Postprint of: Trees - Structure and Function 1-14 (2017) In press

Relationships between leaf mass per area and nutrient concentrations in 98 Mediterranean woody species are determined by phylogeny, habitat and leaf habit

Enrique G. de la Riva ${ }^{1,2^{*}}$, Rafael Villar¹, Ignacio M. Pérez-Ramos³, José Luis Quero ${ }^{4}$, Luis Matías ${ }^{3}$, Lourens Poorter ${ }^{5}$ and Teodoro Marañón ${ }^{3}$
'Área de Ecología, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain
${ }^{2}$ Estación Biológica de Doñana (EBD-CSIC), Av. Américo Vespucio s/n, Isla de la Cartuja, 41092 Seville, Spain.
${ }^{3}$ Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS, CSIC, 41012 Seville, Spain
${ }^{4}$ Departamento de Ingeniería Forestal, ETSIAM, Universidad de Córdoba, 14071 Córdoba, Spain
${ }^{5}$ Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
*Corresponding author (enga70@gmail.com; Phone: +34957218635)

Abstract

Leaf structural and nutrient traits are key attributes of plant ecological strategies, as these traits are related to resource use strategies and plant growth. However, leaf structure and nutrient composition can vary among different habitats, leaf habits or phylogenetic groups. In this study, we measured 13 leaf traits (one structural - leaf mass per area, LMA - and 12 nutrient traits) in 98 Mediterranean woody species growing over a wide range of environmental conditions, with the final aim of discerning the main causes of leaf trait variability. The variance decomposition results show that phylogeny, leaf habit and forest habitat affected in several ways the structural and nutrient traits studied. Leaf nutrient concentrations are strongly positively correlated amongst themselves, and negatively correlated with LMA, in accordance with the "leaf economics spectrum". We found that leaf habit and phylogeny were important causes of variation in LMA and in a broad number of leaf nutrients (i.e. $C, N, M g, S, K$), while other micronutrients seemed to be more dependent on the environment (i.e. Cu and Mn). In summary, our study reinforces the existence of the leaf economics spectrum in a

33 broad pool of Mediterranean woody species, and demonstrates the strong influence of 34 phylogeny, leaf habit and environmental context as the main drivers of variability in 35 some leaf structural and nutrient traits.

37 Keywords: Functional traits, Leaf economics spectrum, Nitrogen, Phosphorus, 38 Phylogenetic independent contrast (PIC), Stoichiometry.

39 Key message: This study reinforces the existence of the leaf economics spectrum in 40 Mediterranean woody species, and demonstrates the strong influence of phylogeny, leaf 41 habit and environmental context as main drivers of variability in structural and nutrient 42 traits of leaves.

44 Author contribution statement

45 EGdR, TM and RV conceived the ideas; EGdR, JLQ, IMP-R and LM collected the data;
46 EGdR analysed the data; and all authors contributed to the writing.
47 Conflict of interest

48 The authors declare that they have no conflict of interest.

Introduction

The leaf is the main organ for photosynthesis in higher plants. Consequently, leaf traits are closely related to the resource uptake and growth potential of plants (Niinemets and Kull 2003; Wright et al. 2004). Among leaf traits, Leaf Mass per Area (LMA) - or its inverse, specific leaf area (SLA) - is a structural trait widely used as an indicator of differential functional strategies in plant species (Wright et al. 2004; Díaz et al. 2016). Plant growth requires at least 17 mineral elements (Watanabe et al. 2007) that are taken from the soil (Brouwer, 1962), and are used in their leaves to support fundamental physiological processes (Asner et al. 2014). As a result, LMA and leaf nutrient concentration are often closely related across species, both in Mediterranean environments (Dominguez et al. 2012; Grubb et al. 2015; de la Riva et al. 2017) and
other biomes (Reich et al. 1999; Niinemets and Kull 2003; Wright et al. 2004; Chen et al. 2011), suggesting the existence of a global spectrum of leaf trait coordination and trade-offs.

The leaf economics spectrum theory (LES, Wright et al. 2004) indicates the existence of a trade-off between investment in mechanical support on one hand and investment in physiological activity on the other (Pratt et al. 2007). For instance, plant species with soft or thin leaf tissues (i.e., low LMA) and short-lived leaves tend to have a higher leaf N concentration, which potentially confers higher photosynthetic capacity and high growth rates (Poorter and Remkes 1990; Wright et al. 2004; Poorter and Bongers 2006; de la Riva et al. 2016b). On the contrary, plant species with higher LMA values have thicker and denser leaves and a greater proportion of C in structural tissues (i.e. vascular and sclerenchyma). In combination this enhances the protection of leaves against biophysical hazards, thus enhancing leaf lifespan and the duration of photosynthetic revenues from leaves. Other macro-or micronutrients such as $\mathrm{Ca}, \mathrm{Mg}, \mathrm{S}$, Fe, Mn and Zn are also important but their relationships with LMA have been studied less (but see Niinemets and Kull 2003 and Fyllas et al. 2009).

The structural and nutrient concentration of leaves may be regulated by evolutionary and physiological processes (Reich et al. 1992 and 1999). For instance, a variety of nutrient uptake and use strategies may have facilitated the radiation and diversification of deciduous species during the Cretaceous (Axelrod, 1966), which promotes species coexistence by diverging in nutrient requirements according with their leaf habits (de la Riva et al. 2017). In addition, environmental conditions and habitat specialization can also strongly influence leaf nutrient concentrations (Ågren 2008; Sardans et al. 2015). Thus, nutrient uptake and utilization may reflect a balance between nutrient availability in the environment and the basic metabolic requirements of plants (Sterner and Elser, 2002), where micronutrient concentrations seem to be more determined by the availability in the environment and luxury uptake whereas macronutrient concentrations seem to be more determined by plant requirements (Hans et al. 2011; Zhao et al. 2016). Leaf structure, nutrient composition and their relationships may vary therefore with habitat conditions, leaf habit or evolutionary history (Niinemets and Kull 2003; McGroddy et al. 2004; Watanabe et al. 2007; Chen et al. 2011; Sardans et al. 2015; de la Riva et al 2017). Yet, how much of the trait variation can be explained by each of these factors remains largely unknown (Asner et al. 2014).

Knowing how leaf nutrient concentrations are related (i.e., the stoichiometry) is also very important for a better understanding of plant functioning. Stoichiometric homoeostasis is defined as the ability to maintain a given elemental composition despite fluctuations in the environment (Sterner and Elser 2002), and such homeostasis is very relevant to plant fitness and species strategies (Yu et al. 2011). According to the "biogeochemical niche hypothesis", different plant species show an elemental balance that is "optimal" for functioning in their specific environmental niche (Peñuelas et al. 2008). Thus, the "optimal" stoichiometry would be the result of the evolutionary history under specific environmental conditions, leading to a determined plant strategy, even though some degree of plasticity exists because of local environmental conditions and competitive interactions (Sardans et al. 2015).

Variation in $C: N: P$ ratios has been most investigated, since N and P are commonly considered the most limiting nutrients for plant growth (Elser et al. 2007). However, contrasting predictions have been made; Tilman's resource ratio hypothesis (Tilman 1997) assumes that plants take up nutrients in the proportions needed for growth, whereas Koerselman and Meuleman (1996) suggest that the ratios of nutrients in plant biomass simply reflect the relative amounts of nutrients available to plants. Indeed, contradictory patterns for these nutrient ratios have been found (i.e. Niinemets and Kull 2003). Because N is often the most limiting nutrient for growth (Vitousek and Howarth 1991), it frequently shows the lowest coefficient of variation (Marañon et al. 2015; Zhao et al. 2016). Thus, cross-species variation in the ratios between leaf N and other nutrients reflects physiological scaling relationships in nutrient requirements (Knecht and Göransson 2004), which is crucial to understand plant nutrition and nutrient deficits (Güsewell 2004; Knecht and Göransson 2004). However, the ratios of N to other macro or micronutrients - such as $\mathrm{K}, \mathrm{Mg}, \mathrm{Ca}$ or Fe - have been barely explored (Urbina et al. 2015).

In this study, we analyse the relationships between leaf structure and leaf nutrient concentrations in 98 Mediterranean woody species growing in five different vegetation types (including forests and shrublands), within the Southern Iberian Peninsula, that encompass a wide range of environmental conditions (mainly aridity). We first explored the spectrum of variation of one of the most-relevant structural traits (LMA) and of 12 leaf nutrients -including macronutrients (C, N, P, K, Ca, Mg and S) and micronutrients (i.e. $\mathrm{Mn}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Cu}$, and B)-along this gradient of aridity (from sub-

127 humid forests to arid shrublands). We selected LMA as an anchor trait due to its well128 known importance as a functional indicator of resource-use strategies (Wright et al. 2004; Poorter et al. 2009). We tried to discern the proximate causes of this variability in leaf traits. Specifically:

131 We hypothesize that phylogeny and leaf habit explain most of the variation in LMA and

149 Material and Methods

150 Data collection

We selected most abundant and representative woody species occurring in forest and shrublands of 13 sites distributed across South Spain (Table S1 available as Online Resource). They covered a wide range of environmental conditions, from high mountain forests in Sierra Nevada to coastal shrublands in Doñana, from sub-humid forest in Cadiz to arid shrublands in Almeria. The 13 study zones were then grouped into five broad habitat types, based on the European classification of natural habitats (European

Commission 2013). These five habitats are: 1) Shrubland "forest" (hereafter SF), which includes the arid and semi-arid shrublands, 2) Evergreen oak forest (hereafter EOF), which includes the sclerophyllous Mediterranean oak forests of Quercus ilex L. and Q. suber L., 3) Pine forest (hereafter PIF), which includes the Pinus sy/vestris L. forest of mid-elevation mountains, 4) Deciduous oak forest (hereafter DOF), which includes the Mediterranean deciduous oak forests of Quercus canariensis Wild. and Quercus faginea Lam., and 5) Riparian forest (hereafter RIF), which includes the deciduous-tree forests (e.g. with dominant species such as Fraxinus angustifolia Vahl. and Ulmus minor Mill.) associated with permanent water availability.

In each study site we measured LMA and leaf nutrient composition of most abundant woody species, many of them occurring in more than one study area (a total of 172 observations and 98 species; Table S2, available as Online Resource). In spring, we selected six individuals per species and sampling site, collecting five or six fullyexpanded leaves per individual. Leaf mass per area (LMA, leaf dry mass per unit of area, $\mathrm{g} \mathrm{m}^{-2}$) was measured according to the methods described by Pérez-Harguindeguy et al. (2013). Leaf nutrient concentrations were determined for a mixture of leaves from five or six different individuals, per species and sampling site, selected at random. The N and C concentrations were measured using an elemental analyser (Eurovector EA 3000, EuroVector SpA, Milan, Italy). The macronutrients P, K, S, Ca and Mg and the micronutrients $\mathrm{B}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mn}$ and Zn were extracted by wet oxidation with concentrated HNO_{3}, under pressure in a microwave digester, and analysed by ICP-OES. The quotients between the leaf concentration of N and those of the other 11 nutrients (N :nutrients) were calculated on a mass basis.

The species were sorted into four leaf habit categories: deciduous (hereafter De), summer semi-deciduous (hereafter Sa), evergreen (hereafter Ev) and evergreen needles (hereafter Ne). To obtain a reasonable sample size for phylogenetic groups, the species were separated in ten groups attending to their evolutionary distance (around 100 million years; see Fig. S1, available as Online Resource). The species from the Division Magnoliophyta [Berberis hispanica (Boiss. \& Reut.) Malag., Osyris alba L., Ruscus aculeatus L. and Smylax aspera L.] were grouped together, and Ephedra fragilis Desf. was grouped with the closest group (gymnosperms). Vitis vinifera L. and Armeria vetulina Boiss. \& Reut. were discarded for this analysis because they could not be grouped with any related phylogenetic group (see Table S3 for details).

A principal component analysis (PCA) was performed with the complete set of 13 leaf variables (LMA and 12 nutrients) for the 172 observations to explore the main trends of variation, and the distribution of leaf habit types and phylogenetic groups in the multivariate space (e.g. Reich et al., 1999, Fyllas et al. 2009, Sardans et al. 2015). To assess the influence of the phylogeny, habitat type and leaf habit, as fixed factors, we used linear mixed models with the PCA scores of the first and second components as the dependent variables and the species as the random variable.

The variability of the 12 leaf nutrient traits was measured as the coefficient of variation (CV; e.g. Zhao et al. 2016).

To assess separately the influence of each explanatory factor on each of the studied leaf traits (LMA and 12 nutrients), a variance component analysis was performed. For this, we fitted a general linear model with a factorial design, using a traditional Type I sum-of-squares (Gower 1963). This approach can be used to estimate different group-level regression coefficients and their variation in unbalanced datasets (Gelman and Hill, 2006). Due to the unbalanced nature of our dataset, we verified the robustness of our results with linear mixed models (species as random effect) for the explanatory factors, which explained at least 10 \% of the variance. In addition, post hoc Tukey tests were performed to check the significance of differences between the least square means of each group within each factor.

The relationship between LMA and leaf nutrient traits was analysed using a linear mixed model, considering leaf traits as the fixed variables and species as the random variable. The correlation of these relationships (r) was obtained with the marginal R^{2}, which was calculated with the sem.model.fits function in the 'piecewiseSEM' package (Lefcheck 2015). To assess whether the relationships between LMA and nutrient traits are also consistent within environments located at different regional positions, the same analyses were performed within each habitat independently. We did not test the relationships between LMA and nutrients or N : nutrients for each phylogenetic group separately, since there were not enough species ($n<9$ in 6 of the 10 groups) for statistical consistency.

To allow for the influence of species evolutionary history, the above-described relationships were also determined by fitting a phylogenetic generalised least squares (pgls) model. First, we calculated the average value for each species (a total of 98 woody species). Second, we calculated the phylogenetically independent contrasts (PICs), which can assess the impact of phylogeny on our results (Webb et al. 2008; Verdú and Pausas 2013). For these PICs, we used the pgls function of the caper package for R (R Foundation for Statistical Computing, Vienna, AT), which addresses phylogenetic non-independence among species by incorporating covariance between taxa into the calculation of the estimated coefficients. For more specifications related to the building of the phylogenetic tree, see de la Riva et al. (2016b).

To allow us to compare the stoichiometry results appropriately (based on the slopes) with other studies (e.g. with the "optimum nutrient ratios" proposed by Knecht and Göransson 2004), we assessed the bivariate relationships between N and other nutrients with Standardised Major Axis Regression Tests (SMART; Warton et al. 2006) (for the 172 observations combined and for each independent forest habitat). But, in order to ensure that these relationships are not the result of a determined group of species, their significance was also determined by linear mixed models, considering the species as the random factor. In addition, PIC was carried out to control the phylogenetic constraints.

The variables were log-transformed, if necessary, to meet assumptions of normality (based on the Kolmogorov-Smirnov test) and homoscedasticity (based on the Levene test). The PCA and linear mixed model analyses were conducted in the R 2•10•0 statistical platform (R Development Core Team 2011), using the packages 'FactoMiner' (Lê et al. 2008), 'smatr' (Warton et al. 2012) and 'nlme' (Pinheiro et al. 2015). The variance component analysis was performed with Statistica 10.0 (Statsoft, Tulsa, OK, USA).

Results

Trait associations: general trends

To evaluate how the leaf and nutrient traits were related we first carried out a PCA. The first PCA axis (explaining 31.0% of the total variance) showed a high loading of leaf
nutrients ($\mathrm{N}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{B}, \mathrm{S}$) to the left and a high loading of LMA and C to the right. The second PCA axis (which explained 11.9 \% of the variance) exhibited a high loading of Zn and Cu at the top and of P at the bottom (Fig. 1A). The positions of the 98 species along the biplot of the first and second PCA axes reflect the phylogenetic groups (Fig. 1A) and the leaf habit types (Fig. 1B), while no significant differences were found among forest habitats (Fig. S2, available as Online Resource).

There was a separation among the ten phylogenetic groups along the first PCA axis (Fig. 1A). Fabales (group D) appeared on the left side (with higher leaf nutrient concentrations), while Gymnosperms (J) and Fagales (B) were on the right side (with the opposite trait values) and the other groups had intermediate scores. There were also differences corresponding to leaf habit. Species with deciduous leaves and, to a lesser extent, with semi-deciduous leaves were separated along the first PCA axis (with higher leaf levels of N, Ca and Mg) from species with evergreen or needle leaves (with higher LMA values; Fig. 1B). However, the second PCA axis separated the species with deciduous leaves, which were richer in P, from the semi-deciduous species, which were poorer in P and had higher concentrations of some metals (Zn, Cu and Fe). With respect to the habitats, despite the absence of significant differences among the PCA scores, species from RIP tended to occur towards the negative extreme (P-richer) of the second axis, while those of the other three forest types (DOF, SF and EOF) were towards the positive end (Fig. S2, available as Online Resource).

Influence of phylogeny, forest habitat and leaf habit on trait variability
The coefficient of variation of the leaf nutrient concentrations across the 172 plant leaves analysed ranged from 6.7 \% for C to 160 \% for Cu (Fig. 2), with significant differences (t-test, $P<0.01$) among the micronutrients (111.4%) and macronutrients (45.9 \%). Variance partitioning analysis indicated that phylogeny caused most of the variation in $\mathrm{N}, \mathrm{Ca}, \mathrm{K}, \mathrm{Mn}$ and Mg , whereas forest habitat caused most of the variation in P, Cu and S . Variation in leaf habit explained $>20 \%$ of the variation in LMA, N, Ca, Fe, Zn and Mg (Fig. 3). Only 7 \% of the variation in C (not shown) could be explained by these three factors.

The Liliopsida, Santalales and Ranunculales (group J) had the highest nutrient concentrations, whereas Malvales, Violales and Sapindales (group A) and Ericales (group F) had the lowest values. In terms of leaf habit, (semi)-deciduous species had the highest values for $\mathrm{N}, \mathrm{B}, \mathrm{Ca}$ and Mg (which were also related with Rosales and Fabales), whereas evergreen species and, especially, needle-leaved species had higher LMA and Fe. Species from DOF had the highest Cu and lowest P concentrations (see Fig. 3).

Relationships between LMA and leaf nutrients
The LMA was related significantly and positively with leaf C and negatively with the concentration of most leaf nutrients (Table 1), except for Fe, Mn and Zn . All the significant relationships observed were consistent after considering PICs (Table S3, available as Online Resource). However, when analysing separately by habitat types, many of the relationships among the LMA and nutrient traits were not significant. Only the group of species from the pine forest maintained the significant relationships (except for C). Among the variables, the relationship LMA-Mg was significant for four of the five forest habitats (Table 1). The LMA was related significantly and positively with $\mathrm{C}: \mathrm{N}$ (Fig. 4). Also, significant and positive relationships were found between LMA and $\mathrm{N}: \mathrm{Mg}(P=0.001)$, as well as with $\mathrm{N}: \mathrm{Ca}$ and $\mathrm{N}: \mathrm{Mn}(P=0.04$ and $P=0.01$, respectively), but these two were phylogenetically dependent (Table S3).

Stoichiometry

The N concentration was related significantly and positively to all other nutrients except Mn and Zn , when the whole species pool was considered (Table 2 and Fig. 5). These relationships were generally also significant when using PICs (Table S3, available as Online Resource). In general, the slopes were positive and greater than 1, indicating increased levels of nutrients relative to N (except for P and C) (Table 2). For N and P, the slope was less than 1 (0.83), indicating that when N increases, the P concentration also increases but at a lower rate. However, for C the slope was negative (-4.6), indicating a decrease in C when N increases. These general stoichiometric patterns varied according to the forest habitat, but many of the relationships between N and the other leaf nutrients were not significant, probably because of a smaller sample size and
a narrower range of trait values considered. PIF was the group with the most significant relationships (Table S4, available as Online Resource). Moreover, we found strong differences between groups, but without a regular pattern (Table S5, available as Online Resource).

Discussion

Variation in LMA and nutrient composition among woody species
Our analyses of variance partitioning for the leaf nutrients considered in this study revealed fairly-unbalanced distributions across phylogeny, leaf habit or habitat type. Interestingly, these results were highly nutrient-dependent, which suggests different processes of nutrient regulation. Thus, while some nutrients seemed to be more related to evolutionary constraints (e.g., Mn, K, N, Mg or Ca) and leaf habit (B, Ca, Mg or N), for others the variation was mainly driven by environmental conditions (e.g., P, Cu, S or $F e)$. Thus, our results indicate that leaf nutrient concentration is determined by species constraints and evolutionary processes together with acclimation to the environmental conditions (Pärtel et al. 2007). Nevertheless, a high percentage of the variance (58 \%, on average) was not explained by the three factors considered in our study (similar to Fyllas et al. 2009), likely due to the involvement of other potential factors associated to differences among sites, species or individuals (Watanabe et al. 2007; Messier et al. 2010; Auger and Shipley 2013)

As we hypothesized, leaf macronutrients were less variable than micronutrients (Zhao et al. 2016). Comparable results were obtained by Han et al. (2011) and Marañón et al. (2015), with lower variability for N, K and P, the three most-frequently-limiting nutrients, while trace elements such as Mn and Cu showed the highest variability. The physiological reasons have yet to be further elucidated (Zhao et al. 2016). According to the "hypothesis of stability of limiting elements" (Han et al., 2011), those elements that are largely necessary for the plant (frequently scarce) are often limited by stoichiometric requirements. Hence, the extreme lower values of these elements could be non-viable from a physiological point of view, while the higher values could imply higher growth rates, diluting the increase of the nutrient with the increase of the mass.

The general pattern of LMA and leaf nutrients followed the acquisitionconservation trade-off (Wright et al. 2004). In this respect, leaf habit and evolutionary context are important leaf-history attributes of plants in the determination of LMA and leaf nutrient concentrations (Reich et al. 1992; Sardans et al. 2015), and some links among these two types of attribute exist. Thus, the deciduous species (commonly associated with acquisitive strategies) and the semi-deciduous species from the Fabales group (N fixers; Cleveland et al. 1999) showed higher nutrient concentrations and lower values of LMA. In contrast, the evergreen angiosperms, especially from Malvales, Violales, Sapindales, Ericales and Fagales, and the needle-bearing gymnosperms showed opposite syndromes (related with a conservative resource-use strategy; cf. de la Riva et al. 2016a, b), which favours slow growth rates and more-efficient use of nutrients, resulting in low nutrient requirements (Ryser 1996). It is of note that the semideciduous species showed some patterns similar to those of the deciduous species (Fig. 1 and Fig. 3), despite their contrasting habitats. The semi-deciduous habit is typical of dry Mediterranean conditions, in which shrubs are able to shed partly or completely their leaves during summer to reduce water loss by transpiration (Zunzunegui et al. 2005; Ciccarelli et al. 2016). Plant functional convergence often occurs as an adaptation to similar environmental stresses, which promote similar functional and physiological traits (see Jacobsen et al. 2008). In our case, winter deciduous and summer semideciduous species displayed similar patterns regarding leaf nutrients (especially Ca, Mg, B and N). These results suggest similar functional physiological solutions to different environmental stresses. In both cases, the leaf life-spans are shorter, which is related to high relative nutrient requirement and low resistance to physical hazards (Ryser 1996). Therefore, our results support the existence of different nutrient-use strategies associated with differences in leaf habit, which could result in different functional adaptive solutions, constraining the evolutionary processes (Sardans et al. 2015).

Nutrients more related to the environment were not clearly aligned with this nutrient-uptake strategy. Thus, habitat type was a main factor determining the leaf concentrations of some heavy metals ($\mathrm{Fe}, \mathrm{Zn}, \mathrm{Cu}$), as well as of P and S , supporting that environmental conditions usually act as important drivers of nutrient concentrations in terrestrial plants (Asner et al. 2014; Zhao et al. 2016). The strong influence of habitat type on leaf concentrations of trace elements may arise because they are determined largely by anthropogenic sources in the environment and by the selective uptake of soil
elements, the differential exclusion or accumulation and the transport within plants (Broadley et al. 2007; Marañón et al. 2015). The Cu concentration was related almost exclusively with habitat type, showing also the highest CV. This result could be partly explained by the fact that one of our study sites (El Molino Canyon) showed high values of soil Cu (up to $34 \mathrm{mg} \mathrm{kg}^{-1}$), probably due to its proximity to a vein rich in Cu (Navarro-Fernández et al. 2016). This result suggests that, although macronutrients are usually more mobile than micronutrients (i.e. trace metals) (Zhao et al. 2016), leaves can accumulate more metals than required for plant demand, depending on the soil conditions.

Leaf P was also strongly dependent on the environment (habitat type) and only weakly determined by phylogeny, supporting recent studies (Asner et al. 2014; Zhao et al. 2016). Leaf P decreases with higher temperature, lower precipitation, and higher water stress (Reich and Oleksyn 2004; Yuan and Chen 2009; Sardans et al. 2011), because increasing aridity reduces biological activity and limits the soil supply of P (Delgado-Baquerizo et al. 2013). This could also explain the low values of P found in the most-arid sites (shrublands), compared to the RIF. In addition, aridity limits plant size (de la Riva et al. 2016c), which seems to be related with P acquisition; shrubs tend to show lower values of leaf P than trees because of their lower capacity to maintain larger root systems, which would allow them to explore large soil volumes and access the immobile available P (see Niinemets and Kull 2003 and references therein). However, the symbiosis with mycorrhizal fungi might improve the ability of different woody species to take up P and should be also considered (Navarro-Fernández et al. 2016).

Correlates of the nutrient concentrations and LMA of woody species
Strong relationships between the LMA and the concentrations of some elements were found in the $98-$ woody species analysed in this study. Across the species, LMA was related negatively to most of the leaf nutrients studied, and these relationships were not affected when phylogenetic relatedness was considered, providing some evidence of convergent evolution between leaf structure and nutrient concentration. Our results agree with the general global relationship between LMA and N and P, broadly known as the "Leaf Economic Spectrum" (LES, Wright et al. 2004), which could be extended to
other nutrients less frequently analysed such as $\mathrm{Ca}, \mathrm{K}, \mathrm{Mg}, \mathrm{B}, \mathrm{Cu}$ or S . Thus, species with a higher LMA tend to have lower values of nutrients and low rates of photosynthesis and respiration, which takes longer to pay back the leaf construction costs (Villar and Merino 2001; Wright et al. 2004; Villar et al. 2006). In this respect, leaves with longer life-spans require greater mechanical support, so the increase in LMA is related to a greater proportion of C in structural tissue in woody plants (Villar et al. 2013; de la Riva et al. 2016a), which makes them less susceptible to environmental hazards (Poorter and Villar 1997; Poorter et al. 2009). By contrast, higher concentrations of leaf nutrients lead to higher photosynthetic rates per unit mass (in the case of N), greater control of stomatal opening (due to K) and higher rates of protein synthesis (Ca and Mg) (Mayland 1990; Egilla et al. 2005; Villar et al. 2006; Hashimoto and Kudla 2011). The LMA was positively related to the C:N ratio. This ratio gives an idea of the relative investment in structure (C) and cell functioning (N); species having leaves with a higher C:N ratio are usually slow-growing (Poorter and de Jong 1999; Villar et al. 2006).

However, the general relationships between leaf structure and nutrients became weaker, or disappeared, when considering groups of species with the same leaf habit or growing in environmentally-similar forest habitats, which may reflect an underappreciated dimension of the LES (Fyllas et al. 2009). Our results, and previous studies based mainly on morphological leaf traits (Funk and Cornwell 2013; de la Riva et al. 2016b), suggest that these differences could be related to the spatial scale. Thus, for a broad range of species a strong relationship among structure and nutrients exists. But, when we consider groups of species growing in similar environments, which have been selected through the same filter, the range of trait variation is smaller, and the relationships could be weaker (Niinemets and Sack 2006). Hence, these relationships do not necessarily match the global pattern (Funk and Cornwell 2013).

Stoichiometric relationships and variations among habitats
There were positive relationships between N and the concentrations of most of the nutrients considered (except for C , which was related negatively), with significant differences between habitat types. Considering as reference values the "optimum nutrient ratios" (Knecht and Göransson 2004), Ca, Mg and K showed ratios higher than
the optimum, but the P ratio was slightly lower than expected (Fig. 5). This indicates that plants are mostly limited by either N or P , while the other elements can be taken up in excess of requirements for growth (Knecht and Göransson 2004). Thus, our results suggest that strong regulation exists for N and P , while other nutrients - such as K, Mg and Ca -show less or no regulation. The $\mathrm{N}: \mathrm{P}$ ratio showed a slope of 0.83 , indicating that P accumulates at a lower rate than N . This value is similar to those ($0.77-0.93$) obtained in tropical forests (McGroddy et al. 2004; Townsend et al. 2007; Fyllas et al. 2009), but somewhat higher than the overall average values quantified in temperate forests (McGroddy et al. 2004) and in the LES global database (0.66, Wright et al. 2004; Reich et al. 2010), suggesting that some P limitation exists in the environments of the present study (Domínguez et al. 2010).

Nevertheless, the results obtained for each habitat suggest that some degree of flexibility exists in these stoichiometric ratios. This variability among habitats may be due to the different ecological strategies of the species that compose them -for example, different growth and nutrient supply rates - which allow the species to respond successfully to the environmental constraints of each particular habitat (Knecht and Göransson 2004; Sardans and Peñuelas 2015; de la Riva et al. 2017). These variations of the slopes could be explained by considering that all elements can be taken up in excess of the requirements for growth (Knecht and Göransson 2004). At a small spatial scale, differences among species with regard to their uptake and variability in the availability of elements in the soil are important aspects that need to be investigated further (Ågren et al. 2008). This study highlights the importance of considering the habitat when determining the nutrient supply and leaf stoichiometry within a heterogeneous pool of Mediterranean woody species.

In spite of the broadly-constrained stoichiometric ratios in forests worldwide (McGroddy et al. 2004), we found differences among habitat types. According to Güsewell (2004), variations in N could be more important in determining the stoichiometric ratios in woody plants, such as N:P. However, the differences in stoichiometric balance among habitat types seem to be related more to other nutrients than to N. For example, the habitat types with low leaf $P(D O F$ and $S F$) showed the highest values of $\mathrm{N}: \mathrm{P}$, as well as the highest N :nutrient ratios with $\mathrm{Fe}, \mathrm{Cu}, \mathrm{Ca}, \mathrm{S}$ and Mn. Similarly, McGroddy et al. (2004) found differences in N:P among habitats and proposed that these variations were associated with changes in P rather than in N, which
could be explained by the fact that N is the most-constant nutrient (after C) across environments. Temperate forest soils appear uniformly N-poor (Jenny 1950), which promotes adaptive solutions such as symbiotic N fixation. These adaptations, the fact that N is often the most-limited nutrient, and the capacity of plants to take up small excess amounts of N under non-limiting conditions (Knecht and Göransson 2004) seem to show that the stoichiometry of N :nutrient ratios in these ecosystems is conditioned more by the other elements involved. This suggests that the relationships among nutrients could have arisen through a small number of ancient events, but also that habitat special isation drives the nutrient balance (Fyllas et al. 2009).

Conclusions

Taken together, our results highlight four important points concerning the natural variability of LMA and leaf nutrients across a wide pool of Mediterranean woody species. First, the leaf-trait patterns of this set of 98 Mediterranean woody species supported the general existence of the "leaf economic spectrum" for LMA and a broad number of nutrients; however, some nutrients - such as Cu and Mn -seemed to be more environment-dependent. Second, the variability of the leaf nutrient concentrations depended on phylogeny, leaf habit and habitat in different proportions: some nutrients were more phylogenetically constrained (i.e., Mn and K), while others showed stronger associations with either the environmental conditions (i.e., P, Cu and S) or leaf habit (i.e., N, B, Zn and Ca). Third, significant relationships exist between N and most of the other nutrients, for the whole species pool, but there is considerable variation among forest habitats. Fourth, strong regulation exists between N and P uptake; P seems to be the most-limited nutrient for the studied species, while plants are able to take up profligately other macronutrients (i.e., Ca, Mg and K). In summary, our study reinforces the existence of the leaf economics spectrum in a broad pool of Mediterranean woody species, and highlights the necessity of expanding this concept to other nutrients less frequently analysed such as $\mathrm{Ca}, \mathrm{Mg}, \mathrm{K}$ or S . In addition, our results demonstrate the strong influence of phylogeny, leaf habit and environmental context as the main drivers of variability in some leaf structural and nutrient traits, and provide relevant information on leaf nutrient stoichiometry in Mediterranean woody plants from natural environments.

Acknowledgements

We thank C. Navarro-Fernández, M. Olmo, C. Aponte, M. Domínguez and A. Herrero for their help in the sampling and processing of leaves. Dr. David Walker revised the English. This study was funded by the Spanish MEC coordinated project DIVERBOS (CGL2011-30285-C02-01 and C02-02), the Andalusian ANASINQUE project (PGC2010-RNM-5782), the Life + Biodehesa Project (11/BIO/ES/000726), ECOMEDIT (CGL2014-53236-R), RESTECO (CGL2014-52858-R) and European FEDER funds.

References

Ågren Gl (2008) Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Evol 39:153-170.
Antúnez I, Retamosa EC, Villar R (2001) Relative growth rate in phylogenetically related deciduous and evergreen woody species. Oecologia 128: 172-180.
Asner GP, Martin RE, Tupayachi R, Anderson CB, Sinca F, Carranza-Jiménez L, Martinez P (2014) Amazonian functional diversity from forest canopy chemical assembly. PNAS 111: 5604-5609.
Auger S, Shipley B (2013) Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J Veg Sci 24: 419428.

Axelrod DI (1966) Origin of deciduous and evergreen habits in temperate forests. Evolution 20:1-15.
Baker AJM (1981) Accumulators and excluders - strategies in the response of plants to heavy - metals. J Plant Nutr 3:643-654.
Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173: 677-702, 2007.
Brouwer R. (1962) Nutritive influences on the distribution of dry matter in the plant (No. 205).
Chen FS, Niklas KJ,Zeng DH (2011) Important foliar traits depend on speciesgrouping: analysis of a remnant temperate forest at the Keerqin Sandy Lands, China. Plant Soil 340:337-345.

Ciccarelli D, Picciarelli P, Bedini G, Sorce C (2016) Mediterranean sea cliff plants: morphological and physiological responses to environmental conditions. J Plant Ecol 9:153-164.

Cleveland CC, Townsend AR, Schimel DS et al. (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochemical Cycles 13: 623-645.

Cornelissen JHC, Quested HM, Gwynn-J ones D et al. (2004) Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct Ecol18:779-786.
de la Riva EG, Marañon T, Violle C, Villar R, Pérez-Ramos IM (2017) Biogeochemical and ecomorphological niche segregation of Mediterranean woody species along a local gradient. Front Plant Sci Doi: 10.3389/fpls.2017.01242.
de la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R (2016a) Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient. PloS one 11: e0148788.
de la Riva EG, Pérez-Ramos IM, Tosto A, Navarro-Fernández CM, Olmo M, Marañón T, Villar R (2016c) Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait-based approach at the whole-plant level in Mediterranean forests. Oikos. 125:354-363.
de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NP., Villar R (2016b) A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? J Veg Sci 27: 187-199
Delgado-Baquerizo M, Maestre FT, Gallardo A, et al. (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672-676.
Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29-40.

Díaz S, Kattge J, Cornelissen JH, et. al. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167-171.
Domínguez MT, Aponte C, Pérez-Ramos IM, García LV, Villar R, Marañón T (2012) Relationships between leaf morphological traits, nutrient concentrations
and isotopic signatures for Mediterranean woody plant species and communities. Plant Soil 357:407-424.
Domínguez MT, Marañón T, Murillo JM, Schulin R, Robinson BH (2010) Nutritional status of Mediterranean trees growing in a contaminated and remediated area. Water Air Soil Pollut 205: 305-321.
Egilla, JN, Davies FT, Boutton TW, (2005) Drought stress influences leaf water content, photosynthesis, and water-use-efficiency of Hibiscus rosasinensis at three potassium concentrations. Photosynthetica 43:135-140.
Elser JJ, Bracken MES, Cleland EE,Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol Lett 10:1135-1142.
European Commission (2013) Interpretation Manual of European Union Habitats EUR28.

Funk JL, Cornwell WK (2013) Leaf traits within communities: context may affect the mapping of traits to function. Ecology 94:1893-1897.
Fyllas NM, Patino S, Baker TR, et al. (2009). Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:26772708.

Gelman, A, Hill J (2006) Data Analysis Using Regression and Multi-level/Hierarchical Models, Cambridge University Press, 648 pp.
Gower JC (1963) Variance component estimation for unbalanced hierarchical classifications. Biometrics 18:537-542.
Grubb PJ, Marañón T, Pugnaire FI, Sack L (2015) Relationships between specific leaf area and leaf composition in succulent and non-succulent species of contrasting semi-desert communities in south-eastern Spain. J Arid Environ, 118:69-83.
Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243-266.
Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Lett 14:788-796.
Harpole WS, Tilman D (2006). Non-neutral patterns of species abundance in grassland communities. Ecol Lett 9: 15-23.

Hashimoto K, Kudla J (2011) Calcium decoding mechanisms in plants. Biochimie 93: 2054-2059.

Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2008) Comparative community physiology: Nonconvergence in water relations among three semi-arid shrub communities. New Phytol 180:100-113.

Jenny H (1950) Causes if the high nitrogen and organic matter content of certain tropical forest soils. Soil Science 69:63-69.

Knecht MF, Göransson A (2004) Terrestrial plants require nutrients in similar proportions. Tree Physiol 24:447-460.

Koerselman W, Meuleman AFM (1994) Groeibeperkende voedingsstoffen in verschillende typen duinvalleien; resultaten van bemestingsexperimenten. Kiwa N.V. Research and Consultancy, Nieuwegein, The Netherlands.

Ladanai S, Ågren GI, Olsson BA (2010) Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems 13:302-316.

Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98: 693-713.
Lê S, Josse J,Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1-18.

Lefcheck JS (2015) piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573-579.

Linder S (1995) Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce. Ecol Bull 178-190.
Marañón T, Navarro-Fernández CM, Domínguez MT, Madejón P, Murillo JM (2015) How the soil chemical composition is affected by seven tree species planted at a contaminated and remediated site. Web Ecol 15:45-48.

Mayland HF (1990) Magnesium in plants: uptake, distribution, function, and utilization by man and animals. Metal Ions in Biological Systems: Volume 26: Compendium on Magnesium and Its Role in Biology: Nutrition and Physiology pp 26-33.

McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178-185.

McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C: N: P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390-2401.
Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13:838-848.
Niinemets Ü, Kull K (2003) Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees. Acta Oecologica, 24: 209-219.

Niinemets U, Sack L (2006) Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. Progress Bot 67:385-419.

Niklas KJ, Cobb ED (2005) N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth. Am J Bot92:1256-1 263.
Pärtel M, Laanisto L, Zobel M (2007) Constructing plant productivity-diversity relationships across latitude: the role of evolutionary history. Ecology 88:10911097.

Peñuelas J, Sardans J, Ogaya R, Estiarte M (2008) Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. PolJ Ecol 56:613-622.
Pérez-Harguindeguy N, Díaz, S, Garnier E, et al. (2013) New handbook for standardised measurement of plant functional traits worldwide. Austral J Bot 61:167-234.

Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2015) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-121, http://CRAN.Rproject.org/package=nlme.
Poorter H, de Jong R (1999) A comparison of specific leaf area, chemical composition and leaf construction cost of field plants from 15 habitats differing in productivity. New Phytol 143: 163-176.
Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182: 565-588.

Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83: 553-559.
Poorter H, Villar R (1997) The fate of acquired carbon in plants: chemical composition and construction costs, in: Plant Resource Allocation, edited by: Bazzaz FA and Grace J, Academic Press, San Diego, CA, p. 39-72, 1997.

Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87:1733-1743.
Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007) Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787-798.
Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relation-ships: a test across six habitats. Ecology 80:1955-1969.
Reich PB, Oleksyn J, Wright IJ, Niklas, KJ, Hedin L, Elser JJ (2010) Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc R Soc B 277:877-883.
Reich PB, Oleksyn J. (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS 101: 11001-11006.
Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monograph 62:365392.

Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. PNAS 94:13730-13734.
Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct Ecol 10:717723.

Santiago LS (2010) Can growth form classification predict litter nutrient dynamics and decomposition rates in lowland wet forest? Biotropica 42:72-79.
Sardans J, Janssens IA, Alonso R, et al. (2015). Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Glob Ecol Biogeogr 24:240-255.
Sardans J, Peñuelas J (2015) Trees increase their P:N ratio with size. Glob Ecol Biogeogr 24:147-156.
Sardans J, Rivas-Ubach A, Peñuelas J (2011) Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). Forest Ecol Manag 262:2024-2034.
Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The biology of elements from molecules to the biosphere. Princeton University Press, Princeton.

Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537-542.

Tilman D (1997) Mechanisms of plant competition. Plant ecology. Second edition. Blackwell Science, Oxford, UK.

Townsend AR, Cleveland CC, Asner GP, Bustamante M (2007). Controls over foliar N: Pratios in tropical rain forests. Ecology 88:107-118.

Urbina I, Sardans J, Beierkuhnlein C, et al. (2015) Shifts in the elemental composition of plants during a very severe drought. Environ Expl Bot 111:63-73.

Verdú M, Pausas JG (2013) Syndrome driven diversification in a Mediterranean ecosystem. Evolution 67:1756-1766.

Villar R, Merino JA (2001) Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytol 151: 213226.

Villar R, Ruíz-Robleto J, De Jong Y, Poorter H (2006) Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant Cell Environ 29: 16291643.

Villar R, Ruíz-Robleto J, Ubera JL, Poorter H (2013) Exploring variation in leaf mass per area (LMA) from leaf to cell: an anatomical analysis of 26 woody species. Am J Bot 100: 1969-1980.

Warton DI, Duursma RA, Falster DS, Taskinen S (2012) Smatr 3-an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257-259.

Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259-291.

Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516-523.

Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:20982100.

Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high-and low-rainfall and high-and lownutrient habitats. Funct Ecol 15:423-434.

Wright IJ, Reich PB, Westoby M, et al. (2004) The worldwide leaf economics spectrum. Nature 428: 821-827.

Yuan Z, Chen HY (2009) Global trends in senesced leaf nitrogen and phosphorus. Glob Ecol Biogeogr 18: 532-542.

Zhao N, Yu G, He N, Wang Q, et al. (2016) Coordinated pattern of multi element variability in leaves and roots across Chinese forest biomes. Glob Ecol Biogeogr 25: 359-367.

Zunzunegui M, Barradas MD, Ain-Lhout F, Clavijo A, Novo FG (2005) To live or to survive in Doñana dunes: adaptive responses of woody species under a Mediterranean climate. Plant Soil 273: 77-89.

Figure legends

745
746 747 748 749

Figure 1. Plots of the principal component analysis (PCA). The scores for the 13 variables (LMA and nutrients) used for the PCA are displayed with their vectors. The symbols within the PCA plots correspond to the species groups, according to phylogeny (A) or leaf life-span (B). The coloured lines indicate the mean of the scores of the main (A) phylogeny along factor 1 and factor 2 of the PCA and (B) leaf life-habit, when significant differences exist (\llcorner MM, $P<0.05$). Different letters indicate significant differences between groups (Tukey test, $P<0.05$). Phylogeny groups: (A) Malvales, Violales, Sapindales, (B) Fagales, (C) Rosales, (D) Fabales, (E) Malpighiales, (F) Ericales, (G) Dipsacales, Apiales, Asterales (H) Lamiales, Solanales, Gentianales, (I) Liliopsida, Santalales, Ranunculales (J) Gimnospermae.

Figure 2. Coefficient of variation (CV) of the leaf concentrations of macro and micronutrients for 172 plants belonging to 98 woody species.

Figure 3. Variance components analysis of LMA and leaf nutrients. For the best explaining factors ($>10 \%$), average differences based on linear mixed models are shown: (A) traits mostly explained by the three factors (phylogeny, leaf life-habit and forest habitat); (B) traits mostly explained by two factors; and (C) traits mostly explained by one factor. The sub-groups obtained with the post hoc Tukey test ($P<$ $0.05)$ are marked with different letters in the bars. Phylogeny groups: (A) Malvales, Violales, Sapindales, (B) Fagales, (C) Rosales, (D) Fabales, (E) Malpighiales, (F) Ericales, (G) Dipsacales, Apiales, Asterales (H) Lamiales, Solanales, Gentianales, (I) Liliopsida, Santalales, Ranunculales (J) Gimnospermae.

Figure 4. Relationship between the leaf mass area (LMA) and the leaf $\mathrm{C}: \mathrm{N}$ ratio. The marginal r and P values from the linear mixed model are also shown.

Figure 5. Standardised major axis (SMA) regressions of N versus the $\mathrm{P}, \mathrm{K}, \mathrm{Ca}$ and Mg concentrations. The dashed lines represent the optimum nutrient ratio (based on Knecht and Göransson 2004).
A) Phylogeny

B) Leaf habit

Factor 1: 31.0\%

Table 1. Linear mixed model analyses of the relationships between leaf mass per area (LMA) and leaf nutrients, for the total pool and for the different habitats type. The marginal r and significance level are also shown ($* P<0.05$, ** $P<0.01$, *** $P<0.001$).
(n) Indicates the number of cases and species used for each comparison. The data were $\log _{10}$-transformed prior to the analysis.

Leaf nutrient		Total Pool	Habitat type					
		SF	EOF	PIF	DOF	RIF		
			n(172,98)	$\mathrm{n}(41,36)$	$\mathrm{n}(55,31)$	$\mathrm{n}(21,21)$	$\mathrm{n}(29,26)$	$\mathrm{n}(26,14)$
	[C]	0.28***	0.12	0.12	0.31	0.54*	0.60**	
	[N]	-0.36***	-0.40*	-0.63*	-0.68***	-0.20	-0.66**	
\%	[P]	-0.34*	-0.05	-0.09	-0.61**	-0.06	-0.24	
$\stackrel{\square}{\square}$	[Ca]	-0.36***	-0.49*	-0.03	-0.64**	-0.34	-0.22	
$\stackrel{\rightharpoonup}{\square}$	[K]	-0.42***	-0.28*	-0.27*	-0.71***	-0.28	-0.34	
Σ	[Mg]	-0.49***	-0.40*	-0.39**	-0.81***	-0.57*	-0.31	
	[S]	-0.38**	-0.37*	-0.17	-0.81***	-1.62	-0.36	
	[B]	-0.20**	-0.57*	0.01	-0.62**	0.91	-0.03	
$\stackrel{\check{y y}}{ \pm}$	[Cu]	-0.14**	-0.46*	-0.21*	-0.45*	1.77	-0.50**	
$\stackrel{\text { r }}{ }$	[Fe]	-0.09	-0.10	-0.06	-0.32	-0.3	-0.53*	
ㅇ.	[Mn]	0.05	-0.14*	0.07	0.26	0.12	0.09	
	[Zn]	-0.08	-0.31*	-0.12	0.12	0.14	-0.38*	

Table 2. Standardized Major Axis (SMA) regressions for evaluation of the relationships of leaf nitrogen (N) with other leaf nutrients, for the total pool or for the different forest habitats. The value of the regression slope (the scaling exponent from major axis regression), significance level (${ }^{\circ} P<0.07, * P<0.05$, ${ }^{* *} P<0.01$, $* * * P<0.001$) and number of cases used (n) are also shown. Bold and italic values indicate significant relationships that were not consistent with linear mixed models, which suggests that these significant results were highly dependent on some specific species.

$\log 10$	$\log 10$	Total pool	Habitat type				
			SF	EOF	PIF	DOF	RIF
(X)	(Y)	$\mathrm{n}(172)$	n (41)	n(55)	n (21)	$\mathrm{n}(29)$	n (26)
[C]	[N]	-4.56***	-0.22**	-6.19	-4.75	3.3	-3.53**
[N]	[P]	0.83***	1.07*	0.77**	0.46*	-0.89	1.00
[N]	[Ca]	2.18***	1.50***	-1.82	$3.88{ }^{\circ}$	-2.46	1.59
[N]	[K]	1.41***	1.02***	1.35**	2.01*	1.60	1.31
[N]	[Mg]	1.75***	0.33**	1.68*	2.91*	1.52	1.33
[N]	[S]	1.39***	0.24**	1.05***	2.01***	0.89	1.20**
[N]	[B]	1.93***	2.43***	-1.95	$3.50{ }^{\circ}$	1.69	2.05
[N]	[Cu]	2.48*	0.74	1.34***	4.24***	4.01	2.47
[N]	[Fe]	2.71***	50.6	1.94	6.71	1.47*	1.56
[N]	[Mn]	2.90	-4.81	-3.85	4.65**	3.82**	2.13
[N]	[Zn]	2.19	2.78	-2.5	-3.62	2.28	1.81

