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Abstract

Background: The gut microbiome is a complex and metabolically active community that directly influences host

phenotypes. In this study, we profile gut microbiota using 16S rRNA gene sequencing in 531 well-phenotyped

Finnish men from the Metabolic Syndrome In Men (METSIM) study.

Results: We investigate gut microbiota relationships with a variety of factors that have an impact on the

development of metabolic and cardiovascular traits. We identify novel associations between gut microbiota and

fasting serum levels of a number of metabolites, including fatty acids, amino acids, lipids, and glucose. In particular, we

detect associations with fasting plasma trimethylamine N-oxide (TMAO) levels, a gut microbiota-dependent metabolite

associated with coronary artery disease and stroke. We further investigate the gut microbiota composition and

microbiota–metabolite relationships in subjects with different body mass index and individuals with normal or altered

oral glucose tolerance. Finally, we perform microbiota co-occurrence network analysis, which shows that certain

metabolites strongly correlate with microbial community structure and that some of these correlations are specific for

the pre-diabetic state.

Conclusions: Our study identifies novel relationships between the composition of the gut microbiota and circulating

metabolites and provides a resource for future studies to understand host–gut microbiota relationships.

Keywords: Host-microbiota interactions, TMAO, Metabolic traits, Serum metabolites, Type 2 diabetes

Background
Multiple studies in humans and animal models have

established that the gut microbiota contribute signifi-

cantly to a variety of cardio-metabolic traits, including

obesity, type 2 diabetes (T2D) [1–3], insulin resistance

[4–7], atherosclerosis, and heart failure [8–10]. A growing

body of evidence shows that microbial metabolites have a

major influence on host physiology. The best known bac-

terial fermentation products are short chain fatty acids

(SCFAs) such as acetate, butyrate, and propionate, which

exert several effects, including maintenance of gut barrier

function and providing a source of energy for colono-

cytes and bacterial communities (reviewed in [11]).

Another example is trimethylamine-N-oxide (TMAO),

a metabolite derived from dietary choline and carnitine

through the action of gut microbes. TMAO plays an im-

portant role in several cardio-metabolic phenotypes and is

associated with chronic kidney disease [8, 9, 12, 13].

The majority of published studies thus far have fo-

cused on describing the gut microbiome profile changes

between specific disease groups and control individuals.

These findings usually explain dysbiosis states related to

end phenotypes and are not well powered to discover

alterations that are present in the general population

and can ultimately affect the development of common

complex diseases. A growing body of evidence suggests

that a variety of intrinsic and environmental factors,

such as long-term dietary patterns and host physiology

and genetics, significantly affect the structure and func-

tional capabilities of gut microbial communities [14–17].
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Recently, two large-scale studies from Europe charac-

terized the gut microbiota composition and variation in

subjects collected from the general population [18, 19].

Rich metadata on various health and lifestyle factors

showed several associations that impact the variation of

the gut microbiome in the general population. The

Netherland cohort study also showed the contribution

of gut microbiota to body mass index (BMI) and lipid

variation, highlighting its role in the regulation of meta-

bolic processes and cardiometabolic diseases [20]. To

date, however, no population-based studies have been

performed to assess the association between microbiota

and a large spectrum of cardiometabolic traits.

In the current study we performed systematic analysis

of the gut microbiome and a variety of metabolically

relevant traits in 531 middle-aged Finnish men, collected

from the general population of the METabolic Syndrome

In Men (METSIM) study [21]. All subjects from this

population-based cohort have been extensively charac-

terized for a variety of cardiovascular and metabolic

traits, including 2-h oral glucose tolerance test (OGTT),

insulin resistance, BMI, and serum metabolites such as

fatty acids, lipids, amino acids, glycolysis precursor metab-

olites, and ketone bodies. We identified several significant

relationships, particularly between gut microbiota and

circulating serum metabolites. In addition, we examined

the fasting plasma levels of the microbiota-dependent

metabolite TMAO. Several observed relationships were

further supported by operational taxonomy unit (OTU)-

based co-occurrence network analysis. Finally, we also

assessed microbiome–metabolite interactions in subjects

with extreme BMI and in a pre-diabetic stage based on an

impaired fasting glucose tolerance test.

Results

Landscape of the METSIM gut microbiome

Our study included 531 individuals, representing a sub-

cohort who participated in a follow-up study from the

METSIM cohort (total cohort n = 10,000). This general

population-based study cohort, consisting of males aged

45–70 years, was collected from Eastern Finland and has

been extensively phenotyped for a variety of metabolic

parameters (Additional file 1: Table S1) [21]. Stool sam-

ples for microbiota analysis were collected during a clin-

ical visit together with fasting blood samples. Baseline

characteristics for each study participant are summarized

in Table 1.

We first characterized the phylogenetic variation across

samples at different taxonomic levels. We sorted sequences

into 1148 OTUs (≥97% identity). Of these OTUs, 321 were

present in at least 50% of the samples. As expected, we ob-

served considerable variation in the abundance of taxa

in the METSIM fecal microbial communities, indicating

a typical Western diversity profile where Firmicutes

(mean = 53.43%, range = 12.9–94.1%) and Bacteroidetes

(mean = 40.80%, range = 0.11–85.9%) were the domin-

ant phyla (Additional file 1: Table S2; Additional file 2:

Figure S1a). Overall, we detected ten bacterial phyla

and one archaeal phylum. Forty percent of individuals

contained archaeal taxa from phylum Euryarcheota and

genus Methanobrevibacter (0.15%, 0–6.7%). The most

dominant bacterial families (90% of total sequences) belong

to Bacteoridacea (28% of total sequences), Ruminococcacea

(20% of total sequences), and Lachnospiracea (16% of total

sequences) (Additional file 2: Figure S1c). At the genus

level, Bacteroides was the most dominant and variable phy-

lotype across 531 METSIM samples ranging from 0.1 to

85.6%, in agreement with previous results [22, 23].

We first assessed how variable the gut microbial com-

position was in the METSIM cohort in terms of micro-

bial diversity and richness. The microbial richness,

which refers to the number of OTUs per individual, ex-

hibited on average 329 OTUs per individual, ranging

from 108 to 474 (Additional file 1: Table S3). Based on

unconstrained canonical analysis of genus-level commu-

nity composition (see “Methods”), we found that the

main genera driving diversity in the gut landscape are

Bacteroides, an unclassified Ruminococcaceae genus, and

Prevotella (Fig. 1a). This is consistent with other

population-based gut microbiome studies, showing that

these three genera are major contributors to community

variation and define previously proposed enterotypes

[18, 23]. However, our data support continuous rather

than distinct clusters, in agreement with recently pub-

lished data [24].

Table 1 Characteristics of 531 METSIM subjects

Clinical trait Average Standard deviation

Age (years) 61.97 5.45

Body mass index (kg/m2) 27.92 3.60

Waist to hip ratio (cm) 0.998 0.06

Fat mass (%) 25.79 6.93

OGTT fasting plasma glucose (mmol/l) 5.77 0.49

OGTT 30 min plasma glucose (mmol/l) 9.35 1.49

OGTT 120 min plasma glucose (mmol/l) 5.96 1.91

OGTT fasting plasma insulin (mU/l) 9.43 5.97

OGTT 30 min plasma insulin (mU/l) 65.20 42.79

OGTT 120 min plasma insulin (mU/l) 48.01 66.76

HbA1c (%) 5.6 0.29

Systolic blood pressure (mmHg) 130.12 13.51

Diastolic blood pressure (mmHg) 82.35 7.84

HOMA-IR 2.47 1.69

Hba1c glycated hemoglobin, HOMA-IR homeostatic model assessment of

insulin resistance
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Metabolite associations with gut microbiota richness and

diversity

The METSIM cohort has been studied for a variety of

cardiovascular and metabolic traits, providing an oppor-

tunity to identify potential relationships with gut micro-

biota composition. Using a nuclear magnetic resonance

(NMR) spectroscopy platform [25], we quantified a

broad molecular signature of the systemic serum metab-

olite profiles, such as lipids, fatty acids, glycolysis-related

metabolites, ketone bodies, and amino acids. A list of

the traits we examined is presented in Additional file 1:

Table S1.

We first investigated whether bacterial diversity and

richness were correlated with 57 traits (Additional file 1:

Table S1). After adjustment for age and treatment, 37

traits were associated with inter-individual distance of

microbial composition (Bray-Curtis distance) at a false

discovery rate (FDR) of 0.1, together explaining 14.1% of

the variation in composition distance (Additional file 1:

Table S4). Figure 1b shows the traits that contribute the

highest variation in microbial composition distance.

Among the associations we detected, acetate showed the

strongest effect on the variation in microbial diversity

and the richness was positively correlated with glutam-

ine, glycated hemoglobin (Hba1c), and acetate levels

(FDR <0.1) (Fig. 1b, c; Additional file 1: Tables S4

and S5; Additional file 2: Figure S2).

Metabolite associations with gut microbiota composition

We next performed multivariate association analysis

between each trait with 91 unique taxa and 321 OTUs

(shared in 50% of individuals). When adjusted for age

and treatment, we identified 140 associations between

26 traits and 72 unique bacterial OTUs at a FDR of 0.05

(Additional file 1: Table S6). Overall, 51 OTUs were sig-

nificantly associated with different fatty acids, 33 OTUs

a

b

c

Fig. 1 Microbial community variation in the METSIM cohort. a Top contributors to community variation as determined by canonical correspondence

analysis on unscaled genera abundances, plotted on the first principal component (PC) dimensions (arrows scaled to contribution). b The top seven

metabolite contributors to microbiome community variation. c A total of 32 out of 60 factors (60%) explained a total of 13% of variance of the gut

microbiome according to Bray–Curtis distance. TG triglycerides, FA fatty acids, DHA docosahexaenoic acid, MUFA monounsaturated fatty acid, PUFA

polyunsaturated fatty acid
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with ketone bodies, 19 OTUs with amino acids and

glycolysis-related metabolites, nine OTUs with glycopro-

tein acetyls, six OTUs with choline pathway metabolites,

and three OTUs with HbA1c levels (Additional file 1: Table

S6; Additional file 2: Figure S3). At the taxonomy level, we

identified a total of 40 significant associations between 17

traits and 23 unique taxa with FDR <0.05: 19 taxa were as-

sociated with fatty acids, nine with ketone bodies, five with

glycolysis-related metabolites, three with amino acids, two

with glycoprotein acetyls, and one each with betaine and

TMAO (Fig. 2; Additional file 1: Table S7).

The strongest associations with both taxonomy and

unique bacterial OTUs were with acetate and glutamine

levels, indicating a strong overlap between associations

detected with diversity and richness. Acetate is the most

common SCFA in the human colon, produced in the large

intestine by anaerobic intestinal microbiota through fer-

mentation of non-digestible carbohydrate. In total, 28

unique OTUs and eight unique taxa were associated with

serum acetate levels with FDR <0.05 (Fig. 2; Additional

file 1: Tables S6 and S7). Increased acetate levels were

associated with higher abundances of phylum Tenericutes

(mainly represented by order RF-39), family Christensenel-

laceae, unclassified Clostridales, Peptococcaceae, and

several members of family Clostridiaceae, whereas re-

duced levels were associated with higher abundances of

Blautia and genus Oscillospira (Additional file 1: Table S6;

Additional file 2: Figure S3). Acetate was also strongly cor-

related with other traits. For example, a significant positive

correlation was detected with polyunsaturated fatty acids,

such as omega-6 and 18:2 linoleic acids and with serum

cholesterol and TMAO levels, whereas a negative correl-

ation was detected with several amino acids (alanine, tyro-

sine, isoleucine, and leucine), glycolysis precursors (lactate

and pyruvate), and glycoprotein acetyl levels (FDR <0.05)

(Additional file 1: Table S8).

Western diets tend to have a high fat content, and in-

creased fat consumption is associated with obesity, insu-

lin resistance, and metabolic syndrome [26]. It has been

shown that high-fat content food perturbs gut micro-

biota and induces pro-inflammatory signaling [3, 27].

We identified several significant associations with vari-

ous fatty acids, accounting altogether for 41% of all tax-

onomy level (19 out of 46) and 33.8% of all OTU level

(51 out of 151) associations (Fig. 2; Additional file 1:

Tables S5 and S6; Additional file 2: Figure S3). At both

the taxa and OTU levels, the most significant associa-

tions were observed with the abundance of members of

the genus Blautia and phylum Tenericutes. The abun-

dance of Blautia was positively associated with saturated

and monounsaturated fatty acids and negatively associ-

ated with degree of unsaturation and polyunsaturated

fatty acids, including omega-3, 22:6 docosahexaenoic

acid, omega-6, and 18:22 linoleic acids. In contrast, op-

posite associations with the same traits were detected

with phylum Tenericutes, family Peptococcaceae, and

genus Bacteroides (Fig. 2).

Multiple significant associations were detected with

glycolysis-related metabolites and with amino acids

(Fig. 2). For example, fasting glucose levels were strongly

Fig. 2 Associations between microbiota taxa and circulating serum metabolites. Serum metabolite concentrations were measured from fasting

samples using NMR or LC-MS/MS. They were then associated with microbial taxa following adjustment for age and treatment of the subjects.

*Ruminococcus from the family Lachnospiraceae; **Ruminococcus from the family Ruminococcaceae. CI confidence interval, DHA docosahexaenoic

acid, MUFA monounsaturated fatty acid, PUFA polyunsaturated fatty acid
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associated with unclassified Coriobacteriaceae and seve-

ral OTUs from Blautia were positively associated with

pyruvate and glycerol. This is in line with a recent

finding showing that members of Coriobacteriacea are

depleted in individuals with diabetes and impaired glu-

cose tolerance [28]. One of the strongest associations

between amino acids and gut microbiota was detected

with glutamine levels, where several species from unclas-

sified Clostridales were positively correlated with in-

creased glutamine concentrations (Fig. 2; Additional file 2:

Figure S3). In addition, the branch-chain amino acids

(BCAAs) isoleucine and valine were negatively associated

with the abundance of Christensenellaceae and positively

associated with Blautia. Recent studies have shown that

glutamine supplementation alters gut microbiota compos-

ition and improves glucose tolerance and obesity [29, 30].

In contrast, BCAAs and other hydrophobic amino acids,

including alanine and the aromatic amino acids phenyl-

alanine and tyrosine, have been shown to be elevated in

individuals with metabolic disorders. Our data support

these observations showing significantly elevated glutam-

ine and reduced BCAAs in individuals with low BMI and

elevated BCAAs in individuals with high homeostatic

model assessment of insulin resistance (HOMA-IR) values

(Additional file 2: Figure S4).

Recently, population-based cohort studies from the

Netherlands investigated the contribution of gut micro-

biota to the variation of blood lipids and BMI [19, 20].

Here we confirmed associations with triglyceride (TG)

levels, showing that higher abundances of genus Metha-

nobrevibacter from Archaea (P = 4.4 × 10−4), Tenericutes

(P = 0.0022), Peptococcaceae (P = 0.0098), and Christen-

senellaceae (P = 0.0123) correlate with lower TG levels.

Although some other associations with high-density lipo-

protein (HDL), low-density lipoprotein (LDL), and BMI

were shared between our study and the Netherlands co-

hort study, after correction for multiple comparisons these

associations were no longer significant (FDR >0.1; data

not shown).

Associations with TMAO, a metabolite derived from gut

microbiota

Recent studies have revealed associations of gut

microbiota-dependent metabolite TMAO with the

development of cardiometabolic and renal phenotypes

[8, 10, 31–34]. Using mass spectrometry analysis [9],

we measured choline, carnitine, betaine, and TMAO

levels in fasting serum and identified four significant

associations (FDR <0.05) with unique taxa (three with

TMAO and one with betaine) and eight associations

with OTUs (six with betaine, one with choline, and one

with carnitine) (Fig. 2; Additional file 1: Tables S5 and S6;

Additional file 2: Figure S3). We confirmed previously de-

tected associations between TMAO and the abundance of

Peptococcaceae (P = 4.67 × 10−4) and Prevotella (P = 0.004)

(Fig. 2) [12, 35]. Interestingly, we also observed a negative

association between TMAO and the abundance of

common gut commensal Faecalibacterium prausnitzii

(P = 0.006; FDR <0.08). Decreased abundance of F.

prausnitzii has been linked to dysbiosis in several hu-

man disorders, including obesity, diabetes, and several

immune-related diseases [36, 37]. Our data also con-

firmed a previously reported association between TMAO

and creatinine levels, but in addition we found significant

associations with valine, acetate, and unsaturated and

omega-3 fatty acids levels (Additional file 1: Table S9;

Additional file 2: Figure S5).

OTU co-occurrence network and metabolite associations

The human gut is a complex and dynamic ecosystem

consisting of a diverse collection of microorganisms with

a variety of functional relationships. In order to detect

relationships between different members of the gut

microbiome and their potential combined effect on

metabolic output, we constructed a network of co-

occurrence OTUs and interrogated the network for

modules using weighted gene co-expression network

analysis (WGCNA) (see “Methods”; Fig. 3a, b). The

complete list of OTUs and their module organization is

available in Additional file 1: Tables S10 and S11. Phylo-

genetically related OTUs were observed to cluster into

the same modules preferentially, although each module

also included phylogenetically distinct OTUs from different

taxa. Therefore, in addition to phylogenetic relatedness,

the formation of modules depended upon additional

ecological affinities, reflecting complementary conver-

gent functionality.

The module–metabolite associations confirmed pre-

viously detected metabolite–taxa relationships. For ex-

ample, the blue module, which contains OTUs from

unclassified Clostridales, Tenericutes, Methanobrevibacter,

and Christensenellaceae, is positively correlated with acet-

ate, glutamine, and polyunsaturated fatty acids, whereas

the yellow module, representing OTUs mostly from

Blautia, is negatively correlated with acetate and other

traits associated with the blue module (Fig. 3c). All these

associations were detected with single taxonomy and/or

OTUs (Additional file 1: Tables S5 and S6). However, both

modules also included several other OTUs from different

taxa, providing further insights for metabolically import-

ant relationships.

The gut microbiota relationships with obese and

impaired glucose tolerance phenotypes

We next assessed the associations of gut microbiomes

with obese and pre-diabetic states by subdividing indi-

viduals based on BMI and the entire range of fasting and

2-h plasma glucose tolerance tests. The average BMI of

Org et al. Genome Biology  (2017) 18:70 Page 5 of 14



the 531 subjects was 27.92 (±0.16), where 100 subjects

(19%) had a BMI <25 and 132 (25%) had a BMI >30.

The pre-diabetic state includes individuals with impaired

fasting glucose (IFG), impaired glucose tolerance (IGT),

or both (see “Methods” for details) [38]. Based on these

criteria, 164 subjects (31%) had normal glucose tolerance

(NGT) and 352 had been classified as in a pre-diabetic

stage (pre-T2D), from which 287 (54%) had IFG, 15

(2.8%) had isolated IGT, and 50 (9.4%) had a combin-

ation of IFG and IGT. A total of 15 individuals had

newly diagnosed T2D in follow-up visits and these indi-

viduals were excluded from the analysis. The character-

istics of these subjects are shown in Additional file 1:

Table S12.

We first evaluated bacterial richness, diversity, and dif-

ferences in the ratio of Firmicutes to Bacteroidetes in

subjects with different body weights and predisposition to

T2D based on OGTT. No significant differences were de-

tected in either bacterial richness or in the ratio of Firmi-

cutes to Bacteroidetes (Additional file 2: Figure S6a, b).

However, several differences were observed in gut micro-

biota composition between subjects with extreme BMI

and between NGT and pre-T2D (Fig. 4a, b; Additional

file 2: Figure S6c). For example, subjects with high BMI

had significantly higher abundance of family Tissierella-

cea and genus Blautia and decreased abundances of Ar-

chaea (Methanobrevibacter) (Fig. 4a). Pre-diabetic subjects,

however, had higher abundances of Anaerostipes and lower

a

c

b

Fig. 3 OTU co-occurrence network and module-trait associations. a OTU co-occurrence network where OTU (nodes) are colored according to the

phyla to which they belong. Blue edges correspond to positive correlations and red edges to negative correlations. Any resulting correlations with

p value ≥0.01 and abs(r) <0.3 were removed. b OTU co-occurrence network were OTU (nodes) are colored according to WGCNA module colors.

c Module–trait associations are shown. Each cell of the matrix contains the correlation between one OTU module and a metabolic trait, and the

corresponding p value. The table is color-coded by correlation according to the color legend (red for positive correlations and green for negative

correlations). FA fatty acids, DHA docosahexaenoic acid, MUFA monounsaturated fatty acid, PUFA polyunsaturated fatty acid, GlycA glycoprotein

acetyls, TMAO trimethyl N-oxide
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abundances of an OTU from families Ruminococcaceae

and Christencenellacea and genus Methanobrevibacter

(Fig. 4b). Both the methanogen Methanobrevibacter and

Christencenellacea have been associated with a lean pheno-

type in previous studies [6, 16, 19, 39].

Using a multivariate regression model we tested

whether obesity and pre-T2D affect associations between

individual microbial taxa and metabolites, and whether

there was interaction between obese/pre-T2D status and

microbial taxa. For example, in obese subjects, the

higher abundance of Bacteroidales was associated with

lower HOMA-IR and the higher abundance of Collinsella

with higher levels of glycerol and phenylalanine, and in

lean subjects the effect was opposite (Fig. 4c). Also,

the abundance of Coprobacillus relative to plasma leu-

cine concentrations depended on the pre-T2D status

(FDR <0.05) (Fig. 4d). Finally, we also constructed

OTU co-occurrence networks separately for subjects

with NGT and for pre-T2D as defined by OGTTs. Our

data show clear differences between interactions of

OTUs in both networks (Additional file 1: Table S13;

Additional file 2: Figure S7a). A module preservation

analysis indicated modules that are unique only for

pre-T2D individuals. For example, a tan module, which

contains mostly OTUs from family Ruminococcacea

and genera Ruminococcus and Oscillospira, is strongly

correlated with glucose levels only in pre-T2D subjects

(Additional file 2: Figure S7b–d).

Discussion

We investigated the associations of gut microbiota with

a large number of metabolically relevant traits using a

subset of 531 Finnish men the from Metabolic Syn-

drome in Men (METSIM) cohort. The METSIM cohort

(total 10,197 individuals) is one of the largest single-site

population based cohorts and was collected from

Kuopio, Eastern Finland, and established to evaluate

genetic determinants of metabolic traits in middle-aged

men. There is increasing evidence that gut microbiota

are an important factor, in addition to genetic and life

style factors, for the development of obesity, insulin

resistance, T2D, and cardiovascular disease. The gut

Fig. 4 The gut microbiota differences in metabolic phenotypes. Mean proportions of significantly different taxa between individuals with different

BMI values (a) and individuals with different 2-h glucose tolerance test (NGT and pre-T2D) (b). Examples of BMI/OGGT metabolite–microbiota

interaction, where the abundances of Bacteroidales, Collinsella (c) and Coprobacillus (d) exhibit opposite associations in individuals with low versus

high BMI levels or individuals with impaired glucose tolerance test (c). *P≤ 0.01, **P≤ 0.001, ***P≤ 0.0001. BMI body mass index, GT glucose tolerance,

NGT normal glucose tolerance, T2D type 2 diabetes
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microbiome is a complex and metabolically active com-

munity, producing many metabolites which can directly

influence host phenotype. Our study investigated gut

microbiota relationships with a variety of factors that

have profound impacts on the development of metabolic

and cardiovascular traits. We present several new find-

ings. First, we identified a number of associations

between gut microbiota and fasting serum levels of fatty

acids, amino acids, lipids, and glucose. These associa-

tions were detected with both the diversity and richness

of gut microbiota as well as with unique bacteria.

Second, we detected significant associations with fasting

plasma TMAO concentrations, a metabolite derived

from dietary choline and carnitine through the action of

gut microbiota. Third, we identified a group of co-

occurrence microbes and demonstrated that OTU-based

module–trait associations confirm already identified as-

sociations as well as provide some new insights for

microbiota–trait relationships. Finally, we detected al-

tered microbiota composition and significant micro-

biota–metabolite relationships dependent on BMI and

normal or altered oral glucose tolerance. These points

are discussed in turn below.

Mounting evidence in mice and humans shows the

important role of gut microbiota-derived metabolites in

regulating metabolism. Multiple studies have shown that

plasma levels of TMAO, derived from dietary choline

and carnitine through the action of gut microbiota, are

associated with coronary artery disease, stroke, and several

cardiometabolic traits, including increased coagulation

and vascular inflammation [8, 31–33]. Consistent with

previous findings in both mice and humans, we found that

the plasma TMAO concentrations were significantly asso-

ciated with Prevotella and Peptococcaceae. Additionally,

we saw a significant positive correlation between plasma

TMAO concentrations with unclassified Clostridales

and negative correlation with F. prausnitzii (FDR <0.1).

F. prausnitzii has been shown to exert anti-inflammatory

effects and decreased abundance of it has been noted in

several immune-related diseases.

Our data show the strongest associations between gut

microbiota and acetate and glutamine levels, where a

total of nine unique taxa were significantly associated

with elevated acetate levels. The higher glutamine and

acetate levels were both also associated with significantly

higher bacterial richness. An elevated abundance of unclas-

sified Clostridales was associated with elevated glutamine

levels and negatively associated with inflammation-related

circulating levels of glycoprotein acetyls (mainly alpha-1-

acid glycoprotein). The phylum Tenericutes (mainly repre-

sented by order RF-39 and ML615J_28) and family

Christensenellaceae were among the top taxa that showed

association with elevated acetate levels. Both taxa have

been previously reported to be associated with low BMI

and TG and higher HDL levels [16, 20]. In the current

study we were only able to confirm order ML615J_28 asso-

ciations with lower TG levels (P = 0.0093), although other

trends were consistent. In addition, we identified novel

strong associations between Christensenellaceae and lower

levels of BCAAs (leucine and isoleucine) and between

Tenericutes and higher ratios of polyunsaturated fatty acids

to total fatty acids.

Acetate is the most common short-chain fatty acid

(SCFA) that is formed during bacterial fermentation of

carbohydrates in the colon [40]. SCFAs are readily

absorbed in the plasma of the host via the intestinal epi-

thelium and thus can serve as an energy source, pre-

dominantly via metabolism in the liver [11, 41]. Previous

studies have shown that both increases and decreases in

plasma SCFA concentrations can be associated with

obesity and metabolic syndrome [42]. It has been shown

that prebiotic fructooligosaccharides and inulin increase

the levels of acetate and that this is associated with re-

duced body weight and fat mass, decreased diabetes, and

a lower food intake [43, 44]. However, recent work by

Perry et al. [45] showed that increased production of

acetate by an altered gut microbiota in rodents leads to

activation of the parasympathetic nervous system and

stimulation of insulin secretion. These studies indicate

that the role of acetate in driving obesity depends on the

gut microbiota composition and on dietary fiber intake.

Several studies have indicated influences of bacterial

taxa on lipid and fatty acid levels [20, 46]. The serum

fatty acid profile is determined by both diet and host fac-

tors, such as endogenous fatty acid metabolism [47].

The Western diet, rich in simple carbohydrates and fat,

markedly affects the gut microbiota ecosystem at the

compositional and functional levels [3, 14, 48, 49].

Elevated levels of lipids and free fatty acids are known

risk factors for metabolic syndrome, insulin resistance,

and obesity [50]. However, dietary fatty acids differ in

structure and have been shown to exert opposite meta-

bolic effects [51, 52]. Our data show that fasting serum

levels of glycerol, monounsaturated fatty acids, and satu-

rated fatty acids are strongly associated with increased

abundance of Blautia and Dorea and decreased abun-

dance of Coprococcus and Peptococcaceae, whereas the

same taxa show opposite associations with polyunsatur-

ated fatty acids, including omega-6 and DHA and

omega-3 and linoleic acid. Several OTUs from genus

Blautia were also positively associated with BCAA

(isoleucine and leucine), alanine, glycerol, and pyruvate

levels. Blautia is a common gut habitant, an acetogen

that belongs to the family Lachnospiraceae, which is one

of the major taxonomic groups of the human gut micro-

biota that degrade complex polysaccharides to SCFAs.

Blautia has the ability to ferment a large variety of or-

ganic substrates, enabling flexible growth in the colon.
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Bacteria in the Blautia genus have been associated with

both decreased and increased obesity and Crohn’s dis-

ease [53, 54]. Our data also showed increased abundance

of Blautia in individuals with high BMI levels (Fig. 4a).

Interestingly, a recent study detected an association be-

tween Blautia and human genetic variants in a genomic

region that has been associated with obesity and BMI

[55]. Since there is great diversity among Blautia oligo-

types, suggesting that the genus represents strains that

comprise a variety of metabolic capacities optimized for

a host and a host environment [56].

Complex interactions exist between gut microbiota

and metabolites. Transient changes in the intestinal eco-

system occur throughout life and are affected by several

factors, the most by dietary components. Consumption

of fat- and sugar-rich diets modifies the gut microbiota

community, which triggers changes in host metabolic

pathways and ultimately affects metabolic state. TMAO

is a good example, where multiple bacterial enzymes are

linked to specific biochemical transformations by the

host. However, the exact molecular relationship among

microbe-derived gut metabolites, how microbes affect

host signaling pathways, and host physiology are still

poorly understood. Our data are correlative and there-

fore we are unable to determine the functional potential

of the microbial community. Further studies (metage-

nomic and functional studies) will be required in order

to understand the exact link between microbiota, metabo-

lites, and their link with host health.

Bacteria in the gut constitute a complex ecosystem in

which different species exhibit specialized functions and

interact as a community. Therefore, genetic studies of

communities, as defined by co-occurrence or some other

measures, may provide a better global picture of the

functional variation that occurs in populations [57]. We

identified modules of microbial communities based on

co-occurrence and used these groups to identify associa-

tions with traits. These generally confirmed similar asso-

ciations observed with single taxa or OTUs; for instance,

OTUs that belong to blue and yellow modules have op-

posite effects with traits and these modules contain taxa

that showed significant associations with the same traits

(Additional file 1: Table S11). In addition, module-based

associations also pointed to some new associations that

were missed with single taxa or OTU-based associations.

The METSIM study has been established to evaluate

important determinants of metabolic and cardiovascular

traits. T2D is preceded by a long pre-diabetic state char-

acterized by mild elevation of fasting and/or postpran-

dial glucose levels. Since this asymptomatic stage may

last for years, it’s important to determine characteristics

that associate with impaired glucose metabolism. In this

study the risk of T2D was assessed using OGTTs and

54% of subjects had either impaired fasting glucose

(IFG) and/or impaired glucose tolerance (IGT). We were

unable to detect significant differences in bacterial rich-

ness as well as changes in the ratio of Firmicutes to Bac-

teroidetes, parameters that are usually linked to obesity

and T2D phenotypes. The 16S rRNA gene captures

broad shifts in community diversity over time, but with

limited resolution and lower sensitivity compared to

metagenomic data [58]. Therefore, metagenomic ap-

proaches provide better estimates of the extent of micro-

bial diversity and richness. However, several taxa showed

significantly different abundances between lean and

obese subjects and individuals with impaired glucose

tolerance. Moreover, we also showed specific gut micro-

biota–metabolite interactions within these groups.

Finally, we were able to confirm some previously de-

tected associations with plasma lipids. For example, the

increased abundance of Methanobacteriaceae and genus

Coprococcus was associated with lower levels of TGs. In

addition, novel significant associations were detected

between Methanobacteriaceae and lower levels of gly-

cerol and total and monounsaturated fatty acid levels

(FDR <0.1). In our cohort 40% of subjects had significant

levels of Methanobacteriaceae, a common methanogen

which recycles hydrogen by combining it with carbon di-

oxide to form methane. Methanobacteriaceae have been

associated with reduced levels of obesity [59]. Consistent

with our associations with TG levels, inhibitory effects of

saturated fatty acids on methanogenesis have been re-

cently reported [60]. However, we were unable to detect

any significant associations with HDL and total cholesterol

levels. The observed inconsistencies may indicate either

limited power to detect relationships, variations between

study designs, and/or the existence of population-specific

associations. The METSIM cohort involves only middle-

aged Finnish men, whereas previously reported population-

based studies from Europe report findings for both genders

over a larger age distribution. The inconsistencies are also

commonly seen in animal studies, where mice are main-

tained in highly controlled environments with similar diets.

In the current study, all stool samples were collected in the

clinic at the same time as all measurements and blood were

taken from the Kuopio region of Eastern Finland. This

population is a genetically relatively homogeneous sub-

isolate, which originated from a limited number of founder

ancestors and is, therefore, enriched in specific genetic

variants. Additional population-based cohort studies are

needed to determine whether there are in fact substantial

differences in predictors of fecal sample-derived microbiota

between populations. Importantly, our study involved

only middle-aged Finnish men and therefore we cannot

exclude the possibility that some of the detected associ-

ations are gender-specific. Recent evidence clearly indi-

cates gender differences in bacterial richness, diversity,

and composition [19, 61–63].
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Conclusions
Our study provides a strong indication that several

cardio-metabolically relevant traits and metabolites are

modulated by the action of gut microbiota. We have

identified a number of novel relationships between gut

microbes and different circulating metabolites, where

some of these interactions could predict a pre-diabetic

state. Our data provide a significant biological resource

and novel avenues for further studies. Further functional

and mechanistic investigations are needed in order to

clarify relationships between microbial communities

and specific cardio-metabolic phenotypes. The exten-

sive clinical and molecular characterization of the

METSIM cohort, as well as its homogenous nature,

make it particularly useful for understanding host–

microbiota relationships.

Methods

Sample collection and characterization

A total of 531 men from the ongoing population-based

cross-sectional METSIM study were included in the

current study. METSIM is a randomly selected cohort of

unrelated men (aged 45–70 years) selected from the

population register of the town of Kuopio in Eastern

Finland (population 95,000). Our subset of participants

took part in a 7-year follow-up study. The study was de-

signed to determine the prevalence and genetic determi-

nants of a wide spectrum of metabolic and cardiovascular

diseases (metabolic syndrome, T2D, impaired glucose

tolerance, impaired fasting glucose, hypertension, obesity,

dyslipidemia, coronary heart disease, stroke, and periphe-

ral vascular disease). Every participant had a 1-day out-

patient visit to the Clinical Research Unit at the University

of Kuopio, including an interview about the history of pre-

vious diseases, current health status, and drug treatment.

Each participants’ height, weight, waist to hip circumfer-

ence, and blood pressure were measured together with an

evaluation of glucose tolerance and cardiovascular risk

factors. The study protocol has been previously described

(Stancáková et al. [21]). Characteristics of the subjects in-

cluded in this study are shown in Table 1. Fasting blood

samples were drawn after 12 h of fasting followed by an

oral glucose tolerance test (OGTT). Stool samples were

provided during their evaluation at University of Kuopio

Hospital and immediately stored at −80 °C. All subjects

have given written informed consent and the study was

approved by the Ethics Committee of the University of

Kuopio and was in accordance with the Helsinki

Declaration.

Sample preparation, sequencing, and data processing

Microbial DNA was extracted from a total of 531 frozen

fecal samples using the PowerSoil DNA Isolation Kit

(MO BIO Laboratories, Carlsbad, CA, USA) following

the manufacturer’s instructions. Microbial DNA was ex-

tracted and the 16S rRNA gene was amplified using the

515 F/806R primer set targeting the V4 hypervariable re-

gion and the DNA sequenced using the Illumina MiSeq

platform as previously described [15]. 16S rRNA sequen-

cing data for the 531 samples are available in the Sequence

Read Archive (SRA) under accession number SRP097785

(https://www.ncbi.nlm.nih.gov/sra/?term=SRP097785).

De-multiplexing 16S rRNA gene sequences, quality

control, and OTU binning were performed using the

open source pipeline Quantitative Insights Into Micro-

bial Ecology (QIIME) version 1.7.0 [64, 65]. The total

number of sequencing reads was 12,785,442 (an average

of 21,543 reads per sample) with an average length of

153 base pairs. Sequences were binned into OTUs based

on 97% identity using UCLUST [66] against the Green-

genes reference database (version 13.8) [67]. Each

sample’s sequences were rarefied to 10,000 reads per

strain to reduce the effect of sequencing depth. Micro-

bial composition at each taxonomic level was defined

using the summarize_taxa function in QIIME. To ensure

comprehensive analysis, we sequenced biological repli-

cates on 13 samples and observed high reproducibility

(Additional file 2: Figure S1b).

Metabolite measurements

Fasting serum samples were collected in the clinic and

stored at −80 °C. These were thawed overnight in a

refrigerator prior to analysis for lipids, lipoproteins, fatty

acids, amino acids, and glycolysis precursor molecules

listed in Additional file 1: Table S1 using a NMR

spectroscopy platform [25, 68, 69]. Stable isotope dilu-

tion liquid chromatography with on-line tandem mass

spectrometry (LC-MS/MS) was used for quantification

of plasma TMAO, choline, betaine, and carnitine as pre-

viously described [9].

Glucose metabolism assessment

Plasma glucose was measured by enzymatic hexokinase

photometric assay (Konelab Systems reagents; Thermo

Fisher Scientific, Vantaa, Finland). HbA1c was analyzed

with a Tosoh G7 glycohemoglobin analyzer (Tosoh

Bioscience, San Francisco, CA, USA). Plasma insulin

concentrations were measured by a luminometric im-

munoassay measurement (ADVIA Centaur Insulin IRI,

no. 02230141; Siemens Medical Solutions Diagnostics,

Tarrytown, NY, USA). HOMA-IR calculation was per-

formed according to the formula: Concentration of

fasting blood glucose (mmol/l) × Concentration of

fasting blood insulin (mU/l)/22.5. Insulin resistance

(IR) was diagnosed if HOMA-IR >2.5.

A 75-g OGTT was performed with blood glucose

measurement before glucose intake and 2 h later. Pa-

tients were divided into three groups depending on the
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glucose metabolism deviation degree: i) individuals with-

out glucose intolerance (fasting glucose <5.6 mmol/l and

2-h glucose is <7.8 mmol/l); ii) individuals with pre-

diabetes (pre-T2D), impaired fasting glucose and/or

impaired glucose tolerance (5.6 to 6.9 mmol/l and 2-h

glucose from 7.8 to 11.0 mmol/l); and iii) individuals

with newly diagnosed T2D at the clinical visit (fasting

glucose ≥7.0 mmol/l or 2-h glucose ≥11.1 mmol/l). Indi-

viduals with T1D were excluded from the study.

Statistical analysis

Alpha-diversity (the number of observed genera (richness),

Pielou’s index (evenness), and Fisher’s alpha (diversity) and

beta-diversity (Bray–Curtis dissimilarities) indices were

generated using vegdist and diversity functions in the vegan

R package (version 2.3-2). We assessed how many varia-

tions of Bray–Curtis distance can be explained by each of

the 60 traits using the function adonis from the R package

vegan. The p value was determined by 1000× permutations

and was further adjusted for multiple testing of 60 traits

using the Benjamini and Hochberg method. The total

variation explained was also calculated per category (fatty

acids, glycolysis-related metabolites, amino acids, ketone

bodies) and for all traits together. The association analysis

was assessed by the Spearman correlation between each

trait and each diversity or richness measure. The p values

were further adjusted for multiple testing of 60 traits using

the Benjamini and Hochberg method.

The contribution of each genus and metabolite to

microbiome variation was derived from canonical cor-

respondence analysis (CCA) using both raw as well as

normalized genus abundances. CCA was performed

using the vegan R package function cca, which performs

ordination based on abundances and variations of each

taxa. Covariates of microbiome variation were identified

by calculating the association between traits and genus-

level community ordination (principal component ana-

lysis based on Bray–Curtis dissimilarity) with the enfit

function in the vegan R package (10,000 permutations,

FDR 5%). Overall, 60 metadata covariates were identi-

fied. Their combined effect size was estimated with the

bioenv functions in the vegan package. Microbiome co-

variates were further tested for associations with alpha-

diversity measures and abundance of genera.

To test the association for each taxonomy and species,

we first filtered low abundance species and did our analysis

using 321 OTUs (shared in more than 50% of samples).

The percentage of each species was arcsine-square root-

transformed by taking the arcsine of the square root of the

proportional value of each species. The associations of indi-

vidual species with each factor were assessed using boosted

additive generalized linear models available in the MaAsLin

R package with 5% significance level after multiple testing

correction. MaAsLin is a multivariate statistical framework

that finds associations between clinical metadata and mi-

crobial community abundance or function. In our analysis

we used the default settings of MaAsLin.

Co-occurrence network analysis

Weighted gene co-expression network analysis (WGCNA)

[70] was used to generate a co-occurrence network based

on the OTU arcsine-square root-transformed count data.

Briefly, we considered a signed network and chose the

minimal beta value satisfying the scale free topology

criteria (optimal beta = 6). We set up deepSplit = 2 and

minModuleSize = 10 as parameters for the dynamic tree

cut function [71]. The module eigenOTU defined as the

first principle component of a module was used to calcu-

late the Pearson correlation between a module and a

metabolic trait. Significance of the correlation was deter-

mined by a Student asymptotic p value. Visualization of

the network was performed using the gplot function avail-

able in the sna R package.

For co-occurrence network comparisons, we con-

structed networks in pre-T2D and NGS conditions using

the same criteria as described above. We randomly

chose 100 samples in both conditions to ensure the

same statistical power in network estimation. Module

preservation was assessed using Z-summary as imple-

mented in the WGCNA R package [72]. Briefly, this

statistic evaluates the module preservation based on

density and connectivity criteria and defined a preserva-

tion cutoff by randomly permuting the module labels in

the test network (in the present study we used 1000 per-

mutations in the test network, e.g., NGS condition).
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