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Relationships between protein-encoding gene
abundance and corresponding process are
commonly assumed yet rarely observed
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For any enzyme-catalyzed reaction to occur, the corresponding protein-encoding genes and
transcripts are necessary prerequisites. Thus, a positive relationship between the abundance of
gene or transcripts and corresponding process rates is often assumed. To test this assumption, we
conducted a meta-analysis of the relationships between gene and/or transcript abundances and
corresponding process rates. We identified 415 studies that quantified the abundance of genes or
transcripts for enzymes involved in carbon or nitrogen cycling. However, in only 59 of these
manuscripts did the authors report both gene or transcript abundance and rates of the appropriate
process. We found that within studies there was a significant but weak positive relationship between
gene abundance and the corresponding process. Correlations were not strengthened by accounting
for habitat type, differences among genes or reaction products versus reactants, suggesting that
other ecological and methodological factors may affect the strength of this relationship. Our
findings highlight the need for fundamental research on the factors that control transcription,
translation and enzyme function in natural systems to better link genomic and transcriptomic data to
ecosystem processes.
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Describing the relationship between microbial
community structure and ecosystem function has
emerged as an important yet elusive target in
microbial ecology (Fuhrman, 2009). To evaluate
these linkages, many studies use molecular techni-
ques, including quantitative PCR (qPCR), reverse-
transcription qPCR (Liu et al., 2010; Shannon et al.,
2011), microarrays (Taroncher-Oldenburg et al.,
2003; Kang et al., 2013) and, most recently, metage-
nomics (Tyson et al., 2004; Mackelprang et al., 2011;
Fierer et al., 2012; Yau et al., 2013). These
techniques measure the relative abundances of
nucleic acids encoding proteins that catalyze
biogeochemical reactions, which we refer to as
protein-encoding genes and transcripts (or henceforth
as gene or transcript). The use of these approaches to

compare gene or transcript abundance with rates of
biogeochemical processes stems from the ‘sequence
hypothesis’ proposed in the 1950s and now a central
tenet of molecular biology, where the transference of
biological information is sequential, from gene(s) to
transcript(s) to protein synthesis, finally leading to
the resultant enzyme-catalyzed chemical reaction
(Crick, 1958). On the most fundamental level, genes
are prerequisites for any enzyme-catalyzed reaction
and should therefore correlate. However, the rela-
tionship between gene and transcript abundances
and the processes they facilitate can be obscured by
various factors including habitat attributes, com-
plexity of biogeochemical pathways and differences
in the turnover time of nucleic acids and reaction
products. In addition, methodological constraints
such as extraction efficiency, PCR biases and primer
design can affect any apparent relationship between
gene and function. Nonetheless, many studies assume
that there is a quantitative relationship between
functional enzymes and the processes that they
catalyze. Our goal in this review was to evaluate
whether this assumption is supported by data.
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To address how well gene copy or transcript
abundance correlates with process, we conducted a
meta-analysis of microbial genes with known
matching functions in environmental habitats. Data
were assembled from a wide range of studies to
examine explanatory value of certain study-specific
conditions, like specific gene type, habitat, DNA
versus RNA and/or reaction states.

We obtained data for our meta-analysis by identi-
fying studies that quantified genes or transcripts,
which primarily involved C- and N-cycling genes
using Google Scholar and ISI Web of Knowledge (for
published data sets) and ProQuest Dissertation &
Theses Database (to access the gray literature). We
included unpublished literature to minimize poten-
tial publication biases against studies that found
nonsignificant or weak correlations (Koricheva
et al., 2013). Searches were limited to studies
published after 2005, matching the time frame for
when qPCR methods were optimized and routinely
used. We analyzed only studies using qPCR, because
it is the most well established and most quantitative
method. We used the following search phrases to
identify all potentially relevant studies for the initial
literature search: ‘functional gene expression and
microb*’, ‘qpcr and microb*’, ‘quantitative pcr and
microb*’ and ‘ogene name4 and gene expression’.
Data were then extracted from figures using PlotDi-
gitizer (http://plotdigitizer.sourceforge.net/), which
we validated by inputting plots of known values to
determine the accuracy and precision of the
retrieved digitized data. Studies reporting log-trans-
formed gene counts were antilog converted, and
those studies that reported gene counts per unit
nucleic acid were excluded as the units must be

comparable to that of the process to appropriately
assess correlation strength.

We tested for bias in the final database in two
ways. First, funnel plots of individual s.e. against
residuals from the random-effects model did not
show asymmetry using an Egger regression test
(Viechtbauer, 2010). We also assessed the database
for publication bias using Rosenthal’s estimation of
the fail-safe n, which calculates the number of
studies yielding null outcomes that would need to
be added to have a significant influence on the
outcome of the existing set of studies in the
database. The fail-safe n estimation must then be
larger than five times n samples plus ten to assume a
robust existing data set (Rosenthal, 1991), which
was true for our data set.

Statistical analyses were performed with the
‘metafor’ package in R (version 3.0.2; Viechtbauer,
2010), and a Fisher Z-transformed Pearson product-
moment test of the correlations between genes and
corresponding processes for the individual effect
size (Zr¼ 0.5� ln[(1þ r)/(1� r)]). To account for the
variable number of observations used to calculate a
single effect size, we weighted the correlation by the
inverse of the asymptotic variance (VZr¼ 1/(n� 3))
(Aloe and Becker, 2009; Koricheva et al., 2013),
which allowed us to treat effect sizes equally. To
select the appropriate statistical model, we tested for
homogeneity of all the effects, which was rejected,
Q¼ 3827, df¼ 223, Po0.0001, indicating that the
distribution of true individual effect sizes was
not uniformly distributed. Therefore, to assess the
ability of the categorical moderators (that is, nucleic
acid form, process dynamics, biome type, functional
reaction state, gene type (Table 1) and habitat type)

Table 1 Description of the protein-encoding genes examined in this meta-analysis

Gene Encoded enzyme Function Citation

Nitrogen cycle
nifH Dinitrogenase reductase NH4

þ production (N fixers) Yun and Szalay, 1984
AOA Archaeal ammonia mono-oxygenase,

a-subunit
NO2

� , NO3
� accumulation

(nitrifiers)
Könneke et al., 2005

AOB Bacterial ammonia mono-oxygenase,
a-subunit

NO2
� , NO3

� accumulation
(nitrifiers)

Rotthauwe et al., 1997

napA, narG Nitrate reductase NO2
� o–4 NO3

� Graham et al., 2003; Flanagan et al., 1999
nirK, nirS Nitrite reductase NO2

�/NO3
� –4 NO (denitrification) Braker et al., 1998

nrfA Nitrite reductase NO2
�/NO3

� –4 NO (denitrification) Wang and Gunsalus, 2000
cnorB Cytochrome B nitric oxide reductase NO –4 N2O (denitrification) Braker and Tiedje, 2003
nosZ Nitrous oxide reductase N2O –4 N2 (denitrification) Kloos et al., 2001

Methane
mcrA Methyl-coenzyme M reductase CH4 production Luton et al., 2002
pmoA Particulate methane mono-oxygenase CH4 consumption Heyer et al., 2002

Other
nidA a-subunit dioxygenase Degradation of polycyclic aromatic

hydrocarbons (PAH rings)
Brezna et al., 2003

PAHgn Gram-negative bacterial PAH
dioxygenase

PAH ring degradation Mueller et al., 1997

tfdA 2,4 dichlorophenoxyacetate
mono-oxygenase

1st step of MCPA degradation Streber et al., 1987

Abbreviations: AOA, archaeal amoA; AOB, bacterial amoA.
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to explain the heterogeneity in the relationship
among nucleic acid and biogeochemical processes,
we used random-effects models (Viechtbauer, 2010;
Koricheva et al., 2013), with an unbiased restricted
maximum-likelihood estimator of aggregate effect
sizes, as it is optimal for use in meta-analyses
(Viechtbauer, 2010) to assess aggregate effect sizes
and confidence intervals.

We identified 9584 candidate studies that exam-
ined C and N genes and/or transcripts. Of these
studies, 415 met the initial screening criteria for the
meta-analysis (Figure 1). We then removed studies
that had mismatched gene and function or those that
had not quantified or not reported the correspond-
ing function. This filtering step reduced our analysis
to 59 studies containing 224 observations where
qPCR was used to measure gene or transcript
abundances as well as the reaction precursor
immediate reaction product or flux from one
nutrient pool to the other on the same environ-
mental sample (Figure 2; Supplementary Table 1).
The 88% reduction (from 415 to 59 studies) in
studies for our meta-analysis database does not
suggest that qPCR is not widely used to gain
inference about biogeochemical functions
(Figure 1). Instead, most studies were excluded
because (1) they only examined gene or transcript
abundance (and not function) or (2) because the

measured gene was not directly involved in the
biogeochemical sub-process that was assessed. This
suggests that gene abundances are often assumed to
correlate with the related process without any
evaluation of that relationship.

Contrary to the common assumption that gene
abundances should be consistently correlated with
process, we found extensive heterogeneity among
the effect sizes of individual studies included in our
meta-analysis. Overall, the abundances of genes
were significantly positively correlated with process
(r¼ 0.26, Po0.0001, n¼ 224; Figure 2), although the
distribution of effect sizes was centered at Zr¼ 0.26
(Figure 2), and resembled a normal distribution
(Supplementary Figure 1). Only 38% of individual
effects were significantly positively correlated,
whereas nearly twice as many were either negatively
correlated or showed no significant relationship. To
evaluate whether gene or transcript copy abundance
was more likely to be correlated with process rates,
we separated the predictors by nucleic acid type
(DNA versus RNA). We found a significant positive
correlation between gene abundance (DNA) and
process (r¼ 0.30, Po0.0001, n¼ 189), whereas tran-
script abundances (RNA) were not significantly
correlated (r¼ 0.08, P¼ 0.60, n¼ 35). Even though
the sizes of these categories are substantially
different, the statistical analysis we used accounts
for the difference in sample size when determining
the aggregate effect size and confidence intervals
(Nakagawa and Cuthill, 2007). The lack of correla-
tion between transcript abundance and processes
may be attributed to the rapid degradation of RNA in
the environment, with the half-life of transcripts
being reported to be as short as 30 s in some habitats
(Moran et al., 2013). In addition, the production rate
of transcripts may not have a 1:1 relationship
between enzyme activities and/or process rates, as
multiple proteins can be translated from the same
transcript molecule (Moran et al., 2013). Therefore,
transcript abundance may track short-term pro-
cesses (seconds to minutes), whereas gene abun-
dance may be more reflective of microbial process
performance potential integrated over longer time-
scales (hours to days or longer).

We also examined whether gene abundances
correlated more strongly with the reaction product
or with reactant, as which side of the reaction is
measured might influence the correlation strength.
However, both reactants (r¼ 0.23, P¼ 0.0051,
n¼ 111) and products (r¼ 0.30, P¼ 0.0003, n¼ 113)
showed significant positive correlations with corre-
sponding process and similar effect strengths.

When we compared gene–function relationships
among terrestrial and aquatic ecosystems, we found
that terrestrial studies exhibited significant positive
correlations between the abundance of genes and
processes (r¼ 0.28, Po0.0001, n¼ 172), whereas
those from aquatic studies did not (r¼ 0.21,
P¼ 0.09, n¼ 52). This finding may reflect inherent
differences between these habitats, due to a more

Figure 1 Pie charts illustrating the number of studies at each
stage of evaluation criteria, the number of studies excluded by
each set of criteria and the final number of studies that were
accepted and included in the meta-analysis.
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rapid temporal decoupling of organisms and
biogeochemical reactants in aquatic habitats where
the matrix is more temporally static than soils.
Within aquatic and terrestrial biomes, we also
examined more specific habitat types and found
that agricultural systems and coastal aquatic
systems exhibited a significant positive gene–
function relationship ((r¼ 0.34, Po0.0001, n¼ 110)
and (r¼ 0.60, P¼ 0.02, n¼ 9), respectively), whereas
other habitat types (forest, grassland, meadow,
tundra, estuary and lake; Figure 2) did not show a
significant relationship. The strength of the correla-
tion between agricultural and coastal studies may be
due to strong signal-to-noise ratios associated with
fertilizer at agricultural sites, which due to well-
documented runoff and connectivity may also
impact coastal ecosystems. As the number of studies
in each habitat category is small, additional, well-
designed experiments are needed to thoroughly
examine the validity of these trends.

It has previously been proposed that biogeochem-
ical processes that are narrowly distributed among
bacterial or fungal taxa may be more likely to be

constrained by microbial community composition
than those biogeochemical processes conducted by a
broader phylogenetic suite of organisms (Schimel,
1995; Schimel et al., 2005). We extended this
concept to hypothesize that narrow processes
should exhibit a stronger correlation between gene
abundance and process rate than broad processes.
To test this, we examined the data using gene type as
the categorical variable and found that only ammo-
nia mono-oxygenases (both bacterial and archaeal
amoA) and nitrite reductase genes (nirK and nirS),
both considered to be narrowly regulated processes,
yielded significant positive correlations with corre-
sponding process rates ((r¼ 0.42, P¼ 0.03, n¼ 21),
(r¼ 0.42, P¼ 0.03, n¼ 21), (r¼ 0.30, P¼ 0.03, n¼ 42)
and (r¼ 0.28, P¼ 0.04, n¼ 39), respectively). Other
genes, whether broadly (that is, pmoA) or narrowly
(that is, mcrA) distributed across taxa, were not
significantly correlated with process rates (Figure 2).
The lack of correlation for certain genes may simply
be due to the few available studies from our
literature search, which yielded only one study
each for the following: mcrA, nidA, nrfA and

Figure 2 Overall effect sizes for the relationship between protein-encoding gene or transcript abundance and corresponding processes
by categorical moderator. The Zr¼0 line indicates no correlation, with positive and negative values indicating the directionality of the
relationship. Horizontal bars represent 95% confidence intervals of each effect, with bars not crossing Zr¼0 indicative of a significant
correlation. Q-test significance codes: ***Po0.001, **P¼ 0.001, *P¼0.05, _P¼0.1, nsP40.1.
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PAHgn, none of which showed significant correla-
tions between gene and the corresponding process.
However, it is also likely that biological factors may
obscure the relationship. The potential impact of
aggregated processes likely obscures the gene–
function correlation. For instance, nifH gene abun-
dance may diverge from NH4

þ concentrations
because NH4

þ is also generated by nitrogen miner-
alization, independent of microbial N fixation
(Chapin et al., 2002), and gross rates of N fixation
are rarely measured. Alternatively, certain archaeal
clades of methanogens also contain nifH-like genes
(Dang et al., 2009), which, if they are substantial
contributors, may be unaccounted for in gene
abundance estimates where the qPCR primers only
target bacterial N fixers.

Additional reasons for gene-process decoupling
include methodological complications in quantify-
ing rates of biogeochemical processes. For instance,
the sequential reduction of nitrogen from NO3

� to N2

gas during denitrification is a complex pathway,
where the additional contribution of NO from the
anaerobic oxidation of NH3, or potentially Annamox
(anaerobic ammonium oxidation), may further
obscure the relationship between nar genes and
denitrification rates (Strous et al., 1999). In addition,
many studies measure NO3

� concentrations in
conjunction with amoA gene abundance. NO2

� and
NO3

� gross fluxes are difficult to assess, as both
molecules are mobile and are rapidly assimilated by
other microbes. Finally, non-biological reduction of
NO2

� to NO, or ‘chemodenitrification’ (Chapin et al.,
2002), may also obscure the gene–function relation-
ship of the early denitrification steps.

Coupled biogeochemical reactions can make it
difficult to detect relationships between a pool and a
rate. For instance, the select clades of methanogens
using mcrA genes to produce CH4 are spatially
separated from the broad range of microbes that
consume CH4 in soils (Brune et al., 2000). However,
if both methanotrophy and methanogenesis rates are
high, then the CH4 pool might be smaller than what
the mcrA counts would predict and larger than what
pmoA genes might suggest (Poret-Peterson et al.,
2008). Although the number of studies that
examined CH4 production and consumption in the
meta-analysis was small (n¼ 8), neither the mcrA
nor the pmoA gene abundances were significantly
correlated with CH4 net fluxes, possibly due to
the competing influences of methanogenesis and
methanotrophy on changes in the CH4 pool.

We examined studies that measured both AOA
(archaeal amoA) and AOB (bacterial amoA) to
determine whether correlations improved when
aggregating gene analogs. Possession of the amoA
gene was originally thought to be restricted to clades
in the bacterial domain (AOB), but the discovery of
amoA gene homologs in archaea (AOA) (Venter
et al., 2004) and subsequent clarification of their
potential importance in nitrification (Francis et al.,
2005) indicated that neither AOA nor AOB

abundances alone may accurately predict nitrifica-
tion rates. However, based on our meta-analysis,
AOAþAOB (r¼ 0.12, P¼ 0.33, n¼ 28) showed no
enhancement of correlation strength over either
AOA (r¼ 0.09, P¼ 0.46, n¼ 28) or AOB (r¼ 0.43,
P¼ 0.0001, n¼ 28) alone, which may be due to the
distinct niche requirements between the two
domains of ammonia oxidizers. The archaeal and
bacterial amoA functional clades are phylogeneti-
cally narrow, which may influence the strength of
the correlation between the abundance of AOA and
AOB in the environment and ammonia oxidation.
Also, the two domains of ammonia oxidizers likely
flourish under distinct environmental conditions,
with AOA being more prevalent in low-pH habitats
(Zhang et al., 2010), further highlighting the impor-
tance of measuring the abundance of both domains
as a more accurate reflection of nitrifying potential.

As genes are ultimately translated into enzymes
catalyzing biogeochemical reactions, they may be
more strongly correlated with fluxes than with pools
of reactants or products. On the other hand, the
abundance of protein-encoding genes itself is a pool
rather than a flux, and therefore it is likely that they
correlate more with a pool than a flux. Despite a
smaller sample size, the correlation between gene
abundance and process flux showed a strong
positive correlation (r¼ 0.50, Po0.0001, n¼ 76),
whereas correlation with pool size was not signifi-
cant (r¼ 0.13, P¼ 0.08, n¼ 148). This is likely
because pool sizes are affected not only by rates
of production but also by transfer, consumption
and loss.

Our results suggest that, although gene abundance
may be an accurate reflection of a given microbial
physiological pathway, comparing it with the
corresponding biogeochemical process or pool is
likely to reveal an even more complex story.
For example, reactant pools may frequently be
assimilated, leached or re-routed through other
biochemical pathways independent of the pathway
that corresponds to the gene of interest. The advent
of relatively new technologies like gene microarrays
(He et al., 2007) and metagenomics (Tyson et al.,
2004; Mackelprang et al., 2011; Fierer et al., 2012;
Yau et al., 2013) has allowed researchers to rapidly
assess more genes compared with qPCR techniques.
However, the use of enticing new technologies for
assessing gene abundance is also susceptible to
many of the same biases that obscure the links
between molecular information and biogeochemical
processes illustrated by the meta-analysis presented
here.

The quantification of genes through qPCR, gene
microarrays and now metagenomics is widespread,
but few studies have examined the ability of these
metrics to predict process rates. At the broadest
level, we found a positive relationship between gene
abundance and process among all studies, but the
broad variation in correlation strengths shows that
gene abundances cannot be used a priori as a proxy
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for biogeochemical processes. Rather, these relation-
ships need to be examined for each study system
before gene abundance can be used to infer micro-
bial biogeochemical process. When multiple studies
were examined, the concentration of products or
reactants rarely correlated with gene abundance
(38%). Even in the cases where the correlations
are strongly positive, they should not be inter-
preted as demonstrating causation without further
evidence. Spatial and temporal heterogeneity in
environmental conditions, such as anoxic/oxic and
water and/or nutrient availability, may not track
the variability of corresponding gene abundance in
space and time due to different residence times of
these indices. Monitoring gene abundance itself
may be useful for determining the variability of
that particular organism, but that may not explain
fluctuations in the corresponding process. There-
fore, studies whose main objective is to examine a
particular biogeochemical process may not require,
or even be hindered by inclusion gene abundance
for determining and predicting process (Graham
et al., 2014). However, state-of-the-art technolo-
gies, like metagenomic assessment of protein-
encoding genes, may more accurately reflect
process, as they capture more gene diversity
(Tyson et al., 2004; Mackelprang et al., 2011).
In addition, quantifying expressed proteins using
metaproteomics may prove to be a robust indicator
of corresponding function(s). Our findings point to a
critical need for more fundamental studies on the
factors controlling gene abundance, transcription,
translation and enzyme activity, so that we can
better interpret the potential for patterns in gene or
transcript abundance in a broad range of environ-
ments if genes will inform us about fundamental
ecosystem processes.
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