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Abstract.

In this paper, classical time– and frequency–domain variability indexes obtained by

pulse rate variability (PRV) series extracted from video-photoplethysmography signal

(vPPG) were compared with Heart Rate Variability (HRV) parameters extracted from

ECG signals. The study focuses on the analysis of the changes observed during a rest–

to–stand manoeuvre (a mild sympathetic stimulus) performed on 60 young, normal

subjects (age: 24±3 years). The objective is to evaluate if video–derived PRV indexes

may replace HRV in the assessment of autonomic responses to external stimulation.

Video recordings were performed through a GigE Sony XCG-C30C camera and

analyzed offline to extract the vPPG signal. A new method based on Zero-phase

Component Analysis (ZCA) was employed in combination with a fully–automatic

method for detection and tracking of Region of Interest (ROI) located on the forehead,

the cheek and the nose.

Results show an overall agreement between time and frequency domain indexes

computed on HRV and PRV series. However, some differences exist between rest and

stand conditions. During rest, all the indexes computed on HRV and PRV series were

not statistically significant different (p > 0.05) and showed high correlation (Pearson’s

r > 0.90). The agreement decreases during stand especially for the high-frequency,

respiration–related parameters such as RMSSD (r=0.75), pNN50 (r=0.68) and HF

power (r=0.76). Finally, the power in the LF band (n.u.) was observed to significantly

increase during stand by both HRV (28 ± 14 vs. 45 ± 16 (n.u.); rest vs. stand) and

PRV (26±12 vs. 30±13(n.u.); rest vs. stand) analysis, but such an increase was lower

in PRV parameters than that observed by HRV indexes.

These results evidence that some differences exist between variability indexes

extracted from HRV and video-derived PRV, mainly in the HF band during stand.

However, despite of these differences video-derived PRV indexes were able to evidence

the autonomic responses expected by the sympathetic stimulation induced by rest–to–

stand maneuver.

1. Introduction

The measurement of cardiovascular parameters using contactless video–photoplethismo-

graphy (vPPG) signal has gained larger and larger attention in the last decade [1–12].
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Since the pioneer works by Poh and coworkers [3], a variety of solutions have been

proposed to derive, from video of subject’s face, physiological parameters such as heart-

rate [2] and breathing rate [3, 12] or to extract the vPPG signal [13], detect the pulse

waves and to compute beat–to–beat variability parameters [5].

Recently, the agreement between pulse–rate variability (PRV) parameters (both in

time and frequency domain) obtained from PPG and vPPG signals have been assessed

in resting conditions in a limited group of subjects [3, 4, 6]. One paper employes PRV

obtained by vPPG as a surrogate of HRV [11] during supine and sitting conditions.

However, a still open question is whether PRV derived from vPPG can be considered a

valid surrogate of the HRV parameters extracted from the RR interval series and whether

they are able to describe changes in Autonomic Nervous System (ANS) modulation

during provocative tests. To the extent of our knowledge, none of the study have

addressed this issue systematically.

The purpose of this study is therefore to compare PRV parameters obtained from

vPPG with HRV parameters computed on RR series and to evaluate the ability of

vPPG parameters in detecting Autonomic Nervous System (ANS) changes during a

mild sympathetic stimulation induced by a rest–to-stand protocol. The study will be

conducted on a cohort of 60 healthy subjects.

The paper is organized as follows: Section 2 describes the experimental setup,

including video and ECG recordings, the algorithms used to extract the vPPG signal

and the HRV and PRV series. Performances of the methods and the comparison between

PRV and HRV parameters on the population are described in Section 3. Finally,

discussion is reported in Section 4.

2. Material and Methods

2.1. Video and ECG recordings

Video recordings were performed through a GigE Sony XCG-C30C camera, whose image

sensor is 1/3” color progressive scan with spatial resolution of 659× 494 pixels. Videos

were acquired with a frame–rate of 60 frames–per–second (fps) and 8–bits resolutions.

Data were saved in RGB, uncompressed, AVI raw format to be processed offline. The

camera was equipped with 15 mm fixed focal length lenses (Tamron 25 HB), which were

used to magnify the region occupied by the partecipant’s face. The camera was fixed on

a tripod, which was equipped with a mechanical arm to allow the manual adjustment

of camera’s positions when moving from one phase of the experiment to another.

The ECG signal was recorded by the FlexComp Infiniti by Thought Technologies,

Inc. Electrodes were located on the body surface as follows: the negative electrode was

placed on the right shoulder, the positive electrode on the left side of the chest and the

ground electrode on the left shoulder. ECG traces were sampled at 256 Hz.
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 2.2. Experimental Procedure

A group of 60 healthy volunteers (31 males and 29 woman) with different ages (24± 3

mean ± SD, range 20− 34) were recruited for this study. Participants had various skin

types ranging from type II to type IV.

All the recordings were conducted indoor, with a changing mixture of sunlight

passing through the window and artificial light provided by illumination indoor. All

the participants received a complete explanation of the above procedure and signed

a comprehensive, written informed consent. Subjects underwent to a classical rest–

to–stand maneuver, which is known to elicit sympathetic responses. During rest, the

subjects were asked to lay on a bed facing the camera. The bed was positioned in front

of the window to have direct sunlight on subject’s face. Participants were instructed

not to move their head in order to reduce movement artifacts. After a time period of

2-3 minutes, needed to relax the subjects and to stabilize their cardiac frequency, video

and ECG recording were started and continued for 5 minutes. Next, the subjects were

asked to stand up, while the camera was manually moved to follow their face. During

this period both video and ECG recording were suspended. When subjects had reached

a stable position and camera was properly aligned, ECG and video recordings were

restarted for a period of five minutes.

2.3. Extraction of vPPG Signal

Videos were processed offline to derive the vPPG signal. Three regions of interests (ROI)

were considered: forehead (ROI1), nose (ROI2) and cheek (ROI3). ROI detection and

tracking were developed in OpenCV: detections were performed by the Viola-Jones face

detection algorithm [14] while ROI tracking was obatined by the Lucas–Kanade–Tomasi

motion flow tracking algorithm (LKT) [15].

Let’s indicate as M the number of color channels ( M = 3, the R, G and B channels),

as N the number of ROIs ( N = 3 namely forehead, nose and cheek ROIs) and as L

the number of frames of video recording. In each ROI, a spatial average of pixels

intensity was calculated for each frame, thus obtaining M ×N time series of L. These

time series were firstly detrended using the technique described in [16], setting the

smoothness parameter λ = 400. A hamming bandpass filter with cut–off frequencies

of f1 = 0.1, f2 = 8Hz was then applied to remove the high frequencies components,

mainly correlated to artificial light, and the low frequencies components, associated to

slow subject movements.

After this preprocessing, the vPPG signal was extracted using three methods: i)

the chrominance model ; ii) the Zero-phase Component Analysis (ZCA) method and

iii) a method based on the combination of chrominance model and ICA (ChromICA).

Those will be briefly described in the following:

2.3.1. Chrominance model. According to the deHaan’s work [7], it is possible to

maximize the pulsate component of the reflected light and minimize extraneous noise
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by an appropriate weighing of R, G and B components:

S = c1R + c2G+ c3B (1)

where c1 = 3
(
1− α

2

)
, c2 = −2

(
1 + α

2

)
, c3 = 3α

2
are the linear coefficients and α = σ(X)

σ(Y )

is the normalization factor that takes into account different amplitudes of the two

chrominance signals X and Y .

2.3.2. ZCA method. The ZCA method can be seen as a variant of Principal Component

Analysis (PCA). Let’s X an L × M matrix having the R, G and B channels in its

columns and the L points in its rows. Let’s also assume that the covariance C = XTX

has eigenvectors in the columns of E matrix and the eigenvalues on the diagonal of Σ,

so that C = EΣET . We are interested to find a matrix W so that the transformation:

Y = WX (2)

will produce a set of new variable Y which are uncorrelated and have unit variance (i.e.

YTY = I). In the PCA approach, the whitening matrix is:

WPCA = Σ−1/2ET (3)

This transformation first rotates the variables using the eigenvectors in the matrix E.

This results in orthogonal components characterized by different variances. To achieve

whitened data, the rotated variables are scaled by the square root of the eigenvalues

Σ−1/2. Because of the rotation, the decorrelated channels will be shuffled respected to

the order of the input data. However, since the pulse information is mainly contained

in the G channel (as shown by Verkruysse et al. [17]), a method that could avoid the

shuffle of the channels would facilitate the selection of the channel containing the main

videoPPG information. One possible solution is represented by zero phase component

analysis (ZCA). In ZCA the following transformation matrix is used:

WZCA = EΣ−1/2ET (4)

In this case the second rotation given by E rotates back the data to the original

coordinate system. Therefore the term zero phase indicates the forward-backward

projection of the data to the original space.

The ZCA is also called Mahalanobis transformation and, according to [18], among the

whitening methods, it is the unique method that, by maximizing the cross-covariance

Φ between the original data X and whitened data Y, can minimize the total squared of

their distance (defined as Mahalanobis distance):

d(X,Y) =
√

(X−Y)TΦ−1(X−Y) (5)

2.3.3. ChromICA method. Among the population a bulk of subjects moved excessively

their heads during stand position. In this cases the Chrom method lacked of robustness

to recover the pulse cardiac information. We therefore decided to combine the Chrom

method useful to exploit the BVP signal, and ICA to separate better the motion artifact
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to the desired signal.

For each frame the ROI tracking gives the position x-y of each region. After detrending

and band-pass filtering the time series, two signals associated to the ROIs movement

is available. Together with the chrominance signal a matrix of 3 × Ndata was created

for each ROI and ICA decomposition, based on joint approximate diagonalization of

eigenmatrices (JADE) algorithm [19] was applied to separate the motion artifact to the

pulse signal. However since ICA decomposition does not assure the order of otuput

channels, the ZCA decorrelation has been implemented in the JADE algorithm.

Each method was applied on a window of 5 seconds to account to nonstationarity

noise as motion artifact and abrupt changes in reflecting light. Within each epoch, a

coarse estimate of pulse rate fc was obtained by the power spectral density (PSD) of

the windowed signal. The estimate of pulse rate can be erroneous at time, so a track

of the history of pulse rates over the past epochs was accomplished. If the current fc is

off by more than 20%, its value is substituted with the median of previous pulse rates

estimates.

We therefore obtained three vPPG signals, one from each of the analysed ROI.

Among them, the selection of the target vPPG signal was achieved by calculating the

power spectral density (PSD) on the entire signal and by measuring the SNR using the

following formula:

SNR =10 ∗ log10

 ∫ f2
f1
PvPPGi

(f) df∫ f1
0.1PvPPGi

(f) df +
∫ 4
f2
PvPPGi

(f) df

 (6)

where (PvPPGi
(f) with i ∈ {1, 2, . . . , NROI}) is the PSD of ith vPPG signals, f1 =

fp − 0.15, f2 = fp + 0.15 and where fp is the pulse frequency (measured in Hz). The

signal with the highest SNR was selected as target vPPG signal. Finally, vPPG signal

was interpolated using cubic splines and resampled at 256 Hz, to match the temporal

resolution of the ECG signal.

2.4. Extraction of RR and PP series

The detection of pulse waves (P) of vPPG was performed on the first derivative of the

signal by applying the algorithm proposed by Scholkmann et al [16]. Since the detection

of the peak was done on the derivative of vPPG signal, the position of each pulse will

be located on the maximum of first derivative, i.e. along the rising edge of the cardiac

pulse (defined as anachrotic phase). The PP series were extracted as the series of time

difference between two consecutive P positions. To correct possible miss-detected pulses,

the adaptive filtering algorithm proposed by Wessel et al [20] was applied on PP series.

The detection of R peaks in the ECG was automatically performed by applying the

method of Alfonso et al [21]. The R detections were then visually inspected and the

misdetected/erroneous beats were corrected using an interactive home–made software.

Finally, the RR interval series were extracted as the series of time difference between
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two consecutive R positions. The correctness of R detections and RR series is needed

because they will represent the gold standard for the comparison of vPPG methods.

2.5. Quantification of HRV parameters

Analysis of HRV was performed in both time and frequency domain using classical time-

invariant, linear methods as described in [22]. In time-domain, we computed the mean

of normal-to-normal intervals (NN), the standard deviation of all NN intervals (SDNN),

the square root of the mean of the sum of the squares of differences of adjacent NN

(RMSSD) and the proportion of NNs that differ by more than 50 ms.

In frequency domain, the corrected PP and RR series were resampled at 2Hz

and the PSD of Heart Rate Variability (HRV) and Pulse Rate Variability (PRV)

was computed by Welch power spectral densitiy estimate in order to analyze the

parasympathetic and sympathetic activity of ANS . According to [22], the spectrum of

these signals is characterized by three main spectral components: the very low frequency

(VLF) component in the frequency band [0.003 − 0.04]Hz, the low frequency (LF)

component in the [0.04 − 0.15]Hz band and the high frequency (HF) component in

the [0.15 − 0.4]Hz band. Although there is controversy on the physiological meaning

of each component, it is generally assumed that the LF corresponds to sympathetic

and parasympathetic modulation, while the HF is associated to parasympathetic

modulation. Finally, the ratio between LF and HF measures the sympatho/vagal

balance responsible of heart rate modulation. The quantitative evaluation of the power

associated to the LF, HF components have been conducted by determining the area

under the PSD of RR/PP intervals. In this study, the LF and HF components are

presented in normalized units.

3. Results

Two subjects out of 60 were excluded from the analysis: in details, one subject was

moving excessively during stand session, while for the second one the stand session was

not acquired for technical problems. We therefore present the results of 58 subjects.

Results will be divided in two sections: one is dedicated to the comparison of methods

performance and the second regards the comparison between HRV and PRV parameters.

3.1. Performances of the methods

Fig.1 shows the average SNR (computed by equation (6)) of vPPG signal extracted with

the three considered methods (Chrom, ZCA, ChromICA) in the ROIs of interest. During

rest (Fig. 1a), the averaged SNR is almost equivalent for Chrom and ZCA methods,

while it is slightly worse when ChromICA is used, especially for ROI1 (forehead).

During stand (Fig. 1b), the SNR is lower than in rest condition thus evidencing a more

problematic extraction of vPPG signal in stand conditions. Comparing the methods,



7

Table 1: Mean beat detection accuracy according to Se, +P and Acc over all subjects for rest

and stand conditions.

Sensitivity Positive prediction Accuracy

(all values are expressed in mean± std)

At rest

Chrom 0.989± 0.010 0.988± 0.029 0.979± 0.036

ZCA 0.996± 0.006 0.992± 0.015 0.988± 0.019

chromICA 0.988± 0.010 0.972± 0.026 0.961± 0.032

At stand

Chrom 0.969± 0.080 0.941± 0.175 0.927± 0.180

ZCA 0.986± 0.039 0.974± 0.083 0.961± 0.093

chromICA 0.966± 0.079 0.928± 0.143 0.911± 0.149

the ZCA method has a slightly better performance in all the three ROIs, while the

ChromICA has always the worse performance.
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Figure 1: Comparison of SNR obtained for all subjects and different facial regions (ROI1,ROI2,

ROI3). (a) Rest session; (b) Stand session.

Pulse detection performances are reported in Tab. 1 in terms of sensitivity, positive

prediction and accuracy. Very excellent performances are observable during rest, but

all the methods share a performance drop passing from rest to stand session. However,

the lowest reduction of performances is experienced when vPPG is obtained using ZCA

method.

We finally compared the methods in terms of computational load (calculated in the

proprietary commercial software Matlab running on Macbook Air, Processor Intel i5),

measured as the computation time needed to process the RGB signals and to extract

the vPPG signal. Tab. 2 reports the averaged computational load for all the methods.

As the Chrom method is based on a a priori model and only needs the calculation of
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Table 2: Mean computational load calculated for the three different methods Chrom, ZCA

and ChromICA needed to process 5 sec windowed signal.

Method Computational load

(expressed in ms)

Chrom 2.78± 0.46

ZCA 3.21± 0.76

ChromICA 5.42± 1.54

Table 3: Comparison of temporal and frequency parameters between the ECG sensor and the

video camera considering rest-to-stand session (∗ pvalue < 0.05),∗∗ pvalue < 0.01).

ECG vPPG

Rest Stand Rest Stand

HR(Hz) 1.15± 0.18 1.37± 0.20∗∗ 1.15± 0.18 1, 37± 0, 21∗∗

SDNN(ms) 52± 24 56± 19 50± 17 54± 17

RMSSD(ms) 24± 8 18± 7∗∗ 24± 8 24± 10

pNN50(%) 6± 6 3± 4∗∗ 6± 6 6± 7

LF(%) 28± 14 45± 16∗∗ 26± 12 30± 13∗

HF(%) 64± 13% 47± 14∗∗ 61± 11 50± 10∗∗

LF/HF 0.51± 0.38 1.17± 0.79∗∗ 0.49± 0.34 0.70± 0.51∗∗

the coefficients c1, c2, c3 of equation (1), this method is faster than ChromICA and ZCA,

which have to to separate the sources by heuristic approach.

According to the above results, ZCA method showed to be a good compromise

between robustness and speed. Therefore vPPG signal extracted by this method was

selected for the successive variability analysis.

3.2. Comparison between PRV and HRV parameters

In Fig. 2 the correlations calculated over all the population between ECG and vPPG

regarding temporal parameters are reported. During rest session the Pearson correlation

remains high (r > 0.90) for the whole parameters. In stand session the mean heart

rate and the SDNN maintained high correlation, while RMSSD and pNN50 values are

distributed in a wider cloud, therefore the correlation falls. A confirmation of worse

RMSSD results during stand session is shown in the Tab. 3, where the RMSSD estimated

on PP series in stand session is higher both in mean and standard deviation compared

to the RMSSD estimated on RR series.

In Fig. 3 the correlations over all the population between ECG and vPPG of

spectral parameters LF, HF and LF/HF are reported. During the rest session there is
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Figure 2: Scatter plots comparing the temporal measurements of (a-e) heart rate (HR), (b-f)

SDNN, (c-g) RMSSD, (d-h) pNN50, for the ECG and vPPG signal. Upper row: Rest session;

Lower row: Stand session.

a great correspondence between PRV and HRV spectral parameters (r > 0.9). However

in stand position there is an evident drop of correlations in LF, HF and LF/HF. In

Tab. 3 it is possible to notice that during stand session there is a negative bias of the

mean of LF and an overestimation of the mean of HF component estimated from PP

series compared to LF and HF calculated from RR series. Therefore the sympato-vagal

balance expressed by the LF/HF ratio is clearly underestimated, and a bias of 0.5 is

expressed between the vPPG system and the ECG. Although the sympato-vagal balance

value obtained by vPPG is underestimated, Tab. 3 shows that there is a statistically

difference in the LF/HF between rest and stand sessions, detectable by both on HRV

and PRV.

4. Discussions

A few scientific articles have investigated the PRV obtained by vPPG signal [3, 4, 6].

However none of them have tested how vPPG–derived autonomic indexes are modified

during autonomic stimulation and have validated the vPPG-derived PRV as a good

surrogate of HRV.

The extraction PRV parameters from vPPG is not novel. Poh et al. [3] were the

first that implemented a fully automated method to extract from vPPG signal the

spectral parameters of PRV as LF, HF and LF/HF ratio, even if the time recording was

quite short (1 minute only) for an effective computation of spectral parameters [22]; in

addition, the analysis was performed on rest state, only.

McDuff et al. [6] improved the previous work studying the sympathetic activation

during a session of rest/stress task. The results in terms of spectral parameters (LF,HF
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Figure 3: Scatter plots comparing the spectral measurements of (a-d) LF, (b-e) HF, (c-f)

LF/HF ratio, for the ECG and vPPG signal. Upper row: Rest session; Lower row: Stand

session.

and LF/HF ratio) showed a good correlation (r > 0.86) between the vPPG system and

the contact PPG sensor. Although the article demonstrated the feasibility of vPPG

technology to monitor stress condition, some limitations arised: the PRV analysis was

limited to frequency domain only; the use of ICA method implied the implementation

of heuristic approach for the selection of the output channel that can fail when strong

periodic subject movements are present.

Similar comparisons between PRV and video-PRV have been performed in other

works [4, 10], but this comparison is not exhaustive as it is know that PRV and HRV

may differ [23] especially during sympathetic stimulations. Only one previous work [11]

studied the temporal and spectral analysis comparing the HRV obtained by ECG chest

strap and the PRV obtained by the vPPG system during supine and sitting sessions.

However, the subjects acquired in supine position were different from those recorded

in sitting position and thus no evaluation of the capability of the PRV to describe

autonomic changes in the same subject was achieved. Moreover no automatic method

was developed to identify the ROI (done manually) and a controlled illumination of the

environment was performed in order to reduce artificial light interference.

To the extent of our knowledge, this work is the only one which investigate the

vPPG derived parameters as a surrogate of HRV. Our results show that during rest

session both short-term (RMSSD, pNN50, HF) and long-term variability parameters

(LF,SD) are in good agreement (correlation r > 0.91). However during stand session

the concordance deteriorated especially in all short-term variability parameters and

LF/HF ratio exhibits positive bias. This deterioration does not affect the capability to
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detect autonomic changes in LF and HF components passing from rest–to–stand.

Temporal parameters pNN50 and RMSSD evidenced the largest differences: if

pNN50 and RMSSD calculated in ECG are significant different passing from rest to

stand, the same is not observable in vPPG. The difference in pNN50 and RMSSD can

be explained by the lower sampling frequency of video recording (60Hz), which generates

a smooth vPPG signal and induces jitter in vPPG fiducial points detection in the range

of (±1/60 ≈ ±17). This certainly affects PRV interval measurements.

Even if this problem can be overcome in future work by using higher video sampling

rate, it is important to observe these disagreements are also detected using contact

PPG recordings as reported in the review by Schäfer et al. [23] on the accuracy of

PRV as an estimate of HRV. Studies conducted on rest-to-stand or rest–to-tilt protocol

[24–26], showed an increased bias during sympathetic stimulus, especially in short-term

variability parameters, like RMSSD, pNN50. This difference can be explained by Pulse-

Transit Time (PTT) variability [27], which highly modulates high-frequency components

of PRV. PTT influences seem to be predominant during stand.

From a methodological point of view, we have investigated a new method for the

extraction of vPPG signal on short time segment (5 seconds) with potential for real–time

acquisitions. The method is based on ZCA, a variant of PCA. The advantage of using

ZCA method is twofold: firstly, ZCA, by projecting data back to the original space,

avoids the searching of pulse signal among the detected components (required for PCA

or ICA approaches); secondly ZCA is not affected by flipping (i.e. inversion of the sign

from one segment to the consecutive ones) as it may happen in ICA. Our approach has

been proved to be robust in comparison with Chrom and ChromICA. We observed that

vPPG reconstructed by ZCA has a slightly better SNR than those reconstructed by

Chrom method, especially in the most critical situation (i.e. during stand). In addition,

the location of pulse waves was superior in terms of both sensitivity and specificity using

our approach. Conversely, Chrom method was the best one in term of computational

burden.

The overall conclusion is that vPPG variability parameters can be considered as a

good surrogate of HRV parameters during supine position, while more caution should

be paid during stand, where the agreement deteriorates due to both to methodological

(increased motion noises) and physiological reasons (i.e PTT). Nevertheless, we showed

that the PRV extracted by vPPG is able to highlight the mild autonomic activation

induced by stand and thus PRV parameters derived from vPPG can be used to assess

autonomic responses.
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