Relationships between Pushdown Automata with Counters
and Complexity Classes*

by
BURKHARD MONIEN

Institut fiir Informatik
Universitit Hamburg
Hamburg, West Germany

ABSTRACT

In this paper a machine model is defined whose access to the storage cells is controlled
by means of address registers. It is shown that every set acceptable by such a machine
within time bound ¢-n*, pe N, is accepted by a deterministic 2p-head two-way
pushdown automaton which has additional counters of length log, n. On the other
hand every set acceptable by a deterministic p-head two-way pushdown automaton
can be accepted by this machine model within time bound c-n?-log, n,

1. Introduction. The applicability of a programming language depends on
the time needed to translate a program into machine language. Therefore the
problem has arisen of finding classes of formal languages whose syntax may
be analysed within a short time. This research was put into a scheme in 1965 by
J. Hartmanis, P. M. Lewis and R. E. Stearns ({61, [7)) who worked out the
concept of time complexity and of tape complexity. In the following years many
papers were published which show certain relationships between classes of
languages (respectively classes of automata) and complexity classes.

In 1971 8. A. Cook found a new way to handle those problems. He used a
k-tape Turing machine with an additional pushdown tape as acceptor and
defined a new concept of tape complexity by counting only the cells which are
used on the k tapes. By this method he obtained a definite relationship between
time complexity and tape complexity. His most relevant result to the scope of
this paper is the following:

A set L is accepted by a g-head two-way deterministic pushdown automaton
(dpda) if and only if there exists a deterministic Turing machine which accepts L
in time complexity P(n), where P(n) is a polynomial,

S. A. Cook did not point out in which way ¢ and the degree of the polynomial

P(n) depend on each other. A. V. Aho, J. E. Hopcroft, J. D. Ullman and
T. Kameda studied these questions.

* A result similar to one of the main theorems (theorem 4) of this paper has been proved

also by S, A. Cook. Both proofs are based on the same idea but have been found independently.

248

MATHEMATICAL SYSTEMS THEORY, Vol. 9, No. 3.
@ 197% hy Springer-Veriag New York Inc,

Pushdown Automata and Complexity Classes 249

Aho, Hopcroft and Ullman [1] showed that if L is a language accepted by a
g-head two-way dpda then there exists a Turing machine which accepts L in
time complexity n*? log, n.

T. Kameda [9] showed that if L is accepted by a Turing machine in time
complexity n” then there exists a (3p+1)-head two-way dpda which accepts L.

Since 1965 it has been primarily the concept of time complexity and tape
complexity defined by Hartmanis, Lewis and Stearns that has been used to
describe the demand for time and space of an algorithm. However some authors
(for example Aho, Hoperoft and Ullman [1] and J. Early [3]) implement their
algorithms not on a Turing machine, but measure the time an algorithm
demands by counting only the operations which are carried out, presuming that
the data used are available without losing time. This method is close to the
way real computers work, for real computers calculate an address within a short
time before jumping to the corresponding storage cell.

In the present paper we define an automaton which has a register for each
working tape and which can take the heads in one step to the addresses given by
the registers. In section 2 the “register machine” is defined and some simple
results are presented. The concept of time complexity and of address complexity
(instead of tape complexity) is defined. In section 3 relationships between
complexity classes (relative to the register machine) and m-Counter PDA
(defined in [9] by T. Kameda) are proved by means of S. A. Cook’s idea. No
restriction is made on the time function and the length of the counters. In section
4 we consider the important case in which time function and counter length are
polynomials. The results gained in this special case improve significantly those
known before. In particular, we show that:

1. If L is accepted by a g-head two-way dpda, then there exists a regis{er
machine which accepts L in time complexity c-n?-logy n (c is a constant) and in
address complexity g-log,n+2-log; log, n.]

2. If L is accepted by a register machine in time complexity »” and in
address complexity p-logyn, then L is accepted by a 2p-head two-way dpda
which has additional counters of length log; 7.

It would be very interesting to find an auto
languages which are accepted by a register machine in linear time. Tt_le results
of the present paper show that such an automaton has a power which is (except
additional counters of length log, n) between the power of a I-head two-way
dpda and of a 2-head two-way dpda. Hence, by examining the relationships
between context-free languages and p-head two-way dpda(p=1,p= 2) we
could answer the question whether there is any context-free language not
acceptable in linear time by a Turing machine or by a register machine.

2. Machine Model and Preliminary Results. A k-tape register machine M
is composed of a finite control and 2k tapes which are infinite to the_ right but
have a leftmost cell. The cells of the working tapes are numbered with 1, 2, 3,
.-+, beginning with 1 at the leftmost cell. The symbol b is the blank symbol.

A k-tape register machine changes in each move the state an.d the cells which
are scanned by the heads of the 2k tapes. Each head may move like the hcz_ld ofa
Turing machine, that is, it goes one cell to the left or one cell to the right or

maton which accepts exactly the

250 BURKHARD MONIEN

finite control

L working tape 1, alphabet T

[register 1, alphabet {0, I, 2}

l working tape k, alphabet T

L register k, alphabet {0, 1, 2}

remains on the same cell. On the other hand, each head of a working tape may
jump in one step to the cell whose address is stored in binary notation in the

corresponding register on the left hand side of the first occurrence of the
symbol 2.

Formal Definition. A k-rape register machine is a 5-tuple (T, S, 5o, pr» F),
where (1) T is a non-empty, finite set (working tape alphabet) with b¢ T;
(2) S is a non-empty, finite set (set of states); s, € § (start state); F < S (set of
final states); (3) 8, is a partial mapping from S x (Tu{b})x{0,1,2 b})into
$x(Tx{ =10, +1, R}x{0, 1, 2} x{ —1, 0, +1})% The mapping 5, is called
the next move function.

In each tuple in Sx(Tx{—1, 0, +1, R}x{0, 1, 2}x{—-1,0, +1}* the
3rd, 5th,- - -, (4k+ 1)st components describe the movements of the heads. The
symbols —1, 0, + 1, R stand for: head moves one cell to the left, does not move,

moves one cell to the right, jumps to that cell which is given by the register,
respectively,

A configuration of M is a (4k +1)-tuple K = (s: Zy,ttty Zes Xpst s Xis
Wit Wi Ty,), where se S5z, x e N wie(Tu{bh*;r,e{0,1,2}*—
{e}foralli=1,--- k.

The machine M is in the configuration X if the following hold for all i = 1,
"+, k: (1) s is the current state of M; (2) the head of working tape i scans
the z;th cell; (3) the head of register i scans the xth cell; (4) working tape i stores
Wi = ajay: - -ay, followed by an enumerable number of b’s where z; = /; or
a. € Tand z; < [;; (5) register i stores r; = ot ¢}, followed by an enumerable

number of b’s. We write (55 21,000, 2, X'ty Xps Wittty Wil Fpat sty F) =
-'_-..“'-.‘.--- w. * ») 1 3 1 -
(S, Z]; » 25 Xy Xis Wy Ty W rh'.-7rk) lfand only lfaM(S’ azll’ Cxpp™ 70
a;,, &) = (3 4y Y6 €6 84,0, 4y, v, G, 8) and the following hold for all

i=1- k-

M) Ify;e{~1,0, +1} then z;+y, > 1 and Zi=z;+y; elser; e ({0, 1}*—
{eD {2140, 1,2)* and z, = Ir|.

We let |r,| be that natural number

- whose binary notation is stored on the left
hand side of the first 2 in r;

) x;+8; 2 Land %, = x,+8,,
(3) Wi = a'i---a;-i_ld‘,a;‘“...a;‘b...b, where py = 0,]fit = Ii
Se—— Ei""li, lfft > 1,‘-

L]

Pushdown Automata and Complexity Classes 251

(4) fi = Ci.‘ -cxi—lfici‘i+1') 'c;-.l-a ifx‘ < /\'-
ri¢ if x; = A+1.

We call K — K a move of the register machine M and K the configuration

next to K. M stops in the configuration X if there is no configuration next to K.
-%> is the transitive closure of —.

Definition. Suppose M = (T, S, sy, 8, F) is a k-tape register machine and
we T*. Let M start in the configuration (sq; 1,--+,1; 1,---, 15w, b,---,b;
12,- -+, 12). We say M accepts w if and only if M stops in a final state after a
finite number of moves. Let R(M) be the set of all elements of T™* that are
accepted by M.

Definition. M accepts L © T* in time complexity T(n), if L = R(M) and
M stops after at most T(/(w)) moves for almost all we T*, ({(w) = n<ew =
a,---a, a;€T for all i =1,--,n).

Definition. M accepts L < T* in address complexity A(n), if L = R(M) and
if for almost all w e T* and in all configurations, generated by M with input w,
only the first A(/(w)) cells on the k registers and the first 240 cells on the &
working tapes contain non-blank symbols.

Definition. Let C,_ g(T(n) [Ci—r(T(n), A(n))] be the family of all sets t.hat
are accepted by a k-tape register machine in time complexity T(n) [in time
complexity T(#) and in address complexity A(n)]. o

In the same way we define the family C,-+(T(n)) taking a deterministic
off-line Turing machine with & semi-infinite tapes (see for example Hopcroft-

Ullman, [8], page 135) as a machine model. ' .
Every k-tape Turing machine may be identified with a k-tape register
machine which never jumps and the registers of which are never altered. Thus

we get the following theorem.

THEOREM 1. For any increasing mapping T: N — N we gef
Co T () © Cyg(T(n), Log T(n)).

Definition. For any neN Log n is the smallest natural number which is
greater than log, n.

Obviously n < 2“%", Log (n-m) < Log (n).-l- Log (m).'

In general, algorithms run faster on a register machine t
machine. The next theorem shows what time we may Save.

han on a Turing

THEOREM 2. If T, A: N — N are two increasing mappings and ifT(n) 2 n

Jor almost all ne N, then
Ci-(T'(n), A(n)) © Cy-r(T(m)-2).

Proof. For any L e ;- (T (n), A(n) there is a k-tape register _machine le L
which accepts L in time complexity T(n) and in address complexity A(n): (:
define a two-tape Turing machine M which simulates each move of M,ina
most ¢-24™ moves (c is a constant).

s SRR

252 BURKHARD MONIEN

Tape 1 of M, is divided into 2k tracks which contain the same inscriptions
as the working tapes and registers of M,. The method of our proof is nearly
the same as in the simulation of 2k-tape Turing machines on 1-tape Turing
machines (see for example Theorem 10.4, [8]). We have only to consider in what
way a jump of a head of M, is simulated by M,. In this case M, has to decode
the corresponding binary address. Machine M, starts this computation with
the head of tape 1 on the highest digit of the address and with empty tape 2.
Then M, performs the following computation.

If the head of tape 1 scans the i-th digit of the address and tape 2 stores m
in unary notation, where m represents the number given by the higher digits of
the address, then M, labels the cell scanned on tape I, goes with its head on
tape 1 to the 2m-th cell, writes 2m in unary notation on tape 2, goes with its
head on tape 1 to the labelled cell and adds its contents to tape 2, goes (if i > 1)
with its head on tape 1 to the (i— 1)-th digit of the address.

At the time this algorithm stops, the address is stored in unary notation on
tape 2 and M, can move its head on tape 1 to this position. It needs no more
than ¢-2#™ moves to do all these operations. O

We will now show what time we lose if we restrict ourself to 1-tape register
machines.

THEOREM 3. If T, A: N — N are two increasing mappings, then
Co-r(T(n), A(m)) < C,_g(5:-k-T(n)- A(n), A(n)),

Proof. For any L e C,_x(T(n), A(n)) there is a k-tape register machine M,
which accepts L in time complexity T'(n) and in address complexity A(n). We
define a 1-tape register machine M, with 4-k tracks on its working tape which
simulates each move of M, in no more than 5:k- A(n) moves. (The idea is
similar to the proof of Theorem 10.4, [8].) The 2k upper tracks store the in-
scriptions of the 2k tapes of M, the 2k lower tracks store the positions of the
heads in binary notation. Furthermore the contents of the cells which are
scanned by M, are stored in the finite memory of M 3-

To simulate a move of M, the machine M, has to perform the following
operations:

1. Change the stored inscriptions of the working tapes.

Foralli=1,--- k M, carries over the inscription on the (2k +i)-th track
to the register, jumps on the working tape to the given address and changes the
contents of the i-th track as it is determined by the next-move function of M,.
The !lead on the register goes back to the first cell, M, writes 12 on the register
and jumps on the working tape to the first cell.

2. Change the head position on the working tapes.

N Forall i = 1,---, k M, changes the inscription on the (2k +i)-th track as
it is determined by the next move function of M , (that is: addition of —1 or 0
or +'1 or ta.king over the inscription of the i-th track). Simultaneously the same
inscription is written on the register. Then M, jumps to the given address and
stores the contents of the i-th track in its finite memory. Its head on the register
goes back to the first cell, writes 12 on the register and jumps to the first cell.

Pushdown Automata and Complexity Classes 253

3. Change of the stored inscriptions of the registers.
The procedure is similar to that described in (1).

4. Change of the head positions on the registers.

The procedure is similar to that described in (2).

For operations (1) and (2) the machine M, needs at most 2-k- A(n) moves
and for (3) and (4) at most 2-k-Log A(n) moves. Therefore each step of M, is
simulated by M, in no more than 5-k- A(»n) moves provided n is big enough. O

If a k-tape register machine accepts a set L in time complexity T(n) then
at most T(n) cells on each of the working tapes contain non-blank symbols.
Therefore the case A(n) < Log T(n) is very important. Theorem 2 and Theorem
3 show:

Co_ x(T(n), Log T(n) < C;-1(T(n)")
Co-r(T(n), Log T(n)) < C,_glc-T(n)-Log T(n), Log T(n)).

The concept of time complexity may be carried over in an obvious way to
the computation of functions. A mapping f: N — N is called computable in
time complexity T(n), if there is a k-tape register machine that starts in the
configuration

CNE EEIS P8 IKEE ¥ 1--+1,b,--,b;12,--+,12)
[

n
)} moves in a configuration in which

and for every n € N stops after at most T(n
Furthermore during all these moves

the first working tape contains 11---12- .
fin)

no more than Log T{(n) cells on the register and at most t

the working tapes contain non-blank symbols.

3. Time Complexity of Algorithms. Following T. Kameda [9], we define:
A k-counter-pushdown-acceptor (kC-PDA) M is a 6-tuple (T, S, So, 8y F. Co)-
It consists of a finite memory (S—set of states, so—initial state, F—set of final
states) and k +2 tapes (7—set of tape symbols, c,—distinguished tape symbol)
with the following properties: (1) tape | is a read-only tape. Its head can move
in both directions and can move off the input string to the right. (2) tape'2
is a pushdown tape. Its head goes one cell to the left or one cell to the right- in
each step. (3) tape 3, - -, tape (k +2) are pushdown tapes with only one working
symbol (counters). The inscription on the counters always has the form

011---1 with me N U {0}.
\.—v—_/

m

The next move function 8, is defined by:
) dk) = (S', 81 C', dl.’, " dé)!

he first T(n) cells on

SM(sa a, C, dl"

where
S,S'ES;a,cET;C'E{e}U{c}'T;

' {E’ I, 11}']fdf =1
se{—l,o,+1},d:e{0,1}’die{{0,01}, ifd; =0

foralli=1,---,k.

254 BURKHARD MONIEN

Configurations are defined as in the case of Turing machines. Their notation
may be simplified in this case because the positions of the heads on the push-
down tapes are determined by the inscriptions of the tapes. They may be
written in the form (s; i; w, v, I},- -+, /), where s € S, i ¢ N (head position on the
input tape), w, v € T* (inscriptions on the input tape and on the pushdown tape)
and /,---, LeNU{0}.

As usual 8,/ induces a partial mapping — on the set of configurations.

Definition. A kC-PDA M accepts w € T*, if and only if (sq; 15w, ¢, 0,---,0)
= (t; w); w, e, 1), -, 1), where re F and I, -, L,e N U{0}.

Definition. A kC-PDA M accepts L <T* with counter complexity (Zy(n),
Zy(n)," -+, Zy(n)), if and only if

(1) M accepts we>we L

(2) (so5 13w, €0, 0,5+, 0) > (s5: 0w, o, ly,---, L) implies i < Zy(/(w)) and
Iy < Z{lw))forallj=1,-- k.

Now we prove our first main theorem.

THEOREM 4. Let L be a language accepted by a 1C-PDA M with counter
complexity (Zo(n), Z(n)), where Zy(n) and Z(n) are increasing and unbounded

Junctions which are computable with time complexity Zy(n)- Z(n). Then there is a
constant d > O such that

LeCs_g(T(n), A(n))
with
T(n) = d*Zy(n)- Z(n)- Log (Zo(n)- Z(n))
and
A(n) = Log Zy(n)+ Log Z(n)+(1 +¢) Log Log (Z(n)- Z(n))

Jor an arbitrary ¢ > Q.

Proof. _Lct L<T*and let w = g,a,-- a,€T* each a;e T, and I(w) = n.

Following the idea of Aho-Hopcroft-Ullman, [1], we define a partial
mapping E: Sx{l,--, Zo(m}x Tx{1,--+, Z(m)} — Sx{1, -, Zo(n)}x{1,

v L by E(s iy D) = (57,40, 1) if and only if (s: i; w, c, S50 mwel)
and l < i, i" < Zym), 0 < I I' < Z(n).

2“‘12)(3:1;30:2(0"{ we change this definition slightly and replace Zy(n), Z(n) by

M accepts w if and only if there exist 7 e Fand /e N U {0} with E(sg, 1, o, 0)
= (t, n, 1).

If E(.s, i, ¢,1) = (s', ', I') holds and not (s; i; w, c, [) = (s";i"; w, ¢ I'), then
there exist 5,, 5, € S; iy, I3, Iy, 1, € N; ¢; € T with the property

r(5§ i;w,ec, l)— (595855 w, ccy, ly) >
(*) ——’)-(sz;iz;w, c, 12)-'>(s’;i’;w, €, I') and
E(s,, iy, ¢,) = (52, i3, 1)

\ E(SZ’ iZ: ¢, 12) = (S', i', l’)

Pushdown Automata and Complexity Classes 255

We say that (s, i}, ¢;, {;) and (s, i3, €, 1,) generate (s, i, ¢, [) if and only if (%)
holds.

The register machine M, which we will define below, does not simulate the
moves of M step by step but uses its storage possibilities to avoid the repeating
of computations. This is possible because of the following reasons: If (so; 1
w, ¢, 0) > (s; i3 w, ve, I) holds for some s€§, i€ N,ceT,veT*and /e N VU
{0}, then w can be accepted by M only if M erases ¢ from its pushdown tape
during its further computations and these operations only depend on s, i, w, ¢
and / but not on v. More formally, if (s; i; w, ¢, [) > {(s"; i'; W, & [’y for some
s'eS,i'eN, I'e N U{0}, then (s; i w, ve, I) > (s"5 i'; w, 0, I’ for all ve T*,
For all v € T* occurring in a configuration of the upper form M performs these
intermediate operations again, whereas M performs them only once and stores
the result in the form E(s, i, ¢, [} = (s, i, I').

Our algorithm first computes all 7-tuples (s, i, ¢, /, s’, i, I') such that
(s;i;w, ¢,)—>(s'; i'; w, & I') and afterwards it generates new elements of
E={(icls, i I)E@sIic Iy = (s, 1", ')} by means of (#). It is controlled
as in [1] which elements of £ are chosen in order to generate new elements, and
in [1] it is verified that all elements of E are computed during this algorithm.

Now we show how the 5 tapes of # are organized.

Tape 1 is the input tape (read-only tape).

Tape 2 works like a pushdown tape and stores all elements of E, that have
been computed before, and to which (¥) was not yet applied.

Tape 3 stores the elements of E that have been computed before, in a form
which allows to reach them without losing time. We use the numbers L, =
Log (Log | S|+ Log Zo(n)+Log Z(), L, = Log Zo(n), Ly = Log Z(n), Ly =
Log |S| and Ls = Log | T|. Working tape 3 has two tracks. The lower one stores
L, L,, Ly, Ly, Lsin unary notation. If E(s, i, ¢, I) has been computed before,
then the upper track stores the 3-tuple (s', ', I') = E(s, i, ¢, I) in the cells
j+i.2Ln+1.2Ll+Lz+|s|.2L.+Lz+Ls+|c].2L1+Lz+La+L~, j=1 2 24, Othef—
wise these cells are empty (that is they contain the blank symbol b). In this
definition we have used two mappings:

S—>N 7N
s — s’ c —>le]’

Register 3 is divided into 5 segments.

! s c

i

—w»a—Lg—

- L, —r— L, —>»=*— Ly —» L,

I 1 1t v v
If we write 1, i, /, 5, ¢ in the corresponding segments of the register (this needs
Li+Ly+Ls+Ly+Ls moves) then we can jump in one step to the leftmost of

those cells which store E(s, i, ¢, I)-

Tape 4 and tape 5 store the inverse function of E, which is defined by

EIs', ", I') = {(s, i, ¢, D|EGs, iy &, D) = (" 7' I')}. All 4-tuples out of EX(s’, i, I)
which have been computed before, are stored by means of address refc':renccs on
working tape 5. Working tape 5 has two tracks. On its upper track it stores a

o

256 BURKHARD MONIEN

sequence of 4-tuples. 4-tuples which belong to the same EI(s’, i, /') are con-
nected by means of address references. These references are stored beneath of
the 4-tuple on the lower track. Tape 4 contains for each (s, i, /') the address
(on tape 5) of the leftmost cell of that 4-tuple out of E/(s’, i, I’) which has been
computed as the last one. Actually on tape 5 this 4-tuple is stored on the right
hand side of any other element out of EI(s’, i’, I').

0 0 i Iz 5 register 4

address working tape 4
working tape §
——— [—— F——

Register 4 is divided into 4 segments

Ivl ’I S’

- Li—e—1, Pe—— Ly [, —

I I 1 v

Where L, = Log Log (|S|- |T|- 254 s (Ly+ Ly+ L+ Ly)).

Because EI(s’, i’, I') N EI(s, i, =g if (s, i, I') # (s, i, 1), there are at
most |S|-[T|-2"*% 4.tuples stored on working tape 5. This needs
|S|-[T|-2"=+L’-(L2+L3+L4+L5) cells and therefore each address which is
used on tape 5 can be stored in 2%¢ cells. The cells, which are determined by
(s, ', I') on working tape 4, are empty if no tuple out of EI(s’, i’, I) has been
computed up to this time. The first 2%s cells of working tape 4 stores the address
of the first empty cell on working tape 5.

M starts with w on the input tape. The other tapes are empty. Then M
performs the following computations.

1. Computation of L, Ly Ly, Ly, Ly, L.

There exist 1-tape register machines which compute Zy(n) and Z(n) in time
complexity d-Zy(n)-Z(n)- Log (Zo(n)-Z(n)) and in address complexity Log
(Zo(n)- Z(n)). This is proved as in theorem 3. M simulates these register machines
on its tape 2. (The organization of the tapes, that we have described above, is not
used before the computations of (1) have been finished.) Afterwards M com-
putes L,, -, Lg and stores them in the lower track of tape 3.

If z is a number stored in unary notation on tape 2, then Log z is computed
by successive dividing by two. # uses tape 3 to store the intermediate results and
tape 4 to store the number of divisions. Then Log z is computed in 2z moves.
Therefore M does all these computations in time complexity ¢ - Zo(n)- Z(n)-Log
(Zy(n)- Z(m) and in address complexity Log (Zy(n)- Z(n)).

Pushdown Automata and Complexity Classes 257

2. ““Initial elements’’ of E.

M computes all 4-tuples (s, i, ¢, [) with the property (s; i; w, ¢, {) — (s'50';
w. e,) for some s’, i, I’ with 1 < i, i < 2Laand 0 < £, 1" < 2h

For all i we have to consider only the cases / =0 and /=1, because
(s:i;w, ¢, 1) —>(s';i';w, e I')is true if and only if (5385w, ¢,)= (s"5 05w,
e, [—1+/)foralll = 1.

M starts with i = 1 and increases i during its computations.

Now let ie{1,---, 2"} be fixed and let segment I of register 3 store / in
dyadic notation. Let «, be a; if i < n and b otherwise. For all (s, ¢, d)e SxTX
10, 1} such that 8,,(s, a;, ¢, d) = (5,8, ¢, dyand 1 < i+3d < 2L2 for some §, 8, d;
M starts the following algorithm with 1 = d and £ = —1ifd=¢ £=0if
d=d £= +1ifd=dl

(a) Entry on tape 3. M writes /, |s, [¢| in the segments I11, IV, V of register
3 and jumps on working tape 3 to the corresponding cell (that is the cell
P2l bt g2kt el g |c|-2L'+L2+L3*L‘). In the cells following to the
right M writes (5, i+38, [+ §).

(b) Entry on tape 4 and tape 5. M carries over the address of the first empty
cell of working tape 5 to register 35, jumps to the corresponding cell and writes
(i, I, |s|, |c|) in the upper track of the cells following to the right. The other 4-
tuples out of EI(s, i+8, I+ £) which have been computed so far are stored on
tape 5 and connected by means of address references. Tape 4 points to the

rightmost one of them.

tape 4 w

tape 5
LN
old elements of EI(, i+38,[+8) new element

M has to connect the new 4-tuple (s, i, €, I) with the other 4-tuples ou_t of
EIG, i+6, I+ £). It writes i+8, [+§, |5 in the segments 11, 111, IV of register
4, jumps on tape 4 and tape 5 to the addresses given by .the registers and carries
over the inscription of the following 2Ls cells of working tape 4 .to the lower
track of working tape 5. Afterwards M jumps on tape 4 to the given address,
puts the head of register 5 on the first cell and carries over the contents of

register 5 to the following cells of working tape 4.

tape 4 ————-——ﬂ'

tape 5

old elements of EI(s, i+38, I+ £3) new element
Finally the address of the first empty cell of working tape 5 is carried over

to the first 2" cells of working tape 4.
(c) Entry on the pushdown tape (tape
on working tape 2. _
(d) Increasing of / (if initially / = 1)- If0 < I < 213 then M replaces I by
I1+1 and continues at (2) (a)-

2). M writes (s, i, ¢, I 5, i+, 1+8)

258 BURKHARD MONIEN

If all (s, ¢, d) have been examined and if ; < 2L then M replaces i by i+1
and restarts the algorithm.
M needs at most d'-(L,+L, +Ls+Ly+Ls+Lg) moves to perform the

computations of (a), (b), (c), (d) for a fixed I, (5, ¢,d) and /. Therefore the whole
amount of time is bounded above by:

3-2L2.2Ls.(L1 FLy+Ly+L,+ L+ L) < dz'ZO(n)-Z(n)-Log (Zo(n)- Z(n)).

3. Generation of the vest of E.

M reads the first 7-tuple (s, i, c, /, 3, I, [) of the pushdown tape, erases it and
writes i, /, |s| on register 4 and 7, I, 5] on register 3 into the corresponding seg-
ments. ¢ is stored by the finite control. Now A7 computes all tuples which are
generated by (s, /, ¢, /) and by some other tuple (s*, i*, ¢*, I*), which has been
computed before. Two cases have to be distinguished :

(a) Consider ¢, e T, sp€8,8,e{—1,0, +1} 9 e{—1,0, +1} such that
(5050485 w, ¢y, I+79,) = (s; i; w, cie, 1) and E(S, 7, ¢,) has been computed
before. If this is true, then (513 i+8,5 w, ¢;, I4+7,) —(s; w00, 1) > (S5 15
wo e, 1) > (8°5 075 w, €, I'), where s', ', I' are given by: EG i e, D)= (s,1, 1.
Therefore E(s, i+8,, Coltn) = (s, i,).

(b) Consider c*e T; 5, s*c§; 5, 71€{—1,0, +1}; ieN, /e N U {0}
such that E(s*, i*, c* %) = (s, i, /) has been computed before and (s, ; i*+8,;
Wy 6 I) > (5% 0% w, co¥, [*). 1f this is true, then (515 8% 485w, ¢, I*+7,)
— (8% i*; W, et I*) S (ss i w, o,)= 05w, ¢ I) and we get E(sq, i*+9,,
¢ *+m) = (5,1, D).

M examines all c,, s,, 31, 7, whether they have the property that was defined
in (a). If this is true then we have found an element (51, i+8, ¢, I+, 5,1, 1)
of E. If this element has not been computed before (to be examined by jumping
on tape 3 to the corresponding address), then A7 writes (51, i48y, ¢y, 1474,
s', ', I') on the pushdown tape and makes the corresponding entries on tape 3,
4, 5 as it was shown in 2.

If E(s*, i* c*, I*y = (s, |, 1), then (s*, *, c* I*) e El(s, i, I) and all 4-tuples

, 1), which have been computed before, are stored on tape 5 and
- In order to compute all tuples which
can be generated by means of (b), 47 jumps on tape 4 to the address which is
given by register 4. If the following 2% cells are not empty, then M carries their
contents over to register 5 and starts the following algorithm.

Start: The address stored in register 5 points to a 4-tuple (s*, i*, c*, I*) with
(% 7% w, ce*, %) 5 (s; i Wo &, 1) (55 15 w, ¢, I). Now A7 examines for all
$1€85 8, mye{—1, 0, +1} whether E(sy, i*+8,, ¢, I*+4,) = (3, i,]), that
means whether (s,; i*48,; w, & P tm) > (5% i*; w, cc*, I*) holds. If this
element of £ has not been Computed before, then A writes the corresponding

of working tape 5 beneath of (s*, i*, c*, I*) is not

empty, then M carries over the contents of these cells to register 5 and continues

at Start.

When all the tuples which can be generated by means of (a) and (b) have

been computed, #7 performs the operations of 3 once more. This algorithm

Pushdown Automata and Complexity Classes 259

f}t]olssglli the pushdown tape is empty. Aho-Hopcroft-Ullman showed in [1]
a as been computed totally at the time the algorithm stops
We have to estimate the number of moves. |
J-(g) +th -(:‘LI c, I, 5.0, 1) be a ﬁxed.'i-tuple. Then M needs no more than
- ée gezner t3:;II;4+L5+L6) moves in order to compute all tuples which
S 7_tua]e Tf; means of {(a). These operations are performed only once
b gl .p i; Lerefore the total number of such moves is bounded above
yd \S|+|T|-272 s(Li+Ly+Ly+ Lyt Ls+Le):
" ;l;i)x;:jet‘;(s, i,c, 1, § i, 1) be a fixed 7-t_uple and let (5%, i*, ¢*, [*) e El(s, i, 1)
ot _l-tzple. To perform the operations described in (b), M needs at most
G 1C I 2+ 31_+i.41—‘L5*+ L*f,) moves. The number qf different [1-tuples
E’I(s, i, [,) 5, I[; | s*, %, %, I*) with E(s, i, . Iy = (5, i, I) and (s%, i*, c* 1*) e
exist,at, molst I(;unded above by !T!-)Sl-lﬂ-g“-?% This is true because there
N (bS |T| 11-tuples with this property if (s*, i*, c*, [*) is fixed. The opera-
o)thé::rsz rp:‘e;f/orn.le(lij on]c)l’ Ccl)nce for each il-tupie. ;Fhezefore the total
Ly es is bounded above by d-|S]-{7]"-2 b (Ly+ Lo+ L
; A‘ll time bounds that we .got in this proof are bounded above by ¢ Zy(n)-
(n)-Log (Zo(n)- Z(n)), provided that is big enough.
tap;rgi_ tlilpes of M work with the address complexity: tape 1—Log Zy(n).
ope Log T(n), tape 3-—L1+L2+L3+L4+L5, tape 4—L,+Li+ Lt Le,
p P+L— og (T(n). For each € > 0 all these expressions are bounded above by
Ll og Z,(n)+Log Z(n)+Log (c,+Log Zo(n)+Log Z(n) < Log Zo(m+
og Z_(n)+(1 +¢€)-Log Log (Zo(n)-Z(n)), provided that n is big enough. =
It is obvious how theorem 4 may be formulated and proved for kC-PDA,
k > 1. Now we will show how an algorithm of time complexity 7(n) and of

address complexity A(r) may be simulated on a kC-PDA.

LEMMA. A kC-PDA (k = 2) is able to do the following computation:
Start situation: The pushdown tape stores d number m in binary notation.
Counter 1 stores a number n.
End situation: The pushdown tape and counter | store the same numbers as in
1 al to m.

the beginning. The finite control stores, whether n 15 equ
During the computation only the pushdown tape, counter 1 (with maximum

le'?gfh n) and a counter 2 of length Log (Min (n, m)) are used. A detailed proof of
this lemma is given in [12].
A(n)) there exists a 5C-PDA M

THEOREM 5. For each L Cy_g(T(n),
24 A(n), A(n), A(n), max (A(n),

that accepts L with counter complexily (T(n),
Log T(n))).

Proof. 1. Basic considerations. There ¢
M, = (T, S, 5o, 5, F) that accepts L with tim
complexity A(n). We will simulate M, on a 5C-
algorithm is the following:

For each r ¢ N we define expressions
figuration of M, after { moves. (Actually
t but on two other variables. We give here

xists a l-tape register machine
e complexity 7() and in address
pPDA M. The basic idea of the

~(¢) which are determined by the con-
these expressions depend not only on
a simplified approach in order to

e K

L

260 BURKHARD MONIEN

explain the basic idea.) The pushdown tape of M always stores a sequence of
such expressions. If the two expressions which are stored on the top of the
pushdown tape belong to the same number ¢, then M computes (¢ + 1). Other-
wise M writes 7(0) on the top of the pushdown tape. The algorithm starts with
7(0)=(0) on the pushdown tape. We describe how the inscription of the push-
down tape is changed during the first moves of M: (0)r(0) — 7(1) — 7(1)7(0)
— 7(1)7(0)r(0) — ~(1)=(1) - 7(2) — 7(2)r(0) — 7(2)7(0)7(0) — ~(2)r(1) = 7(2)
(Dr(0) — 7(2) 7(1r(0)7(0) — r(2)r(1)r(1) > 7(2)r(2) - #(3) - * + - — =(1) —
(Nr(0) — -+ - — 7(1+1).

After the computation of (r) M needs d**' additional moves to compute
7(t+1), where d is a constant. (In the simplified case described above exactly
2'*! operations are performed.)

More formally let #(1, j, t') be the 9-tuple (r, t, m, i, j, s, a, a, B), where
seS,aeT;r, t,m, i,je{0, 1}*; «, B{0, 1, 2} (¢, m, i, j are read as binary
notations of natural numbers and are identified with these numbers) and the
following holds: (1) After + moves M 1 18 in the configuration (s; m, i; v, u),
where ve T* and w e {0, 1, 2}*. (2) u = r-7 and Kr) = j. (3) a is the content of
the m-th working tape cell and «, 8 are the contents of the i-th and (j+1)-th
register cell after 1" moves of M.

(Actually this 9-tuple depends not only on ¢, j, t' but also on the initial
inscription w e T* of the working tape of M,. We describe the algorithm for a
fixed we T*)

M starts with w e T* on its input tape and with (0, 0, 0)+(0, 0, 0) on its
pushdown tape, where (0, 0, 0) = (e, 0, I,1,0, 5, a5, 1, 1) and w = a," - -a,
Its pushdown tape always stores a sequence (1, ji, 1) (t3, fa, 15)°* *(fyy Jus 1)
with 1, = 0 and

- {, 40 =
Il‘v‘i-l"'la iij+1 # 0

n

for all v = I,"',p—l} (%)

Now let 7(¢, j, t'), (¢, 0, 0) be the 9-tuples on the top of the pushdown tape.
Let us assume first, that 1 = ¢’ and set L, V) = (r,t,m, i}, s, a, a, B). Then
a, a, B are the contents of the m-th working tape cell and of the i-th and(j+ 1)-th
register cell after f moves of M 1- Let us assume furthermore that Jj = 0. Then M
h?s all the information which js necessary to simulate the next-move function
of M,.

If 8y,(s, a,) is not defined, then M stops and rejects w. If 8, (s, a, «) =
(5,4,8,& n)and if §e Fthen M stops and accepts w. If § ¢ Fand if & e {-1,0,
+1} then the 9-tuple =(r+1, 0, 0) = (e, t+1, m+38, i+, 0, 5, a*, o*, 1) can
be computed, where a*, o* are the contents of the (m+8)-th working tape cell
and of the (i+7)-th register cell in the start configuration of M. Before M writes
7(t+1, 0, 0) on the pushdown tape, it has to give the information about the
changiflg of the m-th working tape cell and the i-th register cell down to the
preceding 9-tuple on the pushdown tape in order that (*) holds. That means,
the 9-tuple ~(s”, j*, 1) = ", m i 5", @", a”, B") standing beneath of
(¢, 0, #) on the pushdown tape has to be replaced by (t”, j, t+1). This is
done by replacing a” by dif m” = m and o by & (or 87 by &) if i” = i (or j* = i).

On the other hand, if 5§ = R, then M needs the address which the register

Pushdown Automata and Complexity Classes 261

of M, stores after ¢ moves in order to simulate the (1+1)-th move of M. At
first M replaces the tuple (¢, j",) by 7(t", j”, t+1) as it was described above
and afterwards it generates successively (controlled by the variable j) the first,
second, third, 4-th,- - -digit of the address. That means (¢, 0, t)=(¢, 0, 0) —
(1, 1,- 0) = (B, t, m, I, 1, 5, a*, «*, 2) [where a*, «* are the contents of the m-th
working tape cell and of the i-th register cell in the start configuration of M]
- 17(t, 1,0)7(0, 0, 0) = =(t, 1, 0)7 (0, 0, 0)+(0,0,0) > --— (1,1,)7 (t', 0, 0)
foreach 0 < #' < ¢, —=(t, 1, H7(t, 0, 0) = (1, 2, 0) =" . If j # 0 then M
replaces (¢, j,)(t, 0, 0) by =(t, j+1, 0) = (rB, t, m, i, j+1, s, a* a* B*)
provided that 8 # 2. If B = 2 then r represents the address, which M needs to
compute the 9-tuple +(t+1, 0, 0) = (e, t+1, 1, i+, 0, s, a*, o*, 1).

Up to now we considered the case f = ¢ Ift # t', then=(t,j, t')and (1", 0, 0)
are not erased and M writes =(0, 0, 0) on the top of the pushdown tape.

During these computations the tuples on the top of the pushdown tape have
to be erased in order to decide whether 7 = ¢’ respectively whether m = m’
ori=i"ori= T, m,m' i T as described above) but some of the
information which is stored in these tuples has to be used after the comparisons
again. This information is stored intermediately by means of the counters of
M and by means of the position of the input head.

II. Detailed formulation of the algorithm. In the following =(t', j', 0) =
1) is the tuple on the top of the pushdown tape and
W,) =(rt, mij,s a = B) is the tuple which stands directly under
(', j', 0) on the pushdown tape. M starts with w = a,- - -a,, l(w) = n, on the
input tape. The pushdown tape keeps the two tuples 70, 0, 0)7(0, 0, 0). Each of
its 5 counters store the number 0. M starts its computation with the operations
described in (A).

(A) s', a’, o' are stored by the finite control. If j* # 0 (that means: M is in
the process of computing an address) then M continues its computation at (C).

If j/ = O then M has to decide whether ! is equal to ¢'. i', m’, " are stored
in unary notation by counter 2, counter 1 and the position of the input head. s,
a, «, B are stored by the finite control and j is stored by counter 3. First M
compares i and i’. Because of the lemma M needs only one additional counter
(counter 5) to do this. If i = i’ then M compares m andm’. 1fi =i andm = m’
then M compares t and t'. (If i # i orif m # m’ then t # ') If t =t then
M continues at (B). Otherwise M writes 1, j, ') and (¢', 0, 0) on the top of the

pushdown tape and continues at (©).

(B) s, a, « are the state and the conten
the i-th register cell after + moves of M,. If 8y (s, @,) is not defined then M
stops and rejects w. Suppose now S (s, @, @) = (4, 4, 5, & nwithde{—-10,
+1, R} and ne{—1,0, +1}. If §eFthen M stops and accepts w. Otherwise
the three following cases have to be considered.

(1) j = 0. If there is a tuple (", J”, =1 m, i s, a, a”, B7)
standing directly under (¢, 0, ¢) and (s, 0, 0) on the pushdown tape, then
+(t", j", 1) has to be replaced by o+). M= i then " is replaced by a.
If i” = i then " is replaced by & If m" = m then a’ is replaced by 4. To perform
these operations 8°, «”, @', 5" are stored by the finite control, j~ is stored by

’ ’ . .
(l‘ ’ ! ’ mla ‘!,5 J’, S’, aI, a’s

ts of the m-th working tape cell and of

262 BURKHARD MONIEN

counter 3 and i” is stored by counter 4 (counter 5 is used to do the comparisons).
Now we have to distinguish two cases.

(@) 8¢{—1, 0, +1}. Then M erases (1, 0, t) and =(t, 0, 0) and writes
(t+1,0,0) = (¢, 1+1, m+3, i+, 0,5, a*, o*, 1) on the top of the pushdown
tape. a*, «* are the contents of the (m+38)-th working tape cell and the (i+7)-th
register cell in the start configuration of M 1- M continues at (A).

(b) 8 = R. Then M erases (¢, 0, t) and (¢, 0, 0) and writes t, j+1,0) =
B, t,m, i, 1,5, a*, o*, 2) on the top of the pushdown tape. a*, «* are the con-
tents of the m-th working tape cell and the i-th register cell in the start con-
figuration of M,. M continues at (O).

(2) j > 0 and 8 # 2. Then M erases 7(t, j, t) and (¢, 0, 0) and writes
M J+1,0) = (rB, 1, m, i, j+1, 5, a*, a*, b) on the top of the pushdown tape.
a*, «* are as in (1)(b). M continues at (C).

(3) j > Oand B = 2. Then M knows the whole address after moves of M.
It erases (¢, j, #) and =(t, 0, 0) and writes (t+1,0,0) = (¢, t+1, r, i+9, 0, 5,
a*, «* 1) on the top of the pushdown tape. a*, o* are the contents of the r-th
working tape cell and of the (j +7)-th register cell in the start configuration of
M,. M continues at (A).

(C) M writes 7(0, 0, 0) on the top of the pushdown tape and continues at (A).

It is obvious that M accepts the Language L. Its counters are used to store
the following numbers: position of the input head —t' (< T(n)), counter 1—m'’
(<2%"), counter 2—i’ (s A(m), counter 3—j, j (< A(m), counter 4—i"
(< A(n)), counter S is used to compare m and m’, t and ¢',- - -. Therefore its
length is bounded above by Min (Log T(n), Log 24™),

4. Muiti-Head Pushdown Automata and Languages which are acceptable in
Polynomial Time. Among all the languages that are acceptable by time-bounded
register machines those languages which are acceptable in polynomial time are of
special interest.

Gray, Harrison, Ibarra defined in [4]: A g-head Iwo-way deterministic push-
down automaton (gh2wdpda) consists of a pushdown tape and a read-only input

tape with ¢ heads which may move in both directions,
is deterministic,

T. Kameda showed in [9] that a language L is accepted by a gh2wdpda if
and only if there exists a 1C-PDA which accepts L with counter complexity
(n, ™y,

In the special case which is inter
5 may be formulated as follows.

The next move function

esting in this section theorem 4 and theorem

THEOREM 6. Let [pe accepted by a 1C-PDA in counter complexity

(n, 1), q > 1. Then there exists a d > 0 such that [« Cs_gld-n? Log n,
q-Log n+(1+¢)- Log Log n) for each ¢« > 0.

The proof follows immediately from theorem 4.

THEOREM 7. If LcC 1-rd-n%, q-Log n), then there exists a 1C-PDA
which accepts L with counter complexity (n, n?4~ ! ‘(Log n)%).

Proof. Because of theorem $ there exists a SC-PDA M which accepts L with

Pushdown Automata and Complexity Classes 263

c?unter' complexity (d-n?, n, q-Log n, g-Log n, g-Log n, g-Log n+d"), where
d’ > 0is a constant. First we define a 1C-PDA M, which simulates each move
of M and accepts L with counter complexity (n, 2-¢-n? '-(q-Log n+1)’-
(q-Log n+c"). Set r = g-Log n+1.

The configuration (s; fo; w, ¥, 1, 1oy 13, 14y 15) Of M is called corresponding
to thc{e configuration (s; i; w, v, [) of M, if i—1= I, mod Kw) and [= Is+
(r+c)'({4+r-(l3+r-(12+r-(ll+(n"+ DI, where Iy = (o— i+ D/IOw).

If M is in the cgnﬁguration K and if M is in the configuration corresponding
to Kand if K > K then M, is able to compute the configuration corresponding

to K. This is true because M, is able to compute r and therefore M, gets the
numbers /s, - +, I, by successive dividing of I by r (respectively by /(). A more
detailed proof is given in [12].

The rest of the proof follows because the power of a 1C-PDA is not changed
by multiplying the allowed counter length by a constant factor. £

Theorem 6 and theorem 7 give a good characterization of the class of langu-
ages .acceptable by register machines in time complexity n%, g € N, by means of
fnultl-head two-way deterministic pushdown automata. Any language L, which
is accepted by a gh2wdpda, is accepted also by a register machine in time
complexity ¢-n?-Log n and in address complexity g-Log n+2-Log Log n. On
the other hand any language, which belongs to the class C,_(T(n), A(n)) with
T(1) = c-n®-Logn and A(n) = g-Logn+2-Log Logn, is accepted by a
(29)h2wdpda which has an additional counter of length f(n), where f(n) =
(Log n)* for some x € Nl Since Log # is a function which increases very slowly,
lim,., f(m/n¢ =0 holds for each ¢ > 0. Therefore the computing power is
not very much influenced by multiplying the time complexity by Log n or by
;(d(;ing Log Log n to the address complexity or by adding a counter of length

H).

Our characterization of t
one which we know for Turing machin
gh2wdpda-language is accepted by a Turi

7 remains true if we replace “‘register m
means of theorem 3 we can get a result about the simulation of k-tape time-

bounded Turing machines by pushdown automata. However if we modify the
proof of theorem 5 in some points we get a better resuit.

n), then there evists a 1C-PDA which accepts

ime-bounded register machines is better than that
es. This is because we only know that a
ng machine in time n?-Log n. Theorem
achine” by “Turing machine™ and by

THEOREM 8. If L e Ci—1(c’

L with counter complexity (n, n**~ ' - Log n).
Because of our characterization of time-bounded register machines, it is

possible to get insight into the problem whether a given language belongs to a
certain complexity class by studying the class of all the languages which are
acceptable by a gh2wdpda, where g€ N. It is known that every context-free
language is accepted with time complexity n* by a Turing machine. It is not
known whether there is any context-free language not acceptable in linear time

by an off-line Turing machine. The same problem can be stated if “Turing
machine” is replaced by ‘“‘register machine”. This leads because of theorem 6.

7 to the question which relationships hold between gh2wdpda (¢ = 1. 9 = 2)
and context-free languages. J. N. Gray, M. A. Harrison and O. H. Ibarra

264 BURKHARD MONIEN

showed in [4] that 7h2wdpda-languages are not context-free in general. It is not

yet known whether there is any context-free language which is not accepted by
a 1h2wdpda.

Acknowledgement. The author thanks the referee for his helpful suggestions

and Mr. Weicker (University of Hamburg) for his careful reading of the manu-
script.

REFERENCES

[1] A. V. AHo, J. E. HopcroFT and J. D. ULLman, Time and tape complexity of pushdown
automaton languages, Information and Control 13 (1968), 186-206.

[2] 8. A. Cook, Characterizations of pushdown machines in terms of time-bounded com-
puters, J. Assoc. Comput. Mach. 18 (1971), 4-18.

{31 J. EarLEY, An efficient context-free parsing algorithm, C. Assoc. Comput. Mach. 13
(1970), 94-102.

[4] J. N. GraY, M. A. HARrISON and O. H. IBARRA, Two-way pushdown automata, Informa-
tion and Control 10 (1967), 30-70.
[5] M. A. HArrisON and O. H. IBARRA, Multi-tape and multi-head pushdown automata,
Information and Control 13 (1968), 433-470.
[6] J. HARTMANIS, P. M. LEwis and R. E. STEARNS, Hierarchies of Memory Limited Com-
putations, IEEE Conference Record 1965, 179-190.
[7] J. HArRT™MANIS and R. E. STEARNS, On the computational complexity of algorithms,
Trans. Amer. Math. Soc. 117 (1965), 285-306.
{8} J. E. HopcrorFT and J. D. ULLMAN, Formal Languages and Their Relation to Automata,
Addison-Wesley, Reading, Mass., 1969.
91 T. KamepaA, Pushdown automata with counters,
(1972), 138-150,
[10] T. Kasami, A note on computing time for recognition of languages generated by linear
grammars, Information and Control 10 (1967), 209-214.
Kasam1 and T, Toru, A syntax-analysis procedure for unambiguous context-free
grammars, J. Assoc. Comput. Mach. 16 (1969), 423-431. .
[12] B. MoONEN, Beziehungen zwischen Zeitkomplexititskiassen und Kellerautomaten mit
Zahlern, Berichte Inst. f. Informatik d. Universitit Hamburg 71/1.

[13] D. H. YoUNGER, Recognition and parsing of context-free languages in time n*, Informa-
tion and Control 10 (1967), 189-208.

J. Computer and System Sciences 6

[11] T.

(Received 17 May 1972,
and in revised form 4 December 1974)

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17

