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Abstract 

 

In this paper we introduce convolution theorem for the Fourier transform (FT) of 

two complex functions. We show that the correlation theorem for the FT can be 

derived using properties of convolution. We develop this idea to derive the 

correlation theorem for the quaternion Fourier transform (QFT) of the two 

quaternion functions. 

Keywords: Fourier transform, quaternion Fourier transform, quaternion 

convolution, quaternion correlation 

 

 

 

I.   Introduction 
 

The Fourier transform (FT) plays an important part in the theory of many 

branches of science and engineering. In the field of applied mathematics the 

Fourier transform has developed into an important tool. It is a powerful method 

for solving partial differential equations. In computer vision, images in the spatial 

domain can be transformed into the frequency domain by the Fourier transform. It  



2102                                                                                         Mawardi Bahri et al. 
 

 

is a very useful technique in image processing, because some operations and 

measurements can be done better in the frequency domain than in the spatial 

domain [4]. The most fundamental and important properties of the FT are 

convolution and correlation. They are mathematical operations which have been 

widely used in the theory of linear time-invariant (LTI) systems. 

 

As a generalization of the FT, the quaternion Fourier transform (QFT), is first 

proposed by Ell [2]. Later, some constructive works related to QFT and its 

application in color image processing are presented in [1,3,9]. Recently, some 

author (see, for example, [5, 6, 7, 12]) have extensively studied the QFT and its 

properties from a mathematical point of view. They found that most of the 

properties of this extended transform are generalizations of the corresponding 

properties of the FT with some modifications.  

 

The purpose of this paper is to show the relationships between the convolution 

and correlation for the FT and the QFT. We first derive correlation theorem for 

the FT by applying the properties of the convolution theorem of two complex 

functions. Similar to the FT case, this approach can be developed to obtain the 

correlation theorem for QFT of the two quaternion functions. 

 

 

2.  Preliminaries 
 

In this section we briefly review some basic ideas on quaternions. For a more 

complete discussion we refer the readers to [1]. 

 

2.1  Quaternion algebra 

The first concept of quaternions, which is a type of hypercomplex number, was 

formally introduced by Hamilton in 1843 and is denoted by �. It is an associative 

non-commutative four dimensional algebra 

	� � �� � �� � ��	 � 
�� � ��
�,										��, �	, ��, �
 	 ∈ 	�.				    (1)                         

The orthogonal imaginary units  �, 
, and	�	 should follow the multiplication 

rules: 

�� � 
� � �� � �1, �
 � �
�, �� � ���, 
� � ��
, and	�
� � �1.					   

We may express a quaternion � as a scalar part denoted by	����� � �� and a 

pure quaternion q denoted by Vec��� � ��	 � 
�� � ��
 � �. The conjugate of a 

quaternion  � is obtained by changing the signs of the pure quaternion, that is,  

�� � �� � ��	 � 
�� � ��
. 
It is a linear anti-involution, that is, for every  , � ∈ 	� we have  

				 ̿ �  ,									 � �������� �  ̅ � ��,  ���� � �� ̅.                  (2)                                           

It is not difficult to see that from equation (1) and the third term of equation (2)  

we obtain the norm of a quaternion � as 

|�| � $��� 	� $��� � �	� � ��� � �
�. 
We further get the inverse 
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																																																																	�%	 � ��
|�|�.																																																		 

This fact shows that � is a normed division algebra. Any quaternion q can be 

written as 

� � |�|&'( , 
where ) � arctan |,-�.�|

/0-�.� , 0 2 θ 2 π is the eigen angle (phase). When |�| �
1,		q is a unit quaternion. Euler’s and De Moivre’s formulas still hold in 

quaternion space, i.e., for a pure unit quaternion 3 the following holds: 

&'( � cos�)� � 3sin	�)�        

 &'7( � �cos�)� � 3 sin�)��7 � cos�8)� � 3 sin�8)�. 
 

2.2  Basic Properties of Fourier Transform 
In this section we briefly review the definition of the Fourier transform (FT) and 

its basic properties. 

 

Definition 2.1 (Fourier Transform) Let f be in 9����. Then Fourier transform 

of complex function f is defined by 

     :	�;��<� � ;=�<� � > ;�?�&%@ABC
%C D?.             (3)                       

																	                                            

Since &@AB � cos 	<? � EFE8	<? , the above equation can be written in the 

following form  

:	�;��<� � > ;�?� cos<? D?∞

%C � E > ;�?� sin<? D?∞

%C .  
  

In the following we collect some basic properties of the FT, which will be used in 

the next section.  

a. Linearity 

If two complex functions ;, G	 ∈ 9����	and α, β are any two complex 

constants, then     

:	�α; � β	G��<� � α	:	�;��<� � β	:	�G��<�.            (4) 

 

b. Translation 

If the function	G ∈ 9���� and translation of g is defined by HIG�?� �G�? � J�, then 

:	�HIG��<� � 	 &%@AK:	�;��<�.                 (5) 

 

Suppose that ; ∈ 9���� and	<�	 ∈ �.. If the modulation of the function f is 

defined by LAM;�?� � &@	AM	B;�?�, then  

         :	NLAM;O�<� � 	:	�;��< � <��.              (6)    

   

c. Time-frequency Shift 

The composition of the translation and modulation is called time-frequency 

shift, i.e., 

:	NLAM;O�<� � 	:	�;��< � <��.  
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d. Scaling  

Let ; ∈ 9���� and J ∈ �, J P 0. If the dilation operator is denoted by 

QI;�?� � ;�J?�, then  

:	�QI��<� � 	
|I|:	�;� R

A
IS                      (7)  

 

Theorem 2.2 (Inversion Formula) Suppose that ; ∈ 9���� and :�;� ∈ 9	���, 
the inverse transform of the function f is given by    

  :%T	U:�;�V�?� � ;�?� � 	
�W > ;�<�&@ABD<∞

%C .      (8) 

 

 

3. Convolution and Correlation for Fourier Transform 

Two closely-related operations that are very important for signal processing 

applications are the convolution and correlation theorems.  We first define the 

convolution of two complex functions and its relationship in the FT domain.  

 

Definition 3.1 (Convolution) Let ;, G ∈ 9����. The convolution of two complex 

functions f and G is denoted by	; ∗ G and is defined by  

�; ∗ G��?� � > ;�Y�G�? � Y�DY∞

%C                    (9)    

                                           

Theorem 3.2 Suppose that ;, G ∈ 9����. Then the FT of convolution of the 

functions is given by  

:�; ∗ G��<� � :�;��<�:�G��<�.              (10) 

 

Theorem 3.3 Let ;, G ∈ 9����. Then Fourier transform of HI; ∗ G and	; ∗ HIG 

is the same and is given by       

:�HI; ∗ G��<� 	� 		:�; ∗ HIG��<� 	� 	 &%@AI:�;��<�:�G��<�.      
 

Theorem 3.4 For every ;, G ∈ 9����, we have  

 :N; ∗ LAMGO�<� � :�;��<�:�G��< � <��,   

and  

 :NLAM; ∗ GO�<� � :�;��< � <��:�G��<�.                    (11) 

Definition 3.5 (Correlation) Let ;, G	 ∈ 9����, the correlation of two complex 

functions f and g is defined by the integral 

  �; ∘ G��?� � > ;�? � [�G�[�������D[∞

%C .            (12) 

 

Theorem 3.6 If ;, G ∈ 	 9����, the FT of correlation of the two functions defined 

in (12) is given by 

 :�; ∘ G��<� 	� 	:�;��<�	:�G��<������������            (13) 

Proof. From the definition of the FT (1) we easily obtain 

    :�; ∘ G��<�		= > �; ∘ G�&%@AB∞

%C D?     

� > > ;�? � [�G�[�������D[	&%ABD?∞

%C
∞

%C .                  
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Changing variable ? � [ � \ in the above expression, we immediately get 

       :�; ∘ G��<�	=> > ;�\�G�[�������&%@A�]%^�D[D\∞

%C
∞

%C     

= > ;�\�&%@A] > G�[�������&@A^D[D\∞

%C
∞

%C  

= > ;�\�&%@A^D\∞

%C > G�[�������&@A]D[∞

%C .   

Observe that     

 > G�[�������∞

%C &@A^D[ � > G�[�&%TA^D[∞

%C
���������������������� � :�G��<������������. 

It means that the above expression reduces to 

:�; ∘ G��<� 	� 	:�;��<�	:�G��<������������.   
This proves the proof of theorem. 

 

The alternative proof of Theorem 3. 6 is given as follows. Applying the definition 

of the FT correlation and then taking	[ � �_ we immediately obtain 

     �; ∘ G��?� � 	> ;�? � [�G�[�������D[∞

%C   

� > ;�? � _�G��_����������∞

%C D_.  

Setting G��_���������� � `�_� and applying the FT convolution theorem, above yields 

�; ∘ G��?� � > ;�? � _�`�_�∞

%C D_     

 � �; ∗ `��?� 
� :%T	U:�;��<�:�`��<�V�?� 
� 1
2bc :�;��<�:�`��<�&@ABD<

∞

%C
. 

We remember that     

:�`��<� � > G��_����������∞

%C &%@AdD_ � > G��_�&TAdC
%C
������������������� � :�G��<�	������������.  

It means that we have 

�; ∘ G��?� � :%T	e:�;��<�:�G��<������������f�?�. 
As desired. 

 

We next investigate some properties of the relationship between the correlation 

and the FT. We first establish the relationship between the conjugation of the 

correlation and its FT. 

 

Theorem 3.7 (Conjugation Correlation) Let ;, G ∈ 9����. The FT of 

correlation of the functions is given by 

  :N; ∘ G������O�<� � :�;���<��������������	:�G���<�.         (14) 

Proof. Applying the definition of the FT gives 

 :N; ∘ G������O�<� � > �;	 ∘ G��������&%@AB∞

%C D?     

 � > > ;�? � [������������G�[�	D[	&%@ABD?∞

%C
∞

%C    

� > > ;�? � [������������G�[�	&%@ABD[D?.∞

%C
∞

%C    

Performing the change of variable ? � [ � \ yields 

:N; ∘ G������O�<� � > > ;�\�������G�[�&%@A�]%^�D[D\∞

%C
∞

%C     

� > > ;�\�������G�[�&%@A]&@A^D[D\∞

%C
∞

%C    



2106                                                                                         Mawardi Bahri et al. 
 

 

  

 � > ;�\�������&%@A]D\ > G�[�&@A^D[∞

%C
∞

%C  

� c ;�\�&TA]������������D\
∞

%C
c G�[�&@A^D[
∞

%C
 

� :�;���<��������������	:�G�	��<�. 
  

Theorem 3.8 Let ;, G	 ∈ 9����. Then we get 

:�HI; ∘ G��<� � &@AI:�;��<�:�G��<������������,   

and  

 :�;	 ∘ HIG��<� � &%@AI:�;	�:�G��<������������.            (15)     

         

Proof. For the first term of (15) we apply equation (5) and Theorem 3.6 to get 

                        

 :�HI; ∘ G��<� 	� 	:�HI;��<�	:�G��<�������������	  

                            

� &@AI:�;��<�:�G��<������������. 
  

Theorem 3.9 For every f, G ∈ 9����, we have 

:NLgMf ∘ gO�ω� � :�f��ω � ω��:�g��ω������������,  

and 

:Nf ∘ LgMgO�ω� � :�f��ω�	:	�g��ω � ω���������������������.          (16)

   

Proof. For the first term of (16), an application of Theorem 3.6 and equation (6) 

we easily obtain 

:NLAM; ∘ GO�<� � :NLAM;O�<�	:�G��<������������   

� 	:�;��< � <��:�G��<������������,                                                
which was to be proved. 

 

 

4.  Convolution and Correlation for Quaternion Fourier 

Transform 
 

In this section we give a definition of the quaternion Fourier transform (QFT) and 

we then establish the correlation theorem fort the QFT via the properties of the 

convolution theorem of two quaternion functions. 

 

Definition 4.1 (QFT) Let f be in 9����; ��. Then Quaternion Fourier transform 

of the function f is given by 

:.�;��l� 	� 	c c ;�m�&%'l⋅m
∞

%C

∞

%C
Dm, 

where 3  is  any pure unit quaternion such that 3� � 1,	  l,m ∈ ��  and 

l ⋅ m � <	?	 � <�?�. 
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Theorem 4.2 (Inverse QFT) Suppose that ; be in 9����; �� and :.�;� ∈9	���; ��. Then inverse transform of the QFT is given by 

;�m� 	� 	 1
�2b��c c :.�;��l�&'l⋅m

∞

%C

∞

%C
Dl. 

 

Definition 4.3 (Quaternion Convolution) Let ;, G ∈ 9����; ��. The convolution 

of two quaternion functions f and G is denoted by	; ∗. G and isgiven by  

o; ∗. Gp�m� � > > ;�q�G�m � q�Dq∞

%C
∞

%C .              (17)   

 

Based on the definition of the quaternion convolution we obtain the definition of 

quaternion correlation as follows. 

 

Definition 4.4 (Quaternion Correlation) Let ;, G ∈ 9����; �� be two 

quaternion functions. The correlation of f and G is defined by  

o; ∘. Gp�m� � > > ;�m � r�G�r�������Dr∞

%C
∞

%C .              (18)  

 

We have the following result (compare to [9]).                                

Theorem 4.4 Suppose that ;, G ∈ 9����; ��. Then the QFT of convolution of the 

functions is given by  

:.N; ∗. GO�<� � :.�G��l�:.�;���l� � �	:.�G��l�:.�;	��l�			 �
	:.�G��l�:.�;���l� � �	:.�G��l�:.�;
��l�. 
  

In order to study the relationship between the quaternion convolution and 

quaternion correlation we derive the following result by using Theorem 4.4. 

  

Theorem 4.5 Suppose that ;, G ∈ 9����; ��. Then the QFT of correlation of the 

functions is given by  

:.N; ∘. GO�<� � :.�G����l� �	:.�s���l�:.�;���l� 
��:.�G����l�	:.�s���l�	:.�;	��l� 
�
:.�G����l� �	:.�s���l�:.�;���l� 
��:.�G����l�:.�s���l�	:.�;	��l�. 

 

Proof. Proceeding as in the alternative proof of Theorem 3. 2 we immediately get

   

o; ∘. Gp�m� � 	> > ;�m � r�G�r�������Dr∞

%C
%C
%C   

� > > ;�m � t�G��_����������∞

%C Dt∞

%C .  

� > > ;�m � t�`�t�∞

%C Dt∞

%C      

� o; ∗. `p�m� 
� :.%	U:.�`��l�:.�;���l� � �	:.�`��l�:.�;	��l�	 

�
	:.�`��l�:.�;���l� � �	:.�`��l�:.�;
��l�V	�m�.           

On the other hand, by simple computation we get  
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:.�`��l� � > > G��_����������∞

%C &%'l⋅tDt∞

%C   

� c c �G���t�
∞

%C
� s��t��

∞

%C
&%'l⋅tDt 

� :.�G����l� �	:.�s���l�,             (19) 

 

where s��t� � �G	��t� � 
G���t� � �G
��t�. Substituting this fact into the 

right-hand side of (19) we finally obtain 

 

o; ∘. Gp�m� 	� :.%	U:.�G����l� �	:.�s���l�:.�;���l� 
��:.�G����l�	:.�s���l�	:.�;	��l� 
�
:.�G����l� �	:.�s���l�:.�;���l� ��:.�G����l�:.�s���l�	:.�;	��l�V�m�. 

 

This is the desired result. 
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