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Abstract

Perception of thousands of odors by a few hundreds of olfactory receptors (ORs) results from a combinatorial coding, in which one
OR recognizes multiple odorants and an odorant is recognized by a specific group of ORs. Moreover, odorants could act both as
agonists or antagonists depending on the OR. This dual agonist–antagonist combinatorial coding is in good agreement with
behavioral and psychophysical observations of mixture perception. We previously described the odorant repertoire of a human OR,
OR1G1, identifying both agonists and antagonists. In this paper, we performed a 3D-quantitative structure–activity relationship
(3D-QSAR) study of these ligands. We obtained a double-alignment model explaining previously reported experimental activities
and permitting to predict novel agonists and antagonists for OR1G1. These model predictions were experimentally validated.
Thereafter, we evaluated the statistical link between OR1G1 response to odorants, 3D-QSAR categorization of OR1G1 ligands, and
their olfactory description. We demonstrated that OR1G1 recognizes a group of odorants that share both 3D structural and
perceptual qualities. We hypothesized that OR1G1 contributes to the coding of waxy, fatty, and rose odors in humans.
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Introduction

Humans are able to detect and discriminate myriads of

structurally diverse odorants through their interaction with

olfactory receptors (ORs) embedded in the plasma mem-

brane of olfactory sensory neurons (OSN). ORs belong to

the 7-transmembrane domain G protein–coupled receptor

family and are encoded by an exceptionally large multigene
family. Analysis of the human genome draft sequences has

revealed approximately 380 potentially functional genes

(Glusman et al. 2001; Zozulya et al. 2001; Malnic et al.

2004; Niimura and Nei 2005, 2007). It is well accepted that

the perception of thousands of odors by a few hundreds of

ORs results from a combinatorial coding, in which one OR

recognizes multiple odorants and different odorants are rec-

ognized by different combinations of ORs (Duchamp-Viret
et al. 1999; Malnic et al. 1999). Moreover, there is a growing

body of evidence that odorants could act both as agonists or

antagonists depending on the OR (Duchamp-Viret et al.

2003; Araneda et al. 2004; Oka et al. 2004; Sanz et al.

2005; Jacquier et al. 2006). This dual agonist–antagonist

combinatorial coding is in good agreement with behavioral

and psychophysical observations of mixture perception

(Laing and Francis 1989; Cometto-Muniz et al. 1999; Spehr

et al. 2004; Atanasova et al. 2005; Jacquier et al. 2006).

Deciphering olfactory quality coding thus requires the
deorphanization of ORs. Due to the difficulty to functionally

express ORs in heterologous cells and the large number of

compounds to be tested, identification of odorant repertoires

of ORs is laborious. Up to now, ligands were identified

for 7 human ORs (Wetzel et al. 1999; Spehr et al. 2003;

Matarazzo et al. 2005; Sanz et al. 2005; Jacquier et al. 2006;

Saito et al. 2006; Keller et al. 2007). Rodent ORs are more

investigated than human ORs and the number of deorphan-
ized rodent ORs is larger (Krautwurst et al. 1998; Touhara

et al. 1999; Araneda et al. 2000; Touhara et al. 2000; Gaillard

et al. 2002; Oka et al. 2004; Saito et al. 2004; Shirokova et al.

2005; Abaffy et al. 2006; Saito et al. 2006).
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Beside the limited number of data concerning human OR

odorant repertoires, the sense of smell in humans has long

been a subject of studies exploring the relationships between

molecular structure and odor qualities (Guillot 1948; Wright

1954; Amoore 1967; Chastrette 1997; Kraft et al. 2000).
However, no structure–odor quality theory or model has

been proposed to account for the wide range of odors en-

countered (Laing et al. 2003; Sell 2006). Recent studies of

structure–odor quality have attempted to be systematic

and have used both homologous and analogous series of

odorants. These studies have provided an insight as to how

the olfactory system may code odors both at the level of

OSN and the various structures within the olfactory bulb
and cortex (Imamura et al. 1992; Araneda et al. 2004;

Oka et al. 2006; Zou and Buck 2006). A recent work also

correlated OSN’s responses in Drosophila with structural

characteristics of odorant molecules using a quantitative

structure–activity relationship (QSAR) approach involving

molecular descriptors (Schmuker et al. 2007).

Nevertheless, the link between odor quality of odorants

and their detection by ORs is still lacking. Laing et al.
(2003) suggested that odorants that share a common quality

could reflect activation of a common receptor type. How-

ever, working with homologous oxygenated aliphatic mole-

cules, they did not find a common quality to each of the

odorants that had the same molecular feature and concluded

that identification of the odorants occurs via a combinatorial

mechanism involving several types of receptors. However,

although the precise odor perception of an odorant should
result from a specific combination of activated ORs, it is con-

ceivable that odorant ligands of an OR sharing common

structural features could also share a common odor quality.

This idea is supported by a recent publication (Doszczak

et al. 2007) which describes the possibility to predict the odor

of a novel compound on the basis of an OR model. To our

point of view, one way to test this hypothesis may be to use

OR activation data by odorants instead of odorant homol-
ogous series. In this work, we then took advantage of our

previous findings concerning the odorant repertoire of the

human OR, OR1G1. This receptor was revealed to be

broadly tuned, with a preference for 9-carbon aliphatic mol-

ecules, and to be inhibited by some odorants structurally

related to the agonists (Sanz et al. 2005).

We first performed a 3D-QSAR study of OR1G1 ligands in

order to determine the odotope of OR1G1 agonists and an-
tagonists and to predict new ligands for this receptor.

The term ‘‘odotope’’ is formed by ‘‘odo,’’ which refers to

odor, and ‘‘tope’’, which refers to topology, describing how

spatial features are connected to each other. In this way, odo-

tope meaning joins ‘‘pharmacophore’’ meaning: the pharma-

cophore approach assumes that all the active molecules bind

in a common manner to the same target site. The term phar-

macophore, first used by Paul Ehrlich in the early 20th cen-
tury, refers to the ‘‘molecular framework that carries (phoros)

the essential features responsible for a drug’s (pharmacon)

biological activity’’ (Ehrlich 1909). The official International

Union of Pure and Applied Chemistry definition from 1998

precises: ‘‘a pharmacophore is the ensemble of steric and

electronic features that is necessary to ensure the optimal su-

pramolecular interactions with a specific biological target
structure and to trigger (or to block) its biological response’’

and ‘‘the pharmacophore can be considered as the largest

common denominator shared by a set of active molecules’’

(Wermuth et al. 1998). More recent definitions enhance the

crucial role of the spatial arrangement of structural features

for a particular biological activity (Beusen and Marshall

2000; Gund 2000). The odotope so appears as the spatial ar-

rangement of chemical features that is recognized by at least
one OR, and is linked to an odorant activity.

QSAR studies are less commonly developed in the field of

aroma research than in pharmaceutical or toxicological con-

text. Most of the works which were aimed at characterizing

odor relationships consisted in classical descriptor 2D-QSAR

studies (Anker et al. 1990; Egolf and Jurs 1993; Shvet and

Dimoglo 1998; Hadaruga et al. 1999; de Mello Castanho

Amboni et al. 2000; Guth et al. 2000, 2001; Wailzer et al.
2001), but several 3D-QSAR investigations have been per-

formed (Frater et al. 1998; Bajgrowicz and Frater 2000;

Kraft et al. 2000; Bajgrowicz and Frank 2001; Bajgrowicz

et al. 2003). For the current 3D-QSAR study of OR1G1

ligands, we used Catalyst software and a sorting-out proce-

dure of ligands which was successfully used in a previous

work and appeared to be advantageously transposable to

the present study (Tromelin and Guichard 2003). Predictions
provided by the 3D-QSAR approach were experimentally

validated. In a second part of this work, we explored the

relationships between the molecular features of OR1G1 li-

gands determined by the 3D-QSAR approach, their activity

on the receptor, and their odor quality as perceived by humans.

Materials and methods

Materials and reagents

Odorants were purchased from Sigma-Aldrich, Fluka (Saint

Quentin Fallavier, France) or Acros Organics (Noisy-le-
Grand, France) at highest purity available. Individual odorants

and mixtures were made up fresh by dilutions of stock solu-

tions to final working solution in 100% MeOH (Spectroscopic

grade, Sigma). Isoproterenol was purchased from Sigma.

Mammalian expression vectors

As previously described (Sanz et al. 2005), in order to express

Ga16-protein subunit, we used the pcDNA3.1/Hygro(+)

mammalian expression vector (Invitrogen, Cergy-Pontoise,

France) carrying the Ga16 cDNA (pcDNA3.1/HygroG16).

Regarding OR1G1, its gene was introduced into the
pCMV-Tag3 mammalian expression vector (Stratagene,

Saint-Quentin-en-Yvelines, France), in frame with the c-myc

epitope and the first 108 nucleotides of the coding region
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of bovine rhodopsin. The resulting vector was named

pCMV-RhoTagOR1G1.

Cell culture and transfection of HEK293 cells

HEK293 cells (human embryo kidney cells) were cultured

in minimum essential medium without phenol red (GIBCO,

Invitrogen corporation, Cergy-Pontoise, France) supplemented

with 10% heat-inactivated fetal bovine serum (Hyclone,

Perbio, Brebières, France), 2 mM L-glutamine (GIBCO) and

Eagle’s nonessential amino acids (Eurobio, Les Ulis, France)

at 37 �C in a humidified incubator with 5% CO2. Cells were
stably and consecutively transfected with pcDNA3.1/

HygroG16 and pCMV-RhoTagOR1G1 plasmids using

Lipofectamine 2000 (Invitrogen) according to the manufac-

turer instructions. HEK293 derivative cells that stably express

Ga16 or coexpress Ga16 and OR1G1 were respectively

selected in the presence of 300 lg/ml hygromycin B

(Invitrogen) or 300 lg/ml hygromycin B and 1 mg/ml neo-

mycin (GIBCO). After selection, cells were frozen in several
cryovials in order to use the same cell batches over the study.

All cells used were less than 10 passages. OR expression at

the cell surface was verified by confocal immunofluorescence

microscopy as previously published (Sanz et al. 2005).

Calcium imaging and volatile-odorant functional assay

HEK293 derivative cells were seeded onto a poly-L-lysine–

coated 96-well tissue-culture plate (black microtiter plate,
Greiner Bio-one, Poitiers, France) at a density of 0.7 ·
105 cells per well. Twenty-four hours postseeding, cells were

loaded with 2.5 lM of the Ca2+-sensitive fluorescent dye

Fluo-4 acetoxymethyl ester (Molecular Probes, Leiden, The

Netherlands), as previously described (Sanz et al. 2005). Cal-

cium imaging was carried out at 28 �C using an inverted epi-

fluorescence microscope (CK40 Olympus, Rungis, France)

equipped with a digital camera (ORCA-ER, Hamamatsu
Photonics, Massy, France). Ca2+ reponses were recorded

under X10 magnification at 460- to 490-nm excitation and

‡515-nm emission wavelengths. Images were taken every sec-

ond during 10 min using a bining X2. The SimplePCI soft-

ware (Hamamatsu, Compix) was used for data acquisition

and analysis. The Ca2+ signal was expressed as fractional

change in fluorescence light intensity: DF/F = (F – F0)/F0,

where F is the fluorescence light intensity at each point
and F0 is the value of emitted fluorescent light before the

stimulus application. Cells were counted as responders

when DF/F change was at least twice the baseline DF/F fluc-

tuation. As previously published (Sanz et al. 2005), OR1G1

response to odorants was expressed as the percentage of

responding cells normalized to those responding to the

application of 10 lM isoproterenol. Odorants were tested

at doses that do not elicit calcium responses from mock-
transfected Ga16-expressing cells. Because cells were not

clonally derived and OR or Ga16 expression could vary over

time, we also controlled that the number of responding

cells to a given odorant (1-nonanol) was constant over the

experiments.

To deliver odorants on the cells loaded with Fluo-4, we used

volatil odorant functional assay (VOFA) as previously reported

(Sanz et al. 2005). When antagonist odorants were tested, ag-
onist and antagonist were mixed into MeOH and coapplied.

Computational methods

Experimental data and molecular building

Activity data used in this work came from a previous study

by Sanz et al. (2005). In this study, results from calcium im-

aging on cells expressing the human OR OR1G1 and stim-

ulated by odorants provided activity values as percent of

activated cells. Activity values used for Catalyst hypothesis

generation are usually Kd or IC50, so the higher the affinities
of ligands, the lower their activity values. In this way, it was

essential to transpose the value of percent of activated cells in

order to obtain a reliable hierarchical order for Catalyst

data. We observed that molecules with different activation

levels were similarly classified considering dose-response

curves or data at the single dose of 10 lM (see Figure 8

of supplementary material). We chose to use the percent

of nonactivated cells reported to the percent of activated cells
at 10 lM, and ‘‘activity’’ values were defined as follows:

Activity = 100 –%cells
%cells

: The values are reported in supplemen-

tary material.

The 95 compounds tested by Sanz et al. (2005) were built

with Catalyst (Catalyst version 4.9.1 software; Accelrys Inc.,

San Diego, CA, August 2004) running on a Silicon Graphics

workstation (SGI-O2). Catalyst takes into account molecu-

lar flexibility by considering each compound as a collection
of conformers. The conformers of each compound were

generated using the ‘‘poling’’ function (Smellie et al. 1995)

of Catalyst/COMPARE module (best conformer genera-

tion) to provide the best conformational coverage for a max-

imum number of conformers generated defaulted to 250 in

a 0–20 kcal/mol range from the global minimum.

Hypothesis generation and molecular alignment

HypoGen and HypoRefine modules (Li et al. 2000) were

used to perform automated hypothesis generation. In Cata-

lyst, a hypothesis is a model which describes a ligand as a set

of chemical functions, defined within catalyst in a dictionary

based on atomic characteristics (Greene et al. 1994). These

hypotheses should be able to predict the activities of com-
pounds sharing the same receptor-binding mechanism.

HypoGen automatically generates the simplest hypotheses

that best correlate estimated and experimental affinities. It

analyzes the set of ‘‘active’’ molecules first. The most active

compound set (usually 5 to a maximum of 8 compounds) is

determined using the ‘‘uncertainty,’’ noted Unc, so that:

Amax ·Unc –A=Unc> 0; where Amax is the activity of the

most active compound and A the activity of a compound of
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the most active set. Starting with the most active molecules,

HypoGen analyzes the set of active molecules first, but

the hypothesis generation involves the entire set performing

a function mapping on each conformer using the function

mapping selected. HypoGen selects the best hypothesis by
applying a cost analysis (Sutter et al. 2000). The statistical

relevance of the various hypotheses is therefore assessed on

the basis of their cost relative to the null hypothesis and the

fixed hypothesis. The goal of hypothesis generation is to

generate a set of hypotheses (defaulted to 10 for a hypoth-

esis generation run) with total costs as close as possible to

the fixed cost (Kurogi and Güner 2001). HypoRefine is an

extension of HypoGen algorithm that uses exclusion vol-
umes for identifying areas of steric influence on activity.

Four chemical functions predefined in the Catalyst Feature

Dictionary were used: hydrogen-bond acceptor (HBA),

HBA lipid, hydrophobic, and hydrophobic aliphatic. The

Unc value is usually defaulted to 3 for hypothesis generation.

In the present work, other values were sometimes preferred

according to the range of activities of each subset. The de-

faulted parameters values were used, except for the variable
weight parameter which was set to 0.5 (Sutter et al. 2000).

Ligand sorting-out procedure

We use an original procedure to identify several groups of

ligands. A previous similar approach, first presented for

beta-lactoglobulin ligands (Tromelin and Guichard 2003),

was improved in the present context. This procedure in-
volved 3 steps. The first step consisted in dividing the whole

initial set into subsets according to the alignment observa-

tions: the first group maps all the features of hypothesis

model and is called group ‘‘Ai’’; the second group maps only

hydrophobic features and is named group ‘‘Bi.’’ Starting

from both groups Ai and Bi, the iterative selection procedure

occurs as follows: 1) hypothesis generation run, 2) selection

of compounds that map all the features of four hypotheses
not belonging to the same cluster, and 3) step 1 and 2 are

repeated until obtention of a well-ordonned alignment, with

satisfactory statistical relevance. The subsets are named

‘‘kernel-A’’ and ‘‘kernel-B,’’ respectively. The second step

consists in growing starting from the 2 kernel subsets.

Using estimate activities of the initial set of compounds ob-

tained from hypothesis models generated by kernel-A, the

well-estimated compounds (the retained criterion was fixed
as error <2) were added to constitute subset ‘‘An1,’’ where n1

is the number of compounds in the set. With An1, a hypo-

thesis run was performed, remaining compounds were

estimated with generated hypothesis models, and this proce-

dure was repeated until no compound satisfies to fixed cri-

terion error <2. The same protocol is applied to kernel-B.

The so finally obtained groups ‘‘Ani’’ and ‘‘Bnj’’ possess gen-

erally some common compounds. The remaining com-
pounds belonging neither to Ani nor Bnj constitute

a subset called ‘‘Zi.’’ The third step consists in applying

the previous procedure to group ‘‘Zi’’: identification of

‘‘kernel-Z’’ and growth to obtain a group ‘‘Znk.’’ Com-

pounds of group Bnj belong in major part either to group

Ani or group Znk and thus were not considered in the subse-

quent part of the study.
Validation of provided hypotheses was performed by ran-

domization using CatScramble program available in Cata-

lyst environment and by leave-many-out procedure.

External validation

In order to experimentally validate the modeling, we kept the

best significant hypotheses provided by the subsets group Ani

and group Znk (Greene et al. 1994; Kurogi and Güner 2001)

and performed a screening by Catalyst database searching
through a transposition of the commercial FlavorBase

2004 (Leffingwell & Associates, http://www.leffingwell.com)

in Catalyst environment. We then choose a few compounds

predicted as strong (activity value lower than 5), medium

(activity value between 5 and 19), or weak (activity value

higher than 19) agonists and determined their experimental

activities as previously described (Sanz et al. 2005).

Odor descriptions

Olfactory descriptions were obtained from the commercial

FlavorBase 2004. Descriptors were not ordered and have

all the same weight in the analysis.

Statistical analysis

All statistical analyses reported in the odor quality coding

part were conducted with SAS software (SAS Institute

Inc., Cary, NC), release 8.2.

Correspondence analysis was performed with the COR-

RESP procedure. Analyses of variance (ANOVA) were per-

formed with the general linear model procedure and
corrected P values were calculated using the Bonferroni cor-

rection for multiple testing. The stepwise regression with the

regression procedure. In the stepwise regression, variables

are added one by one to the model, and the F statistic for

a variable to be added must be significant at 0.25 level. After

a variable is added, however, the stepwise method looks at all

the variables already included in the model and deletes any

variable that does not produce an F statistic significant at the
0.1 level. Only after this check was made and the necessary

deletions accomplished can another variable be added to the

model. The stepwise process ends when none of the variables

outside the model has an F statistic significant at the 0.25

level and every variable in the model is significant at the

0.1 level or when the variable to be added to the model is

the one just deleted from it.

Frequency distribution analyses were performed with the
FREQ procedure including 2-sided Fisher’s exact test which

does not depend on any large sample distribution assump-

tions and so is appropriate for small sample size tables.
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Results

3D-QSAR modeling and experimental validation

Generation of hypothesis models

The hypothesis generation performed on the entire ligand set

(list of compounds is available as online supporting informa-

tion) (95 molecules) revealed 2 compound’s alignments as

shown in Figure 1. The first one, called group Ai (in dark

gray), maps the HBA, and the second one, called group

Bi (in light gray), maps only the hydrophobic feature. The

whole set was then divided into these 2 groups, and sorting-

out procedure was conducted. Starting from group Ai

(compounds 1, 3, 4, 7, 10, 15, 17, 19–21, 29, 30, 34, 36,

38, 41–43, 45–48, 50, 56, 58, 59, 61, 63, 69, 73, 74, 77, 80,

81, 86, and 95), the iterative selection procedure based on

alignment analysis led to the subset kernel-A that included

compounds 1 (1-nonanol), 3 (nonanal), 16 (octanal), 28

(1-heptanol), 37 (decanal), 40 (2-nonanol), 42 (heptanal),

70 (heptanoic acid), and 86 (2-Octanone). The best significant

hypothesis is constituted by 2 hydrophobic and 1 HBA
features (total cost = 38.0, correlation = 0.98, fixed cost =

28.3, null cost = 197). Starting from kernel-A, growth pro-

cedure led to group A35 including 35 compounds (1, 3–5, 10,

17, 19–21, 29, 30, 34, 36, 38, 41–43, 45, 48, 50–52, 56, 58, 59,

61, 64, 74, 75, 78, 81, 84–86, and 89). The best significant

hypothesis is constituted by 1 HBA lipid, 1 hydrophobic,

and 1 hydrophobic aliphatic features (total cost = 167, cor-
relation = 0.93, fixed cost = 67.8, null cost = 727). All gen-

erated hypotheses were validated by randomization and

significance value was 99%. Adding methyl salicylate (94)

as ‘‘inactive compounds,’’ to build group A36, allowed to

perform an hypothesis generation run using HypoRefine al-

gorithm. It provided a best significant hypothesis containing

an excluded volume in addition to features obtained through

HypoGen generation (total cost = 174, correlation = 0.94,
fixed cost = 69.4, null cost = 891). Validation was performed

by randomization and showed 99% significance for all gen-

erated hypotheses. Starting from group Bi (2, 5, 6, 8, 9,

11–14, 22–26, 28, 31, 32, 35, 37, 39, 40, 44, 51, 53–55, 60,

62, 64–68, 70, 71, 72, 75, 76, 78, 79, 82, 83, 85, and 88–94),

the iterative selection procedure based on alignment analysis

led to the kernel-B that contains only 5 compounds: 27 (ethyl

butyrate), 51 (3-octanol), 64 (3-octanone), 78 (butyl butyrate),
and 85 (methyl hexanoate). Two hydrophobic and 1 HBA

features constituted the best significant hypothesis (total

cost = 25.5, correlation = 0.98, fixed cost = 24.1, null cost =

28.9). Growth of kernel-B produced B17, including 17 com-

pounds (25, 27, 37, 45-47, 51, 54, 56, 58, 59, 61, 63, 64, 69, 81,

and 94). Note that compounds 45, 51, 56, 58, 59, 61, 64, and 81

belong to both group A35 and B17. Two hydrophobic and

1 HBA features constitute the best significant hypothesis
(total cost = 106, correlation = 0.96, fixed cost = 27.1, null

cost = 941). Significance was 98% for hypothesis 1–6, 95%

for hypothesis 7, 94% for hypothesis 8, 92% for hypothesis

9, and 89% for hypothesis 10. Starting from the 54 compounds

not included in A36 and B17 (group Zi, compounds 2, 6–9,

11–16, 18, 22, 23, 25–28, 32, 33, 35, 37, 39, 40, 44, 46, 47, 49,

53–57, 60, 62, 63, 65–69, 71, 73, 76, 77, 79, 80, 82, 83, 87, 88,

91, 93, and 95) and following the sorting-out alignment pro-
cedure, the subset kernel-Z was built with 5 compounds: 2

(ethyl isobutyrate), 11 (methyl thiobutyrate), 40 (vanillin),

55 (dl-camphor), and 7 (cyclohexanone). The best significant

hypothesis was based on 2 hydrophobic features and 1 HBA

(total cost = 17.4, correlation = 0.999, fixed cost = 17.3, null

cost = 87.1). The growth step led to group Z27 (compounds

2, 7, 11, 14–16, 25–27, 31, 37, 40, 44, 54, 55, 66, 67, 70, 71, 76,

79, 82, 83, 87, 88, 90, and 91). Compounds 25, 27, 37, and 54
belong also to the group B17. The best significant hypothesis

included 2 hydrophobic features and 1 HBA (total cost =

115, correlation = 0.96, fixed cost = 56.4, null cost = 735).

All generated hypotheses were validated by randomization

and significance was 99%.

Groups A36 and Z27 were kept as reliable ligand groups

and were subsequently used as hypothesis models. Corre-

sponding alignments are presented in Figure 2A,B and re-
gression graphs displaying ‘‘measured activity’’ versus

‘‘estimated activity’’ in Figure 2C,D. Orientations of

Figure 1 Alignment of the whole training ligand set for the best significant
hypothesis. In light blue: hydrophobic features of ligands, corresponding
to hydrophobic site on the receptor. In green: HBA features of ligands,
constituted by a small sphere corresponding to the center of HBA and
a large sphere that is the projection sphere corresponding to a hydrogen-
bond donor on the receptor site. In dark gray: group Ai which maps the
HBA. In light gray: group Bi which maps only the hydrophobic feature.
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hydrogen-bond projections and distances between features

are displayed in Figure 3. We performed a special leave-

many-out validation by removing ‘‘kernel subset’’ of each

group called in the present case ‘‘leave-kernel-out’’ valida-

tion. Hypothesis generation run performed on group A26

(compounds 4, 5, 10, 19–21, 30, 34, 36, 42, 45, 48, 50–52,

56, 58, 59, 61, 64, 75, 78, 81, 84, 85, 89, and 94) provided

a best significant hypothesis constituted by 1 HBA lipid,

Figure 2 Alignment of groups A36 and Z27 on their respective best significant hypotheses (A and B, respectively) and corresponding regression graphs
displaying ‘‘measured activity’’ versus ‘‘estimated activity’’ (C and D, respectively). In dark blue: hydrophobic aliphatic features; in light blue: hydrophobic
features. These features correspond to hydrophobic sites on the receptor. In green: HBA features, constituted by a small sphere corresponding to the center of
HBA and a large sphere that is the projection sphere corresponding to a hydrogen-bond donor on the receptor site. In gray: excluded volume, indicating
a steric hindrance on the receptor site. Estimated activities were obtained by scoring the hypothesis models on their respective training sets.

Figure 3 Comparison of ‘‘model-A36’’ (A) and ‘‘model-Z27’’ (B). In dark blue: hydrophobic aliphatic features; in light blue: hydrophobic features; in green:
HBA features; in gray: excluded volume (see Figure 2). Distances between centers of features are expressed in Å.
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1 hydrophobic, and 1 aliphatic hydrophobic features (total

cost = 122, correlation = 0.93, fixed cost = 54.6, null cost =

518). In the same way, hypothesis generation run performed

on group Z22 (compounds 7, 14–16, 25–27, 31, 37, 44, 54, 66,

67, 70, 71, 79, 82, 83, 87, 88, 90, and 91) led to a best signif-
icant hypothesis constituted by 1 HBA, 1 HBA lipid, and

2 hydrophobic features (total cost = 94.6, correlation = 0.96,

fixed cost = total cost = 47.6, null cost = 606). The estimation

of activities of ‘‘kernel-A’’ and ‘‘kernel-Z,’’ respectively, by

both corresponding hypothesis models, provided satisfac-

tory results: correlations between estimated and experimen-

tal activities were equal to 0.91 and 0.95, respectively.

Merging groups A and Z

We built a new training set by merging group A36 and group

Z27 (compounds 1–5, 7, 10, 11, 14–17, 19–21, 25–27, 29–31,

34, 36–38, 40–45, 48, 50–52, 54–56, 58, 59, 61, 64, 66, 67, 70,

71, 74–76, 78, 79, 81–91, and 94). One HBA lipid, 1 hydro-
phobic, and 1 aliphatic hydrophobic features make up the

best hypothesis characterized by a low significance (cost =

3239, correlation = 0.66, fixed cost = 69.4, null cost = 5701).

Across hypothesis activity estimation

We evaluated activities of group A36 compounds by per-

forming a score of the best significant hypothesis obtained

from group Z27 (model-Z27) and conversely a score of

the best significant hypothesis obtained from group A36

(model-A36) on group Z27. Whereas, model-A36 did not es-
timate activities of Z27 compounds with an absolute error

value lower than 3, twenty-five A36 compounds were esti-

mated by model-Z27 with an absolute error value lower than

3 (1, 3–5, 10, 17, 19, 20, 21, 29, 30, 34, 36, 38, 41–43, 45, 48,

50–52, 56, 58, and 59).

We tested incorporation of these compounds into group

Z27. The best hypothesis provided by hypothesis generation

run on the training set so constituted by 62 compounds is
formed by 2 hydrophobic features and 1 HBA (cost =

374, correlation = 0.94, fixed cost = 74, null cost = 2543).

Addition of twenty-five A36 compounds does not dramati-

cally change models’ geometry (data not shown).

In what follows, the reference models and groups A36 and

Z27 are called ‘‘model-A,’’ ‘‘model-Z,’’ ‘‘group-A,’’ and

‘‘group-Z.’’

OR1G1 antagonist prediction and validation

In a previous study (Sanz et al. 2005), 3 OR1G1 odorants
were demonstrated to inhibit OR1G1 response to several

of its agonists. These OR1G1 antagonists were 1-hexanol

(31), hexanal (44), and cyclohexanone (76). Our current re-

sults show that the 3 compounds belong to group Z and their

respective alignments and that of vanillin are close to each

others (Figure 4). This suggests that vanillin, which was pre-

viously identified as a weak OR1G1 agonist (Sanz et al.

2005), could also be an OR1G1 antagonist. This hypothesis

was experimentally tested by heterologous functional expres-

sion of OR1G1 in HEK293 cells and calcium imaging, as

previously published (Sanz et al. 2005). OR1G1 response

to odorants was expressed as percentage of responding cells.

Indeed, we have previously demonstrated that, especially in

our assays, increased receptor activity is reflected in in-
creased magnitude of the calcium responses of individual

cells as well as in increased number of responding cells (Sanz

et al. 2005). Results corresponding to cell responses to binary

mixtures of vanillin with 3 OR1G1 strong agonists previ-

ously identified (Sanz et al. 2005), 1-nonanol, nonanal,

and gamma-decalactone, are presented on Figure 5. On

one hand, we can again observe that vanillin is a weak ag-

onist of OR1G1 when tested alone. On the other hand, van-
illin actually inhibits OR1G1 responses to the 3 tested strong

agonists. Vanillin thus appears to be a partial agonist. In or-

der to ensure that the vanillin antagonist effect was OR1G1

specific, vanillin was verified to have no effect on 1) isopro-

terenol responses of HEK293 cells expressing Ga16 (data not

shown) and 2) methyl octanoate responses of HEK 293 cells

coexpressing Ga16 and the receptor OR52D1 which is acti-

vated by this odorant (Sanz et al. 2005) (Figure 5). In order
to ensure that inhibition by vanillin was not the result of an

increased molarity of the mixture compared with 1-nonanol

alone, we also tested the effect of another molecule (whiskey

lactone) mixed with 10 lM 1-nonanol at doses for which van-

illin inhibited OR1G1 responses. OR1G1 response to 10 lM

Figure 4 Alignment of the 3 previously identified antagonists, vanillin, and
the strong agonist ethyl isobutyrate on ‘‘model-Z27.’’ In light blue:
hydrophobic features; in green: HBA features (see Figure 1). Vanillin in
red; hexanal, hexanol, and cyclohexanone in dark blue; ethyl isobutyrate in
brown.
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1-nonanol was not inhibited by whiskey lactone (Figure 5).

Both the dose-dependent antagonist effect of vanillin illus-

trated in Figure 5 and the fact that vanillin is also a weak

agonist for OR1G1 suggests a competitive antagonist effect

of vanillin. Figure 5 also shows that OR1G1 response to van-
illin alone (at a dose exceeding 10 lM) can be greater than

OR1G1 response to vanillin mixed with an agonist. This phe-

nomenon could be the result of a competition between van-

illin and the agonist which would be unfavorable to the

optimal activity of each compound. The possible competitive

effect of vanillin is also supported by the fact that OR1G1

antagonists identified until now, including vanillin, belong

to the group Z and not to a third group generating a specific
hypothesis model. Figure 4 shows that ethyl isobutyrate,

which is not an antagonist but the best OR1G1 agonist of

group Z, is in the same space as the antagonists, but the po-

sition of the carbon chain between the hydrophobic features

spheres differs from those of the antagonists.

External validation

In order to validate experimentally the molecular modeling,

the best significant hypothesis models A and Z were used to

select 10 compounds, predicted as strong (activity value

lower than 5), medium (activity value between 5 and 19),

or weak (activity higher than 19) agonists or inactive on

OR1G1. These newly predicted molecules were tested by

OR1G1 functional expression. Experimental results are pre-
sented in Figure 6A,B. Estimated activities and experimental

activities calculated from results presented in Figure 6 are
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Figure 5 Vanillin antagonism on OR1G1 odorant responses. (A) Inhibition of OR1G1 responses to various agonists by vanillin was evaluated using VOFA
and HEK293 cells coexpressing OR1G1 and Ga16. Vanillin was tested alone (e and dotted line) or mixed with 10 lM of nonanal (·), c-decalactone (:), or
1-nonanol (n). Vanillin doses varied from 0.1 to 100 lM. Ca2+ responses were recorded during 10 min and data are shown as number of responding cells.
Bars indicate standard deviation (SD; 3 independent experiments). (B) Effect of vanillin, at doses for which vanillin inhibits OR1G1 responses (10–100 lM), on
responses to methyl octanoate of HEK293 cells coexpressing Ga16 and OR52D1. (d) 10 lMmethyl octanoate mixed with vanillin. Effect of whiskey lactone, at
doses for which vanillin inhibits OR1G1 responses (10–100 lM), on OR1G1 response to 10 mM 1-nonanol. (¤) 10 lM 1-nonanol mixed with whiskey lactone.
Bars indicate SD.
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Figure 6 OR1G1 responses to predicted agonists. Different odorants predicted as OR1G1 agonists were tested using VOFA and HEK293 cells coexpressing
OR1G1 and Ga16. Odorants were applied at 0.01 to 100 lM. Ca2+ responses were recorded during 10 min and reported as the number of responding cells
normalized as percentage of cells responding to 10 lM isoproterenol. At the end of each experiment, isoproterenol (10 lM) was applied to verify the ability of
cells to generate Ca2+ responses via the Ga16-protein subunit. Ga16-expressing HEK293 cells were also stimulated with each of the tested odorants at 100 lM
in order to control the specificity of the response obtained in presence of OR1G1 (data not shown). Bars indicate standard deviation (3 independent
experiments). (A) AZ compounds (d and thick line) 1-nonanol (OR1G1 agonist previously identified and used as a reference), (m) 9-decen-1-ol, (:) tridecanal,
(e) 2-methylundecanal, (s) 3-methylthio-1-hexanol, (· and dotted line) 5-hydroxy-4-octanone, (*) trans-2-trans-4-nonadienal. (B) (n and thick line)
1-nonanol as a reference and Z compounds, (h and dotted line) cis-4-hexen-1-ol, (D) 4-phenyl-butan-1-ol, (¤) 3-methyl-1-pentanol, and (+ and dotted line)
n-butanal.
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reported in Table 1. Tridecanal, 9-decen-1-ol, and 3-methyl-

1-pentanol, predicted as strong agonists, were revealed to be

more or equally active on OR1G1 than 1-nonanol, a previously

identified potent agonist for OR1G1. 2-methylundecanal,

4-phenyl-butan-1-ol,andtrans-2-trans-4-nonadienalappeared
to be medium agonists as predicted. Yet, 3-methylthio-1-

hexanol, predicted as medium agonist, was demonstrated

as a weak agonist, and 5-hydroxy-4-octanone and cis-4-

hexen-1-ol, predicted as weak agonists, in fact did not

succeed in activating OR1G1. The predicted inactive com-

pound, n-butanal, was indeed unable to activate OR1G1.

So, whatever the hypothesis model, ‘‘A’’ or ‘‘Z,’’ we can

observe that agonists predicted as strong or medium (tride-
canal, 9-decen-1-ol, 3-methyl-1-pentanol, 2-methylundecanal,

4-Phenyl-butan-1-ol, trans-2-trans-4-nonadienal, and 3-

methylthio-1-hexanol) were actually able to activate

OR1G1. Nevertheless, some estimated activities were not

totally in agreement with experimental data, but improve-

ment of estimation should be obtained by hypothesis gen-

eration on new trainings sets formed by incorporation of

compounds ‘‘AZ type’’ in training sets A or Z and for com-
pounds ‘‘Z type’’ in training set Z (data not shown). From

our results, we can also observe that 2 molecules, 3-methyl-

1-pentanol and 4-phenyl-butan-1-ol, are exclusively pre-

dicted by the model ‘‘Z,’’ that demonstrates the relevance

of the 2 models. The correlation between the predicted and

measured activity was tested by regression analysis using

estimated activity according to compound type (A or Z)

reported in Table 1 (the used values are underlined). Esti-
mated activity values obtained by model-A were used

for 2-methylundecanal, trans-2-trans-4-nonadienal, and 3-

methylthio-1-hexanol, whereas estimated activity values

obtained by model-Z were used for tridecanal, 9-decen-1-

ol, 3-methyl-1-pentanol, 4-phenylbutan-1-ol, 5-hydroxy-4-

octanone, cis-4-hexen-1-ol, and n-butanal. Regression

parameters (experimental activities vs. estimated activities)

are reported in Table 2. Very close statistical values were
obtained using the activity value estimated by model-A

for 9-decen-1-ol (r2 = 0.9477, F test = 144.89).

We also tested predictive power of model obtained by

merging of groups A36 and Z27. Estimated activities and ex-

perimental activities are reported in Table 1, whereas regres-

sion parameters are reported Table 3.

Odor quality coding

On the basis of the above structure–activity relationships of

OR1G1 odorant ligands, we attempted to correlate odor

quality of these odorants with their molecular structure

and biological activity on OR1G1.

Odor quality descriptions of OR1G1 best agonists seem

very similar. Indeed, descriptors such as oily, fatty, floral,

or rose were repeatedly found in the quality description of
the 5 agonists with the highest experimentally measured ac-

tivity (Table 4). In order to confirm this observation, the 105

odorants tested on OR1G1 were split up into 3 groups (on

the basis of a cluster analysis, data not shown) depending on

their activity: 8 odorants in the strong group (activity < 5.0),

58 in the medium group (5.0 < activity < 19.0) and 39 in the

weak group (19.0 < activity). The correspondence between

experimental activities values (in vitro activities) and olfac-
tory description was then explored through a correspondence

analysis (McEwan and Schlich 1991/92). To perform this

analysis, only 13 descriptors with an occurrence higher than

Table 1 Estimated and experimental activity valuesa of new tested compounds

Compounds Estimated activity
values by hypothesis
‘‘model-A’’

Estimated activity
values by hypothesis
‘‘model-Z’’

Estimated activity
values by hypothesis
‘‘merge AZ model’’

Experimental
activity
values

Compound
type

Tridecanal 6.5 5.9 11 2.3 AZ

9-Decen-1-ol 5.2 5.1 10 3.6 AZ

3-Methyl-1-pentanol 370 5.3 12 4.4 Z

2-Methylundecanal 6.9 5 11 7.3 AZ

4-Phenyl-butan-1-ol 530 10 59 7.5 Z

trans-2, trans-4-nonadienal 9.3 14 11 10.9 AZ

3-Methylthio-1-hexanol 8.2 5.4 8 14.8 AZ

5-Hydroxy-4-octanone 83 8.4 10 25.6 AZ

cis-4-Hexen-1-ol 540 22 68 43.4 Z

n-Butanal 640 92 71 113.3 Z (inactive)

Activitieswere estimated using the best significant hypothesis models A, Z, andAZ, respectively, obtained by automated generation of hypotheses for group A-36,
Z-27, and merged AZ. Underlined values were used for regression analysis in Table 2.
aActivity = 100�%cells

%cells :
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5% were kept (cheese, cognac, fatty, floral, fruity, green, her-

baceous, nutty, oily, rose, sweet, waxy, and winey). Figure 7

represents a combined plot derived from correspondence

analysis between groups of OR1G1 agonists (based on in

vitro activity) and their odor description. On this map, the

closeness of a group (weak, medium, or strong) and an odor

descriptor is interpreted in terms of correspondence. The fur-

ther away 2 close points are from the origin, the stronger the

implications. It was concluded from this multivariate anal-

ysis that there was a correspondence between a high in vitro

Table 2 Regression parameters of correlation between experimental and estimated activity values by models A or Z (experimental values vs.
estimated values)

Statistical regression analysis

r2 0.9478

Standard error 8.2488

F 145.21

F critical 5.32

Observations 10

Variance analysis

Degree of freedom Sum of squares

Regression 1 9890.64 9880.64

Residuals 8 544.35 68.04

Total 9 10424.98

Coefficient Standard error t Statistic Probability CI (a = 5%) min
value; max value

Intercept point 1.8409 3.1597 0.5826 0.5762 �5.4454; 9.1272

Slope 1.24138 0.1030 12.0503 2.08E-06 1.0038; 1.4789

Used values for regression analysis are underlined in columns ‘‘estimated activity values by Hypothesis model-A’’ and ‘‘estimated activity values by Hypothesis
model-Z’’ in Table 1.

Table 3 Regression parameters of correlation between experimental and estimated activity values by model merge AZ model (experimental values vs.
estimated values)

Statistical regression analysis

r2 0.4963

Standard error 25.5544

F 7.8818

F critical 5.3176

Observations 10

Variance analysis

Degree of freedom Sum of squares Mean of squares

Regression 1 5147.01 5147.01

Residuals 8 5224.20 653.03

Total 9 10371.21

Coefficient Standard error t Statistic Probability CI (a = 5%) min
value; max value

Intercept point �0.6651 11.7587 �0.0566 0.9563 �27.7807; 26.4506

Slope 0.8849 0.3152 2.8075 0.0229 0.1581; 1.6118

Used values for regression analysis are reported in column ‘‘estimated activity values by merge AZ model’’ in Table 1.
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agonist activity (strong group) and descriptors such as rose

and waxy. This observation suggested a link between in vitro

activity values and odor description, subsequently revealing

the possible implication of OR1G1 in olfactory coding of

these odor notes.
To evaluate the statistical significance of such a link, we

performed an ANOVA between the 13 odor descriptors of

OR1G1 agonists and their in vitro measured activity (n =

105). The model was not found to be significant (F13,104 =

1.2; P = 0.29). Therefore, we performed ANOVAs between

each of the 13 odor descriptors of agonists and their in vitro

measured activity. ANOVA models were found to be signif-

icant for rose (F1,104 = 10.6, P = 0.002; corrected P = 0.021)

and to a lesser extent for waxy (F1,104 = 5.5, P = 0.02; cor-
rected P = 0.27) descriptors. In order to investigate whether

a combination of factors would lead to a better model, we

conducted a stepwise regression between odor descriptor oc-

currence and in vitro activity. Only the 2 previously identified

descriptors were found to be positively and significantly (a =

0.1) linked to activity: rose (P = 0.006) and waxy (P = 0.09).

Moreover, we observed that from the set of the 105 odor-

ants tested on OR1G1, 75% of the strong agonists (Table 4)
are AZ type odorants and 83% of the strong AZ type OR1G1

agonists carry rose, waxy, or fatty odor. Furthermore, from

the total tested set, there is no strong OR1G1 agonist which

has a rose, waxy, or fatty odor and is not of AZ type. Only

4-phenyl-butan-1-ol, which is a medium agonist of Z type

exclusively, has a rose odor quality. Hence, it seems that

the best OR1G1 agonists are in majority of AZ type and have

a rose, waxy, or fatty odor quality. It is then likely that rose
waxy or fatty notes are essentially linked with strong and AZ

type OR1G1 ligands. Statistical analyses of the olfactory de-

scription of AZ type OR1G1 ligands as compared with non-

AZ type OR1G1 ligands (2-sided Fisher’s exact test [FET])

confirmed these observations. In all, 48% of the AZ type

OR1G1 ligands were described as fatty (P = 0.0002, cor-

rected P = 0.003, FET), 26% as waxy (P = 0.005, corrected

P = 0.07, FET), and 19% as rose (P = 0.008, corrected
P = 0.10, FET).

Table 4 Experimental activity valuesa and odor descriptions of best
OR1G1 agonists

Compounds Experimental
activity
valuesa

Odor description Compound
Type

Tridecanal 2.3 Powerful waxy,
citrus odor, fatty

AZ

9-Decen-1-ol 3.6 Waxy, fatty, rosy AZ

1-Nonanol 4.2 Oily floral, rose orange AZ

Ethyl isobutyrate 4.3 Sweet, ethereal, fruity Z

Nonanal 4.4 Fatty floral rose, waxy AZ

3-Methyl-1-pentanol 4.4 Winey, cognac, whisky,
fruity, green

Z

c-Decalactone 4.5 Coconut peach AZ

2-Ethyl-1-hexanol 4.7 Sweet, oily, weak rose AZ

aActivity = 100�%cells
%cells :
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Figure 7 Combined plot derived from correspondence analysis between groups of OR1G1 agonists (based on in vitro activity) and their odor description.
The closeness of a group (weak, medium, or strong) and an odor descriptor is interpreted in terms of correspondence. For clarity reasons, all descriptors were
not reported on the map. Strong group: activity < 5.0, medium group: 5.0 < activity < 19.0, weak group: 19.0 < activity.
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Discussion

The present study investigated the relationships between

molecular structure, in vitro agonistic performance and odor

description of odorants interacting with the human OR

OR1G1. Starting from in vitro biological data, 3D-QSAR

approach showed that hypotheses generated on the whole

set of 95 compounds failed to reveal a single model for

OR1G1 ligands. This suggests that OR1G1 could exhibit

several binding modes. Indeed, our sorting-out selection

of compounds led to 2 subsets, which permitted to obtain

highly significant hypothesis models, so called ‘‘model-A’’

(for the best significant hypothesis provided by group

A36) and ‘‘model-Z,’’ respectively(for the best significant

hypothesis provided by group Z27). As a common point,

1 HBA (or HBA lipid) and 2 hydrophobic features make

up these 2 models. However, orientation of hydrogen-bond

projections is different and distances between features are

smaller for model-Z, as shown in Figure 3. When increasing

the spacing parameter to a value equal or higher than 4 Å

(data not shown), generation of hypotheses by group Z27

is not possible. This small distance was also observed for hy-

potheses provided by group ‘‘leave-kernel-out Z22,’’ con-

firming the crucial aspect of this geometry. Conversely,

theses changes of distance and tolerance parameters have

no, or only little effect, on generated hypothesis models pro-

vided by group A36, which is characterized by an excluded

volume that puts forward the presence of a steric hindrance

in the receptor site.

Indeed, hypothesis generation run performed on the train-

ing set constituted by association of compounds A36 and

Z27 produced poor statistical significant model, emphasizing

the specificity of each model. However, model-Z was able to

correctly estimate activities of several compounds belonging

to group A36, whereas there was no correct estimation

performed by model-A on compounds Z27. This property

should be related to distance between features presented be-

fore: mapping most of the molecules on model-Z was facil-

itated by short distance between spheres features of model-Z,

but conversely mapping small molecules on hypothesis

model-A was disadvantaged, even impossible.

The predictive power of these models was then attested by
the experimental external validation of 10 compounds previ-

ously not tested. Moreover, the 3D-QSAR approach allowed

us to propose some associations of ligands and restricted the

choices of their conformers, which could greatly facilitate the

further docking of OR1G1 ligands through molecular mod-

eling of the receptor-binding site and suggests clues for the

understanding of odorant perception.

Having demonstrated that odorant ligands of OR1G1

share common structural features, we addressed the question

whether these ligands could also share a common odor qual-

ity. When taking into account the 105 odorants tested with

OR1G1, we observed a correspondence between odorant

activity on OR1G1 and olfactory description. ANOVA

and stepwise regression also suggest that OR1G1 ligands

would be associated with rose odor and to a lesser extent with

waxy odor. Nevertheless, this needs to be validated with ex-

ternal data. Taking into account the 3D-QSAR categoriza-

tion of OR1G1 ligands, we further showed by statistical
analyses of the olfactory description that AZ type OR1G1

ligands, which correspond to 75% of the strong agonists,

are linked with fatty, waxy, and rose notes. Hence, it is worth

noticing that the best OR1G1 ligands appear in majority to

have a rose, waxy, or fatty odor and to be of AZ type. These

results thus suggest that an odotope could be associated to an

odor quality. Obviously, it could be that the distinct odor

quality of OR1G1 agonists groups found in the present study
was due to the interaction of these agonists with at least an-

other OR. Furthermore, although our data suggest that the

way an OR binds structurally related odorants might partly

determine their odor quality, the perception of each odorant

remains unique and probably results from the activation of

a specific combination of ORs.

Along the olfactory pathway, it is known that monomole-

cular odorants are represented in the main olfactory bulb by
distinct spatial patterns of activated glomeruli, correspond-

ing to specific groups of activated ORs (Ressler et al. 1994;

Vassar et al. 1994; Mombaerts et al. 1996). Moreover, indi-

vidual glomeruli responds to odorants sharing a specific com-

bination of molecular features and odorants structurally

related activate neighboring glomeruli (Imamura et al.

1992; Xu et al. 2003; Mori et al. 2006; Oka et al. 2006). Nev-

ertheless, structurally related odorants may have different
perceived odor (Laing et al. 2003). In mixture studies, it

was reported that, at the level of the olfactory bulb, glomeruli

activated by a mixture of odorants correspond to the sum of

the glomeruli activated by its components (Laing et al. 2003;

Lin et al. 2006). Yet, it was shown that cortical neurons ac-

tivated by a mixture of 2 odorants are not stimulated by in-

dividual odorants (Zou and Buck 2006). This result is in line

with psychophysical studies demonstrating that perceived
odor of an odorant mixture does not correspond to the su-

perposition of odor quality of its components (Jinks and

Laing 2001). Hence, although structure of odorants seems

encoded at the level of the olfactory bulb, it is lacking a code

of odor quality. A recent work by Gottfried et al. (2006)

showed that, in the piriform cortex, codes of odorant struc-

ture and odor quality are dissociated, but the mechanism by

which the odor quality information in piriform cortex is in-
tegrated with the odorant structure code remains unknown.

Aside, our work put ORs at the crossroads, integrating both

structure and quality informations about odorants.

Recent studies (Schmiedeberg et al. 2007; Stary et al. 2007)

demonstrated that ORs with high homology (orthologues

such as human OR1A1 and mouse Olfr43 or paralogues such

as human OR1A1 and human OR1A2) bind common li-

gands with similar efficacy, whereas ORs more distantly re-
lated (such as Olfr43 and Olfr49) binds common odorants

but with different efficacies. The study by Schmiedeberg
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et al. also demonstrated that evolutionary conserved amino

acid positions define the ligand-binding site. Then, these

studies suggest that an odorant would be recognized via

a similar odotope by closely related ORs, whereas distantly

related ORs would bind a common ligand via different odo-
topes. In the present work, we demonstrate that an OR can

recognize 2 odotopes, suggesting that the binding pocket of

an OR can accommodate several odotopes. When taken to-

gether, our results also suggest that odorants sharing a same

odotope recognized by OR1G1 would evoke similar odor

quality. So, an odotope could be associated with an odor

quality. But, as an odorant can be recognized by various

ORs via different odotopes, it can be suggested that odo-
topes recognized with the best efficacies would define the

prominent perceived odor quality.

In summary, the findings reported here provide a new in-

sight in the understanding of the relationships between odor-

ants, ORs and odor quality. It has especially been shown for

the first time by a 3D-QSAR approach that ligands of an

OR, OR1G1, have to be divided in 2 groups in order to find

satisfactory models, suggesting 2 modes of interaction of
odorants with this receptor. This result is in agreement with

another study (Sell 2006) reporting that it would be difficult

to design a model for a typical ligand for OR1G1. In another

part of this work, we also reported the likely involvement of

OR1G1 in the perception of waxy, fatty, and rose odor in

humans. These results support the idea that, among the spe-

cific group of ORs activated by an odorant and defining its

particular odor perception, some ORs that strongly bind this
odorant might determine its major odor quality. Similar

studies for other ORs need to be made in order to validate

this view and to increase the understanding and predictabil-

ity of odor perception.

Supplementary material

Supplementary material can be found at http://www.

chemse.oxfordjournals.org/
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Etiévant PX. 2005. Perceptual interactions in odour mixtures: odour

quality in binary mixtures of woody and fruity wine odorants. Chem

Senses. 30:209–217.

Bajgrowicz JA, Berg-Schultz K, Brunner G. 2003. Substituted hepta-1,6-

dien-3-ones with green/fruity odours green/galbanum olfactophore

model. Bioorg Med Chem. 11:2931–2946.

Bajgrowicz JA, Frank I. 2001. Camphor-derived amber/woody odorants:

1,7,7-trimethyl-2#-iso-propylspiro[bicyclo[2.2.1]heptane-2,4#-(1,3-dioxanes)].
Tetrahedron Asymmetry. 12:2049–2057.

Bajgrowicz JA, Frater G. 2000. Chiral recognition of sandalwood odorants.

Enantiomer. 5:225–234.

Beusen DD, Marshall GR. 2000. Pharmacophore definition using the active
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Sutter J, Güner OF, Hoffman R. 2000. Effects of variable weights and

tolerances on predictive model generation. In: Güner OF, editor.
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