les machines n'utilisent que de
temps polynomial. Nous recherchons aussi les relations entre PL, #Lt et le déterminant, sous les
notions de réducibilité diverses.

1. INTRODUCTION

One of the most important and influential early results of complexity
theory is the theorem of [47] showing that the complexity of Computing
the permanent of an integer matrix is characterized by the complexity class
#P of fonctions that count the number of accepting computation paths of
a nondeterministic polynomial-time machine. It is perhaps surprising that
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2 E. ALLENDER, M. OGIHARA

well over a decade passed before it was discovered that an equally-close
connection exists between the complexity of Computing the determinant
of a matrix and the class #L (defined in [5]) of fonctions that count the
number of accepting computation paths of a nondeterministic logspace-
bounded machine. In order to state this connection more precisely, let us
define GapL to be {ƒ : f(x) = g(x) — h(x) for some g and h in #L}. (This
définition is by analogy to the class GapP, consisting of the différence of #P
fonctions, which is defined and studied in [17], [36], [22].)

Although stated in different ways, the results of [49, Theorem 6.5], [44,
Theorem 2.1], [16], and [48, Theorem 2] show the following fact:

THEOREM 1 [44], [16], [49], [48]: Afunction ƒ is in GapL iff ƒ is logspace
many-one reducible to the determinant.

(A fonction ƒ is logspace many-one reducible to the determinant if there
is a fonction g computable in logspace such that f(x) (viewed as a number
written in binary) is equal to the determinant of matrix g(x).) (*) The proof
given in [44] is particularly clear and direct: Toda shows that the determinant
(of integer matrices) is reducible to iterated matrix multiplication over the
integers (using [7]), which in turn is reducible to iterated matrix multiplication
over {0 ,1 , -1} , which in turn is reducible to a canonical GapL-complete
problem, which in turn is reducible to the determinant. We remark that the
logspace many-one réductions presented in [44], can in fact be computed by
uniform AC0 circuits; we will use this fact later.

In this paper we use Theorem .1 to give a very simple proof of a theorem
of Jung [27], concerning the complexity class PL. PL is defined to be the
class of languages A for which there exists a probabilistic Turing machine
(in the sense of [19]; that is, a Turing machine with access to a source of
unbiased random bits), such that on input x the machine never uses more
than log |x| space, and x e A if and only if the probability that the machine
reaches an accepting configuration is greater than one half. Although the
définition of PL is straightforward, it turns out that the complexity of PL is

C) This définition of "functional many-one reducibility" is from [5]. It should be noted that the
notion of one function being "many-one reducible" to another is sometimes defined in a much less
restrictive way. For example, it is shown in [53], [11] that the permanent of zero-one matrices
is "many-one complete" for #P, using a less restrictive version of "many-one réductions." On the
other hand, it follows from [47] that the permanent of integer matrices cannot be complete for #P
or GapP using our définition of "many-one réduction" unless P = ®P (since the permanent and the
determinant are equal mod 2). That is, the relationship between the determinant and #L is even
doser than the relationship that is known to exist between the permanent and #P.

Informatique théorique et Applications/Theoretical Informaties and Applications



RELATIONSHIPS AMONG PL, #L, AND THE DETERMINANT 3

rather difficult to analyze, in part because probabilistic logspace machines
can perform useful work after exponentially many computation steps. An
easy way to see this is to note that the s-t connectivity problem (a standard
NL-complete set) can be accepted with zero error by a PL machine that
follows a randomly-chosen path from vertex s, accepting if vertex t is
reached, and otherwise trying another randomly-chosen path, and so on; if a
path exists, it will eventually be found (with probability one).

Gill showed in [19] that PL is contained in PSPACE. This was improved
to DSPACE(log6 n) in [41], but it was not until the appearance of [8] that it
was even known that PL is contained in P; [8] shows that PL is contained
in NC2, and this can be improved slightly to TC1 (the class computed
by logarithmic-depth threshold circuits). (2) Similarly, PL was not known
to be closed under complémentation until a complicated proof was given
in [42]; a much simpler proof subsequently appeared in [39]. The source of
all this difficulty was the f act, already alluded to, that probabilistic logspace
machines cannot obviously be restricted to run in polynomial time without
loss of computational power. However, Jung showed in [27] that, at least
in the unbounded error model (which defines the class PL), the polynomial-
time restriction causes no loss of power. The proof presented in [27] is
complicated; we present an easy proof in Section 3.

Note that Theorem 1, combined with our easy proof of Jung's theorem,
give an alternative proof of the result of [8] concerning the complexity of
PL, as well as making closure of PL under complement completely obvious.

Note that it would be remarkable if a theorem analogous to Jung's theorem
could also be proved in the bounded error case. We have already seen that NL
can be accepted with bounded (in fact zero) error; thus this would in some
sense pro vide a non-uniform version of L=NL (i.e., L/poly = NL/poly).
Furthermore, Nisan [33] has shown that bounded-error, polynomial-time
logspace can be simulated in polynomial time and space log2 n; hence
extending Jung's theorem to bounded error would provide a small-space
polynomial-time algorithm for transitive closure. All of these conséquences
would be surprising. We will not discuss bounded-error probabilistic logspace
in the remainder of the paper; for more information on the bounded-error
classes, see [9].

(2) The complete history of the complexity of PL is even more complicated. The interested reader
may wish to consult [8, p. 115], [25], [43, p. 111], and [20]. The related notion of probabilistic
finite automata has also been studied in depth; for recent results and références, see [31], [32].
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4 E. ALLENDER, M. OGIHARA

Let DET dénote the determinant function. (Do not confuse this with the
définition of [15], where DET is used to dénote the class of functions NC1-
reducible to the determinant.) Theorem 1 allows one to show that LD E T

= L#L , as well as AC0(DET) = AC°(#L) and NC^DET) = N C ^ L ) , etc.
However, no logspace-analog of the theorem P p p = P# p is known, and we
suspect that no such analog exists. For example, although we show that any
of the high-order O(logn) bits of a #L function can be computed in LPL,
we know of no reason to suspect that the middle or low-order bit of a #L
function can be computed in this way.

For most natural problems A, the class of things reducible to A remains
the same regardless of the notion of reducibility that is used. For instance,
NL is the class of languages reducible to s-£-connectivity under logspace
many-one or Turing réductions, or under 1-L réductions or quantifier-free
projections or NC1 or AC0 réductions or under any of the many other low-
level réductions that have been studied in the literature. However, DET does
not seem to have this property. In Section 6 we present characterizations of
the classes reducible to PL and #L under various notions of reducibility. For
example, AC°(PL) is equal to the hierarchy PLPL PL

2. BASIC FACTS ABOUT GapL

The class #L was defined and studied in [5]; #L is the class of functions
ƒ such that, for some nondeterministic logspace-bounded machine M, f(x)

is the number of accepting computation paths of M on x. As in [5] we
restrict our définition to those machines M that halt on all computation
paths on all inputs; clearly the running time is polynomial. (Otherwise, the
number of accepting computation paths can be infinité.) Let FL dénote the
class of functions computed in (deterministic) logspace. It is noted in [5]
that FL Ç #L.

The foliowing définitions are adapted from [17]. Given a nondeterministic
Turing machine M that halts on all computation paths on all inputs, let
gapjvf(x) be [number of accepting paths of M on input x] — [number
of rejecting paths of M on input x]. Let GapL be {gap^ : M is a
nondeterministic logspace-bounded Turing machine}.

We have defined #L and GapL functions to be functions mapping S*
to the integers; however, it is convenient to assume certain conventions
concerning how these values are encoded. (For instance, if leading zéros

Informatique théorique et Applications/Theoretical Informaties and Applications



RELATIONSHIPS AMONG PL, #L, AND THE DETERMINANT 5

were not written, then it would be pointless to talk about the "high-order
bit" of a #L fonction.) Thus we assume that there is some constant k such
that a #L function is always représentée in binary, using exactly nk bits.
One could devise other conventions, but they would not affect the theorems
in any interesting way. GapL fonctions will be encoded similarly, where the
high-order bit records the sign.

Let PL(poly) dénote the class of sets accepted by PL machines with the
restriction that the machines run in polynomial time. In the next section, we
will show that this class is equal to PL.

Given function classes C and V, let C - V be the class of fonctions
{ƒ - 9 : ƒ e C and g G £>}.

The following elementary results relating #L, GapL, and PL(poly) are
easy to establish via trivial modifications to the proofs of the analogous
results in [17]

PROPOSITION 2: GapL = #L - #L = #L - FL = FL - #L.

PROPOSITION 3: The following are equivalent:

L A G PL(poly).

2. 3 / G #L such that x G A iffthe high order bit of f{x) is 1.

3. 3 / G GapL such that x G A iff f(x) > 0.

COROLLARY 4: Pos.DET G PL(poly), where Pos.DETis the set of all integer

matrices with determinant > 0.

Proof: Immédiate from Theorem 1 and Proposition 3. •

It is clear that PL(poly) is closed under complement; the usual proof that
PP is closed under complement carries over to this case. Thus Corollary 4
and Theorem 1 show immediately that the following sets are complete for
PL(poly) under <^ g réductions [26]:

• The set of integer matrices with determinant > 0.

• The set of integer matrices with determinant > 0.

• {(A,m) : DET(A) > m}

• {(A,m) : DET(A) > m]

• {(A,B) : DET(A) > DET(B)}

• {{A9B) : DET(A) > DET(B)}

vol. 30, n° 1, 1996



6 E. ALLENDER, M. OGIHARA

3. A SIMPLE PROOF OF JUNG'S THEOREM

In this section we define nondeterministic logspace many-one reducibility
<mNL- W e s h o w t l ï a t PL(P°ly) i s closed under <™L , and we show that
every set in PL is <™L-reducible to a set in PL(poly), and hence that
PL = PL(poly).

The class FNL of functions computable via NC1 circuits with oracles for
NL was defined and studied in [4], where it was noted that FNL admits
many alternative characterizations, including the following:

• ƒ is in FNL iff ƒ is computed by a logspace-bounded oracle Turing
machine with an oracle for NL.

• ƒ is in FNL iff | ƒ (x)\ = \x\°W and the language {(z,i, b) : & E S U { $ }

and the i-th symbol of f(x) is b} G NL, where the présence of (or,i,$)
indicates that | / (x) | < i.

DÉFINITION 1: Let A and B be languages. We say that A<™LB ifthere is

afunction ƒ G FNL such that for all x,x G A <î=> f(x) G B.

THEOREM 5: If A<™LB and B G PL(poly), then A G PL(poly).

Proof: Let M be a PL(poly) machine accepting B, and let ƒ be the FNL
function reducing A to B. Let JV be the NL machine (with polynomial run
time) deciding membership in the set {(ar, i,6) : symbol i of f(x) is b}.

We can assume without loss of generality that M reads its input by making
exactly p(n) passes over the input; thus the input bit read at a particular
moment does not depend on the séquence of probabilistic coin flips.

Let M! be a machine that, on input x, begins simulating the behavior
of M on input f(x). Each time the i-th symbol of f(x) is needed, M'
will probabilistically choose a symbol b G E U {$} and simulate N on
input (x,i,6), using coin flips to simulate the nondeterminism of N. If the
simulation of N accepts, then M' will continue, using symbol 6. If the
simulation of N rejects, then M' will flip one more coin and halt, accepting
iff the outcome of the coin flip is "1" .

It is easy to verify that Mf accepts x with probability greater than one half
iff x E A. (Each accepting (rejecting) computation path of M corresponds
to some number d{x) of accepting (rejecting) paths of M', where this is
the number of paths that verify the correct guesses of the bits b of f(x).

Informatique théorique et Applications/Theoretical Informaties and Applications
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There are also an equal number of additional accepting and rejecting paths,
corresponding to séquences that either guess the wrong bits b, or fail to find
accepting paths verifying those guesses.) •

THEOREM 6: PL = PL(poly).

Proof: Let M be a PL machine accepting language A, and let input x

be given. As in the proof of Theorem 6.4 of [19], we will construct a
Markov chain (Le., a probabilistic finite automaton, represented as a matrix)
modeling the behavior of M on x, where state 1 of the chain is the initial
configuration, state r is the (unique) accepting configuration, state r — 1 is a
rejecting, halting configuration, and there is a state of the Markov chain for
each configuration of M, so that each probability pij € {0,^,1} records
the probability of going to configuration j from i.

Using an oracle from NL, it is easy to modify this Markov chain by
removing all states with no path to the accepting configuration. Any transition
in the original chain to one of these removed states is replaced by a transition
to a unique rejecting state. The unique accepting and rejecting states are made
"absorbing" states, by having the chain loop once it reaches either of those
states. Call this new chain B. We have observed that transition matrix B

can be constructed from x via an FNL computation. Let m be the number
of states in B, other than the two absorbing states. Let state m + 1 be the
unique rejecting state, and state m + 2 the unique accepting state.

Let yi be the probability of ending in the accepting state, starting from
state ï of R Observe that

y% = J
k

As in [19], note that this can be rewritten as

(D - I)Y = -C

where Y is the column vector (yi,...,ï/m)» D is the upper left mx m
submatrix of B, and C is the column vector consisting of the top m éléments
of column m + 2 of B. Furthermore, since B is a Markov chain with two
absorbing states, D - I is invertible (see, e.g., [23, Lemma III.4.1]). Let
E\ — 2(D - / ) , and let E% be equal to Eu except with column 1 replaced
by 2C. Then E\ and E% are integer matrices constructible from x via an

vol. 30, n° 1, 1996



8 E. ALLENDER, M. OGIHARA

FNL réduction, and (D - I)Y = -C if and only if E{Y = -2C. By
Cramer's rule, y\ is equal to DET(£2)/DET(£i).

That is, x is in A iff yi > \ iff 2DET(£>
2) - DET(£i) > 0.

Since DET is in GapL, the function ƒ taking matrices M\, M2 as input,
such that / (Mi ,M 2 ) = 2DET(M2) - DET(Mi) is clearly also in GapL.
Thus the set {(Mi,M2) : / (Mi ,M 2 ) > 0} is in PL(poly). We have shown
that every set in PL is <™L-reducible to this set. The result now follows
from Theorem 5. •

The proof given above makes it clear that the result "PL = PL(poly)"
relativités using the appropriate notion of "relativized PL." (This was not so
clear from the proof in [27].) We will need this fact in later sections. First,
however, we must define what is meant by "relativized PL."

The question of what is an appropriate (or even meaningful) way to provide
space-bounded machines with an oracle has been the subject of some debate.
For a discussion of some of the issues involved and a list of références,
see [1]. It turns out that a simple and useful notion of relativization is the
so-called Ruzzo-Simon-Tompa relativization [39]; briefly, using this notion
of relativization, a set is in PL"4 if there is a probabilistic logspace machine
M with an oracle tape and query states (as is usual in the définition of
oracle Turing machines) along with the restriction that the machine act
deterministically when it is writing on its oracle tape. Note that this forces
the property that each query that can be asked during a computation on input
x is described completely by x and by M's configuration when the query
starts to be written. In particular, only a polynomial number of queries can
possibly be asked over all of M's computations on x.

COROLLARY 7: For any set S, PL5 = PL(poly)5.

Proof: In the proof of Theorem 6, the FNL réduction to a set in PL(poly)
is replaced by a FNL5 réduction to the same set; namely, the transitions
in the Markov chain dénote the transition probabilities in the relativized

computation. These can clearly be computed using an oracle for S.

The proof of Theorem 5 also clearly carries over to the relativized setting.
That is, if A is reducible to B G PL(poly)5 via an FNL5 réduction, then
A £ PL(poly)5. •

It is worth observing that a proof essentially identical to the proof of
Theorem 5 shows the following:

THEOREM 8: PLNL = PL.

Informatique théorique et Applications/Theoretical Informaties and Applications



RELATIONSHIPS AMONG PL, #L, AND THE DETERMINANT 9

4. CLOSURE PROPERTIES OF GapL AND PL

One way of interpreting the results of the previous section is that PL is the
class of languages that are reducible to the high-order bit of a #L function. In
this section, we will improve this, to show that PL is the class of languages
that are reducible to any of the high-order O(logn) bits of a #L function.
Along the way, we will establish some closure properties of PL and of GapL.

The following theorem and its proof are logspace-analogues of results
concerning GapP that were proved in [17].

THEOREM 9: Let ƒ be any function in GapL, and let c be any natural number.

1. Let g be a function in FL. Then f{g{*)) is in GapL.

2- EÏÏÜ/OM) is in GapL.

3. Xli=o J\x->%) IS in

4. Let g be a function in FL such that g{x) — O(l). Then ( ö ) is in GapL.

Proof: The proofs of the first three closure properties may be taken
essentially word-for-word from [17].

For the fourth closure property, observe, as in [17] that if ƒ is the
différence of two #L functions h and h\ then

V Q ( T \ 1 ~ A ^ " 1 ) l j ) \ n(x) - i l '

The result now follows from the first three closure properties and from
[14, Lemma 2], where it is shown that if a is in #L and b is in FL with
b(x) = O(l), then ($*}) is in GapL. •

A logspace conjunctive truth-table réduction of one set A to another set B
(denoted A <c°f B) is a logspace-computable function f(x) = (y i , . . . , yr)

for some r such that x is in A if and only if all of the yi are in B.

Logspace disjunctive truth-table réductions ( < ^ ) are defined similarly, with
"all" replaced by "at least one." For more formai définitions, see [30],

COROLLARY 10: PL is closed under <c^f and < ^ réductions. (In particular,

PL is closed under intersection and union.)

Proof: We present the proof for <^f réductions. The proof of the other
claim is analogous. Let C <c°tf 5 via a réduction g, so that x G C iff
Vi < nc g(x,i) E B. Let h be the GapL function such that h(y) > 0 if
y e B, and h(y) < 0 otherwise. Let H(x,i) dénote h(g{x,i)).

vol. 30, n° 1, 1996
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The définition of the following séquence of functions follows the

présentation in Section 2 of [13]. Define

P+(x,i)=\(H(x,i)-l)f[{H(x1i)-2>)
2

r n" -\
p-(x, i) = (-H(x, i) - 1) Y[(-H(x, i) - V?

L j=i J

2fclogn]+l

2fclogn"|+l

2

( n c -
S=i

S(X)i) is equivalent to the function that is called S™k \H(X,I)) in [13]; it
is proved there that A(x) is positive if all of the H(x,i) are positive, and
A(x) is négative otherwise. Observe that A'(x) is positive if and only if
A(x) is, and note also that A! may be seen to be in GapL because of the
closure properties established above. This shows that C G PL. •

Corollary 10 can be strengthened by defining <™Land <™Lreductions
in the obvious way. It suffices to notice that, by Theorem 5, the function
H(x,i) = h(g(x,i)) is in GapL, if g G FNL. This shows:

COROLLARY 11: PL is closed under <™Land <™hréductions.

COROLLARY 12: Language A is in PL if and only if there is a logspace-

computable function b(x) = O(log|x|) and a GapL function f such that

[x £ A if and only if the high-order b(x)-th bit of f(x) is 1].

Proof: The forward direction is obvious from the foregoing, with b(x) = 1.
For the converse, note that the language B = {(x,y) : y < f(x)} is

in PL (since (x, y) € B iff the GapL function f{x) - y > 0). Thus the

Informatique théorique et Applications/Theoretical Informaties and Applications
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language C — {(z^ x,y) : z < f(x) < y} is also in PL, by Corollary 10. Let
tii,U2,... ,n r be the 2b^~l strings of length (b(x) - 1), and note that x

is in A iff V^IO72*-6*» < f(x) < UiUnk-b(x\ By Corollary 10, A is in
PL. (This proof is essentially identical to the proof of the analogous result
for time-bounded classes, as presented in [37].) •

5. EXACT COUNTING EV LOGSPACE

In this section, we introducé the class C=L as the logspace-analog of the
class C=P. We do this in order to characterize the complexity of the class
of singular matrices, which is arguably a much more natural problem than
the complete sets for PL that have been presented above. The set of integer
matrices with determinant zero is a natural complete set for C=L.

First, we need to present some définitions.

DÉFINITION 2: C-L is the class oflanguages A for which there is afunction

g E GapL such that x E A iff g(x) — 0.

As is the case with C=P [46], there are several equivalent ways of
defining C=L.

PROPOSITION 13: The following are equivalent:

1. A e C^L.

2. There is a function ƒ E FL and a function g E GapL such that x E A

iff f(x) = g{x).

3. There is a function ƒ E FL and a function g E #L such that x E A

W f(x) = g(x).

4. There is a probabilistic polynomial-time logspace-bounded machine such

that x E A iff the probability of accepting is exactly \.

Proof: ((1) = > (4)) Let A E C^L, and let g be the GapL function
such that x E A iff g{x) — 0, Let f\ and ƒ2 be #L fonctions such that
g{x) — f\(x) - ƒ2{x). Let p be a polynomial, and let Mi and M2 be
nondeterministic machines realizing ƒ1 and ƒ2, respectively, where each of
Mi and M2 flip exactly p(|x|) coins along every computation path. (Le.,

Mi can be constructed from an arbitrary machine M realizing f\ by having
Mi simulate M until M halts (using coins to simulate M's nondeterministic
steps), and then accepting iff all remaining coin flips are heads.)

vol. 30, n° 1, 1996



12 E. ALLENDER, M. OGIHARA

Let M3 be the machine that flips p(n) + 1 coins, simulating M\ if the
first coin flip is heads, and if the first coin flip is tails simulating M2 and
accepting iff M2 rejects.

It is easy to verify that, out of the 2^laD+1 probabilistic séquences, exactly
ƒ1 (ar) + (2*(lxl) - ƒ2 (ar)) are accepting. This number is ~ iff g(x) = 0.

((4) = > (3)) and ((3) = » (2)) are obvious.

For ((2) => (1)), let ƒ and g be the fonctions in FL and GapL,
respectively, defining language A. Note that g — ƒ is in GapL, and x G A
iff g(x) - f(x) = 0. •

THEOREM 14: The set of all singular integer matrices is complete for C—L

under <™g réductions,

Proof: The proof is immédiate from Theorem 1.

More generally, the set {(A,r) : the determinant of matrix A is r} is
complete for C-L, just as the set {(A,r) : the determinant of matrix A is
> r} is complete for PL. (For analogous results concerning C=P, see [40].)

Note that NL is contained in C=L. (This is because NL is closed under
complement, and membership in a coNL set is equivalent to having zero
accepting computations.) Furthermore, a proof essentially identical to the
proof of Theorem 5 shows:

THEOREM 15: C=LN L = C=L.

THEOREM 16: C=L is closed under <^NL-réductions.

PROPOSITION 17: C-L is closed under <^Land <™Lréductions, (In
particular, it is closed under union and intersection,)

Proof: Let A € C=L, and let B<^hA via réduction ƒ (so x G B iff
there is an i < nk such that f(x>z) € A. Let Al be the set of all strings
(x,i) such that f(x,i) G A. Then Af<™LA\ let g be the GapL fonction
such that (x,i) E A' iff g(x,ï) = 0. Then x G B iff Y[^i9{^^) = °-
Theorem 9 now shows that B G C=L.

Similarly, if B<^LA via réduction ƒ, then x G B iff YALI 9{x^f =
0. •

It remains unknown if C-L is closed under complement.
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Closure of C=L under < ^ réductions is also sufficient to show that C-L
contains the class LogFew that was defined and studied in [14]. (We refer
the reader to [14] for the définition of this class.)

THEOREM 18: LogFew Ç C=L.

Proof: The définition of LogFew makes it clear that if A E LogFew, then
there is a logspace-computable function ƒ and a #L function g such that
x E A iff 3i < \x\c g(x) = f{x,i). Clearly, then, A is <jg> reducible
to a set in C-L. •

We have one more result that makes mention of C-L. The motivation
for this result came not so much from any question about C-L itself, but
rather from a question about the relationship between #L and GapL. As
these classes are defined, it is obvious that #L is properly contained in GapL,
because GapL contains negatively-valued functions. It is natural to wonder
if these are the only fonctions if GapL that are not in #L. The following
proposition indicates that GapL probably differs from #L even on the class
of non-negative fonctions.

PROPOSITION 19: If every non-negative function f in GapL is also in #L,

then C=L = NL

Proof: Let A G C=L, and let g be the GapL function that defines A. Let
gf = g2. Thus, x e A ^ g!(x) = 0, and x £ A => g\x) > 0. If g' were
in #L, it would imply that A is in coNL (and hence in NL).

6. REDUCTIONS TO #L AND PL

Corollary 12 raises the obvious question of whether the low-order or middle
bits of a #L function can be computed using the power of PL. At present,
we see no reason to believe that this is possible; it seems plausible that 0L
(Le., determining the low-order bit of a #L function) is not NC1-reducible
to PL. Any attempt to investigate this question must first make précise what
it should mean to try to compute something "using the power of PL."

It is a pleasing fact of complexity theory that most of the "natural"
complexity classes can be defined as the class of problems "reducible"
to some important problem, where the définition does not depend on the
particular notion of réduction that is used. For example, nondeterministic
logspace can be defined as the class of problems reducible to transitive
closure (or s — t-connectivity) using any of the notions of reducibility that
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14 E. ALLENDER, M. OGIHARA

have been considered (e.g., <mg, AC0, NC1, first-order projections, etc.). It
is not known if the class of problems reducible to the determinant also has
this property, or if it is an exception to this rule.

When Cook [15] considered the class of problems reducible to the
determinant, he framed his définition using NC1 reducibility. Alternatively,
one could consider the class of things AC0-reducible to the determinant;
we show that this class corresponds to a logspace-analog of the counting
hierarchy. (We do not know if this class is equal to the class considered by
Cook, but it follows easily from the results of this section that if NC^DET)
is equal to AC°(DET), then the #L Hierarchy we define below collapses
at some level.)

The counting hierarchy (see [50], [46]) consists of sets in the classes PP,
PPP P , PP p p P P , etc. Since PP is contained in C=PC=P [46], it follows that
the same class of sets results if the hierarchy is defined in terms of C=P
instead of PP. One obtains a computationally-equivalent class of functions
if one considers #P, #P#P , etc. Let us now consider the analogous classes
defined in terms of #L and PL.

DÉFINITION 3: (The #L Hierarchy) Define #LHi to be #L, and let

#LH^+i be the class of functions f such that, for some logspace-bounded

nondeterministic oracle Turing machine M, and some function g € #LHi,
ƒ (x) is the number of accepting computations of M on input x with oracle g.

Let #LH dénote Ui#LHj.

(The PL Hierarchy) Define PLHi to be PL, and let PLHi+i be the class
of languages A such that, for some logspace-bounded probabilistic oracle
Turing machine M, and some language B G PLH^ A is the language
accepted by M with oracle B (where acceptance is defined using the PL
acceptance criterion). Let PLH dénote (J2PLHi.

(The C^L Hierarchy) Define C=LHi to be C=L, and let C=LHi+i be

the class of languages A such that, for some logspace-bounded probabilistic

oracle Turing machine M, andsome language B £ C=LH2, x € A iffM with

oracle B accepts x with probability exactly \. Let C-LH dénote (J2C=LHi.

In all of these définitions, the "Ruzzo-Simon-Tompa" relativization method
is used (cf. Section 3).

We will show that PLH, C=LH, and #LH can be defined in terms of
AC0 réductions to PL, C-L, and #L, respectively. An AC0 réduction
is a uniform family of constant-depth circuits of unbounded-fan-in AND
and OR gates, NOT gates, and "oracle" gâtes. If the oracle is a function
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ƒ : {0,1}* —» {0,1}*, then an oracle gâte has some number m of inputs
# 1 , . . . , xm and some number of outputs, representing f{x\,..., xm). If the
function ƒ does not always take inputs of length m to outputs of the same
length, then it may be necessary to assume some sort of "end-of-string"
encoding; our theorems do not depend on these details. If the oracle is a
language, then the oracle gâte computes the characteristic function of the
language. Our results do not depend very much on the particular uniformity
condition used. Logspace-uniformity is sufficient, although the theorems also
hold if more restrictive uniformity conditions are used; see [12], [10] for
discussions of uniformity issues involved in low-level circuit complexity.

It will turn out to be useful to consider certain refinements of AC0

reducibility. Following [4] {see also [6]), define AC°(/) to be the class
of languages accepted by AC0 circuits with oracle gâtes for ƒ, where no
path from input to output goes through more than i oracle gâtes. If C is a
class of functions (languages), then AC^(C) is equal to the union over all
(characteristic) functions ƒ in C of AC°(/).

THEOREM 20: For all i, AC?(PL) = PLH;.

Proof: It should be stated at the outset that it has recently been shown
by Ogihara that this entire hierarchy collapses to PL [35], We include
the proof of this theorem because it serves as a warm-up for the similar
characterizations shown later for the #L and C=L hiérarchies.

Q ) Any set A E PL = PLHi can be accepted with a single oracle gâte.
Thus assume that PLHi Q AC°(PL), and let A be the language accepted by
MB for some B in PLH« and some probabilistic logspace-bounded oracle
Turing machine M. Since M makes queries using the Ruzzo-Simon-Tompa
restriction, there is a list y i , . . . , ynk computable in logspace from x such
that ail queries of M on input x corne from the set {yi , . . . ,ynk}. The
set Bf = {(x,i) : yi € B} is also in PLH; Ç AC^(PL). (Without loss of
generality, Bf G ACÇ(C), where C is the "canonical complete set" for PL:
C = {(Y,z) : Y is a transition matrix showing, for all configurations of a
logspace-bounded machine, the probability of getting from one configuration
to another, such that the machine accepts z}.)

The AC^+1(C) circuit accepting 4̂ consists of AC^(C) circuits Computing
membership of (x,ï) in S', folio wed by a layer of AND and OR gâtes
Computing the transition matrix y of M on input x with oracle answers
given by the subcircuits for B', folio wed by one more oracle gâte, checking
if (y,x) is in C.
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16 E. ALLENDER, M. OGIHARA

(Ç) We prove only the induction step (AC^(PL) Ç PLH^ implies
AC^+1(PL) (Ç) PLHi+i); the proof for the basis is essentially identical.

Let A be accepted by an AC?+1(5) circuit family {Cn} for some B in PL.
We describe the behavior of a probabilistic oracle machine M accepting A.
On input x, M looks at circuit Cn. If the output gate of Cn is an oracle gâte,
then M accepts iff y is in B, where y = y\yi . . . yT is the word input to the
oracle gate. The subcircuit Computing each bit yi is an AC®(B) circuit, and
by induction hypothesis can be simulated using an oracle from PLH .̂

On the other hand, if the output gate is an AND, OR, or NOT gate, then the
output of the circuit can be computed by a constant number of applications
of <ctf or < ^ réductions to a set in P L H Ï + I . But this also dennes a set in

i, by the closure properties established in the preceding section.
(Alternatively, one may observe that AC5(PL) = PL, and that an AC°(PL)

circuit may be viewed as consisting of i layers of ACj(PL) subcircuits.) •

THEOREM 21: For all i, C=LHÏ Ç AC?(C=L) Ç LC=LH*. (3)

Proof: The first inclusion has a proof essentially identical to the first
inclusion proved in Theorem 20. The second inclusion is also proved by a
proof essentially identical to the proof of Theorem 20, but since C=L is not
known to be closed under complement, we cannot "absorb" any NOT gates,
and thus we obtain only the inclusion L c = L H i . •

THEOREM 22: #LH; Ç AC?(#L) C L # L H ' .
(We remark that #LH; is defined as a class of functions, while AC°(#L) is

defined as a class of languages. Note however that it is quite natural to view
a circuit as Computing a function; moreover, it is well-known that the set
of functions defined in this way is exactly the same as the set of functions
ƒ such that the language {(x,i,6) : bit i of f(x) is b} is in the associated
language class. It follows from the proof below that #LH^ is actually equal
to the class of functions computed by AC^(#L) circuits, with the added
restriction that the output gate be an oracle gate.)

Proof: The first inclusion is obvious when i = 1; thus assume the
induction hypothesis for i and let ƒ be in #L9 for some g G #LH .̂
Thus there is some f' G #L such that f(x) = f(x,g(yi),..,,g(ynk)),

(3) Note that this corrects a mis-statement in the version of this paper that appeared in Proc. 9th
IEEE Structure in Complexity Theory Conference, 1994. It is also worth noting that it has recently
been shown that this entire hieararchy collapses to L C = L [2].
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where (as in the proof of the previous theorem) the list of y,-'s contains
all possible queries that could be asked on input x9 and this list can be
generated in logspace from x. Let gf(x,%) = g(yi), and note that gf is
also in #LH^ and by induction has AC^(h) circuits for some h G #L. Let
k(Q,z) = h(z), and fc(l,z) = f(z). Our AC?+1(fc) circuits for ƒ consist
of subcircuits Computing g(yi) = k(0,x,i)9 followed by a gâte Computing
ƒ0) = k(l,x,g(yi),...,g(ynk)) at the root.

(We remark that, with a little more effort, #LH^ fonctions can be computed
by circuits consisting of exactly i #L oracle gâtes, where the outputs of one
gate feed directly into the gate on the next layer.)

The proof of the second inclusion is quite similar to the proof of the
forward inclusion in the preceding theorem. •

COROLLARY 23: • #LH = AC°(#L) = AC°(DET)

• PLH = AC0 (PL)

• C=LH = AC°(C=L)

(Part 2 of this corollary was previously observed by Carsten Damm and
Peter Rossmanith [24], [38].)

The reader should not be alarmed by the fact that LP L is contained in
AC0(PL) (and in fact the containment may even be proper), even though AC0

is properly contained in L; we refer the reader to the discussion in [51], [52].

Some of the motivation for this study came from the question of whether
or not L#L = LP L , by analogy to the equalities that are known to hold for
the related classes #P and PP. The reader should be able to see that L#L and
LD E T are indeed equal and contain LP L , but we do not see how to compute
the low-order or middle bits of a #L fonction in LP L or even in NCX(PL).

A related question is whether PLH is equal to C=LH (equivalently,
whether PL is AC°-reducible to C=L).

We close this section with an observation showing that L#L can be defined
using very restricted access to the oracle. (For related observations, see [5,
Proposition 2 and Section 6].)

PROPOSITION 24: Let C be any of the classes L, NL, PL, or #L. Then the

class C#L remains unchanged even when the oracle Turing machines defining

the class are restricted to make at most one query to the oracle, and to read

the answer just once from left to right.
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Proof: Let an oracle Turing machine M be given, and let the oracle be
the function g. Let the run time of M be nfc, let the possible queries on an
input x of length n be contained in the set {/i(x, 1 ) , . . . , h(x, n1)} (where
h is logspace-computable), and let the number of bits in g(y) be \y\c'. Let
c be greater than k and c'.

Then the function ƒ defined by

j=0 i=l

is in #L.
Note that. ƒ (x), vie wed as a binary string, consists of nk répétitions of

a string containing nl fields, where each field is of length nc, consisting
of leading zéros, followed by a one, followed by the encoding of g{y%) for
some query yi that could be asked on input x. If a machine asks the query
f(x) at the beginning of its computation, then it can simulate M on input
x, moving one block to the right for each step of M that is simulated, and
keeping track of which cell of M's oracle tape is being scanned at any
particular moment. •

7. CONCLUSION

By making use of recent theorems relating #L and the determinant, we
have given simplified proofs of some facts concerning PL, and we have
proved new results concerning the classes of sets reducible to PL and to the
determinant. A number of open questions remain. Among them:

• What closure properties can be established for #L and GapL? In regard to
this question, it is appropriate to mention that GapL can be characterized as
the class of functions computed by "skew" arithmetic circuits [45]. Related
results regarding arithmetic circuits and certain subclasses of TC1 may be
found in [3].

• Can any relationship be established between PL or #L and AC1 (or
logCFL)?

• Can any any relationship be established between PL (or C-L) and
bounded-error probabilistic logspace? Note in this regard that David
Zuckerman and Mauricio Karchmer have recently shown that no "black-
box" simulation of PL can yield a bounded-error probabilistic logspace
algorithm for PL [54].
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• Can anything more be said about the relationship between PLH and
NCa(PL) (or #LH and NC^L))? Note that for many classes C of interest
(including ACfe, NC*, NL, L, NP [4], [34]), AC°(C) is equal to NC^C).
In [2] it is shown that this equality also holds for C = C=L.
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