
Relationships between reading, tracing and writing skills
in introductory programming

Mike Lopez

Manukau Institute of Technology
Private Bag 94006

South Auckland Mail Centre
Manukau 2240
New Zealand

+64 9 968 8000

mike.lopez@manukau.ac.nz

Jacqueline Whalley,
Phil Robbins

Auckland University of Technology
Private Bag 92006
Auckland 1020
New Zealand
 +64 9 921 9999

jacqueline.whalley@aut.ac.nz
phil.robbins@aut.ac.nz

Raymond Lister
of University of Technology, Sydney o

P.O. Box 123
Broadway, NSW 2007

Australia
+61 2 9514 2000

raymond@it.uts.edu.au

ABSTRACT1

This study analyzed student responses to an examination, after the

students had completed one semester of instruction in

programming. The performance of students on code tracing tasks

correlated with their performance on code writing tasks. A

correlation was also found between performance on “explain in

plain English” tasks and code writing. A stepwise regression, with

performance on code writing as the dependent variable, was used

to construct a path diagram. The diagram suggests the possibility

of a hierarchy of programming related tasks. Knowledge of

programming constructs forms the bottom of the hierarchy, with

“explain in English”, Parson’s puzzles, and the tracing of iterative

code forming one or more intermediate levels in the hierarchy.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information

Science Education - Computer Science Education.

General Terms
Measurement, Experimentation, Human Factors.

Keywords
Novice programmers, CS1, comprehension, SOLO taxonomy.

1. INTRODUCTION
The nineteen eighties was a period of extensive study of novice

programmers. To name just two of the many studies from that

time, Soloway et al. (1983) found that that only 38% of early

computer programming students could write a program to

calculate the average of a set of numbers, while Perkins and

Martin (1989) reported that students had fragile knowledge of

1
 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

ICER 2008, September 6–7, 2008, Sydney, Australia.

basic programming concepts and a “shortfall in elementary

problem-solving strategies”. At the end of that decade, an entire

volume of papers, “Studying the Novice Programmer”

documented many of the difficulties of learning to program

(Soloway and Spohrer, 1989).

At the turn of the millennium, an ITiCSE 2001 working group, the

“McCracken Group”, assessed the programming ability of a large

set of students, from four universities across two countries

(McCracken et al., 2001). Each student was required to write a

program from a related set of program-writing tasks. Almost all

students performed poorly on their task and many students did not

even get close to finishing the task. The nature of the experiment

did not allow the McCracken group to make firm conclusions as

to why the students struggled, but they speculated that it was due

to the students having a weak capacity to problem-solve. That is,

as the McCracken group defined problem-solving, the students

were weak at an iterative five step process: (1) Abstract the

problem from its description, (2) Generate sub-problems, (3)

Transform sub-problems into sub-solutions, (4) Re-compose, and

(5) Evaluate and iterate.

At the ITiCSE 2004 conference held in Leeds, the only working

group conducted that year (hence its name, the “Leeds Group”)

conducted an experiment designed to challenge the speculation

that the results from the McCracken Group were due to students

being weak in problem-solving (Lister et al., 2004). The Leeds

group studied student performance on programming-related tasks

that did not require problem-solving. The students were required

to answer several multiple choice questions. The questions were

of two types, “fixed code” questions and “skeleton code”

questions. In fixed code questions, students were given a piece of

code and were required to identify the value in a variable after the

given code had finished executing. Answering such a question

requires a student to understand all the constructs in the code and

also requires that they be able to systematically hand execute

(“trace”) through code. In skeleton-code questions, students were

given a piece of code with one or two lines missing, they were

also told what the code should do, and they were then required to

identify the missing lines of code (as the question was multiple

choice, the students did not have to write the lines, but merely

identify the correct code among four options). While many

students performed well on these questions, approximately 25%

of the students performed at a level consistent with guessing. In

the concluding remarks of their working group report (Lister et

al., 2004), the Leeds Group wrote:

 “We accept that a student who scores well on the type of

tests used in this study, but who cannot write novel code of

similar complexity, is most likely suffering from a

weakness in problem solving. This working group merely

makes the observation that any research project that aims

to study problem-solving skills in novice programmers

must include a mechanism to screen for subjects weak in

precursor, reading-related skills.”

In this concluding remark, the Leeds group position the ability to

read code (of a given complexity) as a precursor skill to the ability

to write code (of a similar complexity). In positing the existence

of such a precursor skill, the Leeds Group opened the possibility

of there being a multi-level hierarchy of programming skills. The

Leeds Group data already indicates two possible levels below

code writing, since students were less successful at the skeleton-

code questions in that study than the fixed code questions.

The BRACElet project has since built upon the results of the

Leeds Group, by probing for intermediate levels in a hierarchy of

programming-related skills (Whalley, et al., 2006). The initial

research instrument designed by BRACElet members duplicated

some of the Leeds Group fixed-code questions. The instrument

also contained some other questions that were designed by a more

systematic, theoretically grounded, approach than the ad hoc

methods used by the Leeds Group. The revised Bloom’s

taxonomy (Anderson et al., 2001) and the SOLO taxonomy

(Biggs and Collis, 1982) were used by BRACElet participants as a

cognitive framework for assigning levels of difficulty to the tasks

in the instrument (Whalley, Clear and Lister 2007; Whalley and

Robbins 2007; Thompson et al. 2008). From data collected in this

initial BRACElet study, it was established that students did find

the tasks from higher levels of the framework harder than those

tasks assigned lower levels (Whalley, et al., 2006).

In this first BRACElet study, one of the tasks required students to

“In plain English, explain what the following segment of Java

code does”. Student responses were analysed in terms of the

SOLO taxonomy. It was found that some students responded with

a correct, line-by-line description of the code (which is, in terms

of SOLO, a multi-structural response) while other students

responded with a correct summary of the overall computation

performed by the code (which is, in terms of SOLO, a relational

response). Furthermore, the better a student performed on other

BRACElet tasks, the more likely the student was to give a

relational response to the “explain in plain English” question.

Also, when the same “explain in plain English” question was

given to academics, they almost always offered a relational

response. The BRACElet group (Lister et al. 2006) concluded

that the ability to read a piece of code and explain it in relation

terms ─ that is, to see the forest and not just the trees ─ is an

intermediate skill on the hierarchy of programming-related skills.

Their conclusion is consistent with earlier literature on the

psychology of programming (Adelson 1984, Corritore and

Weidenbeck 1991, Wiedenbeck, Fix and Scholtz 1993).

Philpott, Robbins and Whalley (2007) presented further data

suggesting that code tracing is a precursor skill to relational

thinking in “explain in plain English” questions:

“The green light for relational thinking would seem to be

a complete mastery of the code tracing task. A better than

50% performance on the tracing task could be viewed as

an orange light. However if tracing ability is at a lower

level than 50% then … the light is definitely red when it

comes to relational thinking.”

1.1 Our Study
The ultimate aim of research investigating novice programmers is

to improve the practice of teaching novice programmers. But the

relationship between research and practice need not be one way,

from research to practice. With suitable preparation, practical

teaching activities can also be data collection activities for

research. While the Leeds Group data collection was mostly

carried out independently of teaching activities, the multiple

choice questions used in that study were all taken from exam

papers previously used by one of the project participants. Also,

most of the data collected in the BRACElet studies has come from

questions incorporated into end-of-semester exams.

In this paper, we analyze an end-of-first-semester examination

given to students at a single institution. Some of the questions in

this exam were designed to build upon the results from the Leeds

group and BRACElet studies. From a research perspective, the

exam was intended to further investigate the notion of a hierarchy

of programming-related skills. The specific research questions

addressed in this study are:

• Is tracing skill associated with writing ability?

• Is reading skill (i.e. “explain in plain English”) associated

with writing ability?

• Is the student performance on this exam consistent with a

hierarchy of programming-related skills?

2. THE SAMPLE
The exam was undertaken by 78 students at the end of a first

semester of programming in Java. Thirty eight of those students

gave the institutionally required approval for their exam work to

be used as research data. This subset of the students provided a

reasonable grade spread which reflected the class distribution as a

whole. The average mark of the subset was slightly higher than

that of the class as a whole (62% versus 58%). Students were

given two hours to complete the 28 page exam.

The students attended common lecture sessions but were divided

into practical programming laboratory classes taught by four

different tutors. The exam paper was set mainly by two of those

tutors, with the others providing feedback and proof reading. The

exam was strip marked by all four tutors ─ each question, for all

papers, was marked by one of the tutors and subsequently

moderated by the rest of the teaching team.

3. THE INSTRUMENT
The exam described here is a result of 3 years of refinement and

research informed assessment design. In this section of the paper,

we present the questions that comprised the exam, and also

provide simple statistics (e.g. average, quartiles) describing the

mark distribution for each question. Table 1 presents the

complete set of simple descriptive statistics. The purpose of this

section is to familiarize the reader with the exam questions before

the more sophisticated statistical analysis, including the path

analysis, which is described later in the paper.

Table 1: Descriptive statistics for each exam question and the statistical variable to which each question is assigned

Exam

Question No.

Statistical

Variable

Possible

Mark

Average

Mark

(absolute)

Average

Mark

(percentage)

Third

Quartile

Median First Quartile

1 Basics 7 5.2 75% 6.8 6.0 4.0

2 Basics 7 6.4 91% 7.0 7.0 6.3

3 Basics 4 3.7 93% 4.0 4.0 3.6

4 Basics 8 5.3 66% 6.9 5.5 4.1

5 Sequence 5 4.4 88% 5.0 4.5 4.5

6 Sequence 6 4.9 83% 6.0 6.0 4.0

7, A-Ei Tracing 15 10.1 67% 12.8 10.0 9.0

7, Eii Exceptions 2 0.9 47% 1.4 1.0 0.5

8 Data 10 7.8 78% 9.0 8.0 7.0

9 Writing 6 1.8 29% 3.6 0.8 0.0

10 Explain 8 3.2 40% 4.8 3.0 2.0

11 Writing 6 2.7 45% 6.0 2.0 0.0

12 Exceptions 6 1.5 25% 3.0 0.5 0.0

13 General 10 4.7 47% 6.0 5.0 4.0

Total 100 62.7 63% 69.9 62.8 54.6

Table 2: Descriptive statistics for types of questions (i.e. variables)

Average

Mark

Rank

Type

(i.e. variable)

Possible

Mark

Average

Mark

(absolute)

Average

Mark

(percentage)

Third

Quartile

Median First Quartile

2 Basics 26 20.6 79% 24.4 21.3 18.6

1 (easiest) Sequence 11 9.3 85% 11.0 10.5 8.5

4 Tracing1

(non-iterative) 10 7.7 77% 10.0 8.0 6.0

5 Tracing2

(iteration) 5 2.4 48% 3.8 2.0 1.0

9 (hardest) Exceptions 8 2.4 30% 4.0 1.8 0.6

3 Data 10 7.8 78% 9.0 8.0 7.0

8 Writing 12 4.4 37% 7.4 3.5 1.0

7 Explain 8 3.2 40% 4.8 3.0 2.0

6 General 10 4.7 47% 6.0 5.0 4.0

Prior to any analysis, the authors and colleagues placed the 13

exam questions into 8 categories, based upon their teaching

experience and the earlier work of the BRACElet project. Those 8

categories are Basics, Sequence, Tracing, Exceptions, Data,

Writing, Explain and General. During analysis, it became

apparent that tracing should be broken into two categories,

Tracing1 (non-iterative) and Tracing2 (iteration).

3.1 Basics (Questions 1-4)
These questions required students to identify Java constructs, to

recognize the definition of common Java terms and to detect

syntax errors. These questions emphasized recall of knowledge.

3.1.1 Question 1: Matching Terms to Definitions
The first question presented the student with 7 terms: assignment,

compiler, constructor, debugger, method, overloading, and

variable. Also, 7 definitions were presented, 2 of those being

“Translates source code into object code” and “Code called when

an object is created”. Students were required to match the terms

to definitions.

Each correct match was worth 1 mark. The general performance

of the students was good. The average mark was 5.2 out of 7

(75%).

3.1.2 Question 2: Matching Terms to Code
This question was another exercise in matching. Students were

presented with a page of code, a complete class definition, with a

single constructor, a single accessor method, a single mutator

method, and a “print” method that used System.out.println to

output some private data members. Ten of the lines of code were

annotated with an alphabetic character, “A” to “J”. Students were

also presented with 7 definitions/descriptions of code, including

“the name of an accessor method” and “signature of constructor”.

Students were required to match the definitions/descriptions to the

lines of code annotated “A” to “J”.

Each correct match was worth 1 mark. In general, students did

well on this question. The average mark was 6.1 out of 7 (91%).

3.1.3 Question 3: Method Headers
This question presented students with 4 method headers (i.e. Java

code). Students were required to provide the number of

parameters and the return type of each header. Each header was

worth 1 mark. The students performed well on this task, with an

average mark of 3.7 out of 4 (93%).

3.1.4 Question 4: Syntax Errors
In this question, students were required to find 8 syntax errors in a

page of code, which was a complete class definition. Students

were told to find 8 syntax errors, and there were 11 syntax errors

in the code. The class contained 5 private data members, of type

String, double and ArrayList. It also contained a single

constructor, 5 simple accessor/mutator methods, and another

method that deleted a specific element from an ArrayList.

Students were awarded 1 mark for each correctly identified syntax

error. Student performance was fair on this task, especially as

there were 11 syntax errors available, with an average mark of 5.3

out of 8 (66%).

3.1.5 Overall Performance on Basics
As a whole, the 38 students demonstrated mastery of these

“Basic” tasks , with an average mark of 21 out of 26 (79%). Three

quarters of the students scored 18 or higher (69%). In some other

questions presented below, the class as a whole does much worse,

and these first four “Basics” questions establish that poor overall

performance on subsequent questions is not due to a poor overall

grasp of these basics.

3.2 Sequence (Questions 5-6)

3.2.1 Question 5: Missing Lines
This question begins with a preamble, “The code below is from

one of the BlueJ projects you have used this semester. You will

note that it uses an ArrayList. Some of the code has been

removed.” The subsequent code is a class definition, taking up a

page and a half, containing two private data members (one of

which is an ArrayList), a single constructor, and 3 methods, which

add to, delete from, and print the contents of the ArrayList.

Below the code, the students are set the following task: “The table

below shows the missing lines of code, but not necessarily in the

correct order. It also has one extra line of code that is not needed.

Identify which line of code should go where …”

This question is like the skeleton code questions from the Leeds

group (Lister et al. 2004), but in the Leeds study the task was

simpler, as there was usually a single missing line in the code and

four alternative options were provide for that missing line. On the

other hand, as the preamble indicated, the students had seen this

code before, which would make the task easier.

Students were awarded 1 mark for each line of code correctly

placed in the 5 available positions. They did very well on this

task, with an average mark of 4.4 out of 5 (88%).

3.2.2 Question 6: Parsons Puzzle
A Parsons Puzzle (Parsons and Hayden, 2006) is the extreme case

of the previous type of question. It requires students to take a set

of lines of code, presented in random order, and place those lines

into the correct order to perform a given function. The puzzle we

used in this exam is given in Figure 1.

These puzzles require students to apply their knowledge of the

common patterns in basic algorithms, apply some some heuristics

(e.g. initialize a variable before using it) and perhaps also, to a

degree, manifest some design skill. Parson and Hayden claimed

that these puzzles require skills between code reading and code

writing. No empirical study, before now, has been undertaken to

investigate their claim.

We had not used a Parsons Puzzle in any previous exam, nor had

we shown students any examples of these puzzles prior to the

exam. The code used in this question was adapted from an

“explain in plain English” question from a previous exam, but we

strongly suspect that few students would have seen that previous

exam prior to taking this exam.

We were surprised at how well the students performed on this

question, with an average mark of 4.9 out of 6 (83%). Three

quarters of the students scored at least 4, and a mark of 4 implies

that the answer would be perfect if two lines swapped places.

In retrospect, given how well the students performed on this

question, students may have been able to correctly place many of

the lines of code by applying shallow heuristics. For example, the

heuristic “always place a return statement at the bottom” would

work in this case. (In the Leeds group study, students had

difficulty with a question where a “return” did not occur at the

bottom.) Also, by providing the placement of the braces, we may

have given away too much information, as only lines A, B and E

could reasonably precede the three opening braces. Perhaps the

same question would have been harder had we not provided

braces and instead told the students to add braces where required.

3.3 Tracing1 – Non-iterative (Quest. 7, A-C)
Parts A, B and C of Question 7 were very simple tracing tasks.

Part A (3 marks) required students to nominate the values in three

variables after they were initialized and then altered by three

assignment statements a += 2; b -= 4; c = b * a; Part B (4

marks) required students to calculate the value of the expression

num1 % num2 for two different sets of values of the two

variables. Part C (3 marks) required students to calculate the value

of the variable “bValid” for the following code:

boolean bValid = false;

if (iValue >= FIRST_VAL && iValue < SECOND_VAL)
{

bValid = true;
}

for three different sets of values of the variables, iValue,

FIRST_VAL and SECOND_VAL.

Figure 1: Question 6, the Parsons Puzzle

The average combined mark on these three simple tracing tasks

was 7.7 out of 10 (77%), with three quarters of the students

scoring 6 or higher. Overall performance was lowest on part B,

perhaps because students did not know the “%” operator. The

average mark on parts A and C combined was 5.3 out of 6 (88%),

which is a higher average mark percentage than other question

type in Table 2.

3.4 Tracing2 – Iteration (Questions 7, D-E(i))

3.4.1 Question 7D: Tracing a while loop
Students were presented with the code shown in Figure 2, and

were asked to provide the value returned by the method, for three

different values of the parameter “iLimit”, -1, 3 and 0. The

collective performance of the students was mediocre, with an

average mark of 1.8 out of 3 (60%). This result is consistent with

the findings of the Leeds Group finding that many students

struggle with tracing loops.

3.4.2 Question 7E(i): For loop containing an “if”
Students were presented with the code shown in Figure 3, and

were asked to provide the value returned by the method, for two

different values of the parameter “aNumbers”, {1, 2, 3, 4, 5} and

{20, -10, 6, -2, 0}. The collective performance of the students was

poor, with an average mark of 0.6 out of 2 (32%).

As shown in Table 2, the performance of the students on these

two loop tracing tasks combined was mediocre, with an average

mark of 2.4 out of 5 (48%)

Figure 2: Question 7D, a while loop

Figure 3: Question 7E(i), a for loop containing an “if”

3.5 Exceptions (Question 7 E(ii) and 12)
Two questions required students to manifest some understanding

of the concept of an exception. The first of these, question E(ii),

used the code given in Figure 3, and asked the students what

would happen if the method was called thus: q7E(null); The

collective performance of the students was mediocre, with an

average mark of 0.9 out of 2 (47%).

The second question on exceptions, question 12, comprised two

parts of equal marks. The first provided students with a half-page

of code, which manipulated a simple data structure. The students

were then told: “The code contains an error - it compiles and

runs, but sometimes stops with an Index OutOfBoundsException.

Explain why this problem occurs.” A suitable answer would be

that the “if … else if … else …” guards failed when the data

structure was full and an attempt was made to access the highest

element in the structure. The second part of question 12 was

analogous to the first part, but involved object references and a

NullPointerException. Most students gave poor answers to both

parts, with an average mark of 1.5 out of 6 (25%).

Here are some snippets of code that, when used in the correct

order, would make up a method to count the occurrences of a

letter in a word (e.g. how many times does the letter 'm'

appear in the word Programming?).

A. if(sWord.charAt(i) == toCount)
B. for(int i = 0; i < sWord.length(); i++)
C. return count;
D. int count = 0;
E. public int countLetter(String sWord, char toCount)
F. count++;

Each box below represents a placeholder for one of the lines

of code above. Each line of code must be placed in only 1 of

the boxes. Indicate which line of code goes in which box by

writing its letter (A to F) in the appropriate box.

public int q7E(int[] aNumbers)
{
 int iResult = 0;

 for(int iIndex=0; iIndex<aNumbers.length; iIndex++)
 {

if(aNumbers[iIndex] > iResult)
{

iResult = aNumbers[iIndex];
}

 }
 return iResult;
}

public int q7D(int iLimit)
{

int iIndex = 0;
int iResult = 0;

while (iIndex <= iLimit)
{

iResult += iIndex;
iIndex++;

}
return iResult;

}

3.6 Data (Question 8)
This question tested the students on their knowledge of data types,

and consisted of four parts. In the first part, students were

presented with 5 data types: ArrayList, Boolean, double, int and

String. The students were also given 5 descriptions of data,

including “The name of a student” and “Whether a person is

married or not”. Students were required to choose the “most

appropriate” data type for each description.

In the second part of question 8, students were asked to underline

the data type in the code: public Server host;

In the third part, students were asked to write “the declaration for

a variable that is to be visible only within the current class, whose

name is representative and which is of type Student.”

In the fourth part, students were tested on their understanding of

scope. Students were provided with a piece of code from their

text book, a complete class about half a page long, containing

some private data members, a constructor and an accessor, called

“showPrice”. They were also told that a small error had been

introduced into the code, and that “The code compiles, but does

not work as expected. Whatever value is passed to the constructor,

when showPrice, is called it displays: The price of a

ticket is 0.0 cents. What is the problem?” The error was

that, inside the constructor, an assignment statement intended to

update the private data member “price” was incorrectly written

as double price = ticketCost; thus the local variable

“price” was updated, not the private data “price”.

The 38 students showed a solid grasp of this material, with an

average mark of 7.8 out of 10 (78%). Three quarters of the

students scored 7 or higher.

3.7 Writing (Questions 9 and 11)

3.7.1 Question 9: Write your Hip Hop name
Students were asked the following: “Write a java method that

generates your hip hop name. Your hip hop name starts with DJ.

This is followed by your pet's name, followed by the first 3

characters of your first name and the first 2 characters of your

mother's maiden name.” The student’s were also provided with

the following information about methods they could use to

produce their Hip Hop Name

● char charAt(int index) Returns the char value at the

specified index.

● int length() Returns the length of this string.

● String[] split(String regex) Splits this string

around matches of the given regular expression.

● String substring(int beginIndex) Returns a new

string that is a substring of this string.

● String substring(int beginIndex, int

endIndex) Returns a new string that is a substring of this

string.

The students performed poorly on this task, with an average mark

of 1.8 out of 6 (29%).

3.7.2 Question 11: Zombie Task Force Test Driver
Students were given documentation in, JavaDoc format, for

methods that managed a “Task Force” of instances of the class

“Zombie”, including these methods:

● void addZombie(Zombie oNewMember) Allows a

Zombie to join the task force

● int countZombies() Counts the number of Zombies in

the task force

● void deleteZombie(Zombie oMember) Allows a

Zombie to be removed from the task force

● boolean findZombie(java.lang.String sName)

Search for an Zombie by name

The students were then asked to write a single line of code to

perform each of the following tasks:

● Test that there are initially no Zombies in the group.

● Add the Zombie named “Scrog”

● Check that there is only one Zombie in the group.

● Check that “Scrog” can be found in the group.

● Check that “Blob” cannot be found in the group.

● Remove “Scrog”

● Check that there are now no Zombies in the group.

The collective performance of the students was mediocre, with an

average mark of 2.7 out of 6 (45%).

3.7.3 Marking and Prior Exposure
When the tutors marked these two writing questions, they were

instructed to ignore small syntactic errors. Java documentation

was supplied for any Java library methods that might be useful to

the students. Question 9 was very similar to an exercise given to

the students in the month before the exam. Unit testing, as in

Question 11, had been featured throughout the semester. Despite

such favorable circumstances, the average aggregate mark on

these two writing questions was only 4.4 out of 12 (37%). One

quarter of the students scored 1 mark or less.

3.8 Explain (Question 10)
This question comprised 3 parts, worth 2, 3 and 3 marks

respectively. In each part, students were presented with code and

told to “explain in plain English what it does”. The code in each

of the first two parts is shown in Figures 4 and 5 respectively. The

code in the third part was longer, and implemented binary search

on an array of integers.

Unlike earlier studies using this type of question (Whalley, et al.,

2006; Lister, et al., 2006), these students had seen this type of

question before the exam. Similar questions had been presented

during lectures and on previous exam papers, with model answers.

However, the three pieces of code used in this exam had not been

presented to students prior to the exam, so answers could not have

been memorized. Students knew, that a line-by-line description of

the code (i.e. a SOLO multi-structural response) was a low

scoring answer while a high scoring answer was a summary of the

overall computation performed by the code (i.e. a SOLO

relational response). The preamble to question 10 reminded

students: “Note that more marks will be gained by correctly

explaining the purpose of the code than by giving a description of

what each line does”.

Despite their prior experience, the student performance on these

questions was mediocre, with the average aggregate mark on all

three parts being only 3.2 out of 8 (40%).

Figure 4: the code for Question 10A, a reading question.

Figure 5: the code for Question 10B, a reading question.

3.9 General (Question 13)
The final exam question instructed students to “Select ONE of the

following and write an answer in clear English. 4 to 5 paragraphs

will be expected”. The four topics from which students could

choose were:

● "My code works so it must have been well written". With

reference to the concepts of coupling and cohesion, discuss

how to design programs which not only work, but are easy to

modify.

● Arrays and ArrayLists are both data structures that you have

studied in Programming 1. Describe the main differences and

similarities between these data structures. Credit will be given

for examples of where you have used them in any of the code

you have written this semester.

● Why do we need to test code? Describe how you tested the code

you wrote for your assignment this semester. How did your

testing help you to write correct, working code?

● Describe the various standards and formatting techniques

recommended in Programming 1, and explain how each of

these improves the quality of the code and makes a

programmer more productive when they are used.

This question clearly tests knowledge and skills quite different to

those skills tested in other questions.

4. METHOD
In the previous section, the questions in the exam / research

instrument were described in detail. The description included

simple descriptive statistics indicating the distribution of students

marks on each question and on each type of question. In this

section, we present a more sophisticated statistical analysis, which

examines the relationships between the exam questions, and

which provides evidence (for or against) a hierarchy of

programming-related skills.

4.1 Analysis Approach
When marks or scores are allocated to questions, the marker is

generally confident in the ordinal properties of the marks (i.e. 4 is

better than 3, 3 is better than 2, etc.). There is less confidence in

the interval properties of the marks. For example, does the

difference between 3 and 4 represent the same difference in

knowledge or skills as that between 2 and 3? However, interval

level measurement is required for valid arithmetic on variables.

To address this, a polytomous Rasch model (Rasch, 1960;

Andrich, 1978) was used to create interval level variables from

the marks; this is a stochastic model that identifies the maximum

likelihood estimates of person and item threshold locations by

simultaneous modeling of location estimates and the uncertainty

in their location. Figure 6 shows an illustrative probability density

map (for question 6) showing the probability of marks 1, 2, 3, 4

and 6 being awarded for any given ability with the ability scale

standardized to the range 0 to 10 and centred at 5.

Figure 6: Sample response probabilities for Question 6, the

Parsons Puzzle

From this diagram, we can see that for abilities between 0 and 4.7,

the most likely mark is 2, from 4.7 to 5.8, the most likely mark is

3, from 5.8 to 6.6 it is 4, and above 6.6 it is 6. This diagram

illustrates both the varying intervals associated with the marks,

and the clear ordinal pattern. We can also see the uncertainty in

the marks (e.g. for imputed ability 1, the most likely mark is 2, but

there is about 30% chance of 1 being awarded).

public void method10B(int iNum)

{

 for(int iX = 0; iX < iNum; iX++)

 {

 for(int iY = 0; iY < iNum; iY++)

 {

 System.out.print("*");

 }

 System.out.println();

 }

}

public double method10A(double[] aNumbers)

{

 double num = 0;

 for(int iLoop = 0; iLoop < aNumbers.length; iLoop++)

 {

 num += aNumbers[iLoop];

 }

 return num;

}

A key assumption of the model is that the construct being

measured is one-dimensional; this was verified with a

conventional principal components analysis.

There are many reasons for variability in exam marks; in order to

examine the potential structural relationships between the various

constructs, our first step was to attempt to partition the variability

in the dataset into that associated with the identified programming

constructs and that associated with more general personal traits

and attributes. The general variable (i.e. Question 13) was used as

an estimate of the latter, establishing a base level against which

other estimates could be compared. We chose this question

because the ability to answer it does not seem to be directly

related to the key constructs examined in this study. It should be

noted however, that the use of a single question rather than a scale

is unable to capture the full range of personal factors.

We partitioned the variability by carrying out a set of bivariate

regressions between the general variable and all others and then

using the coefficients from these regressions to subtract the

general effect from each remaining variable. Using the general

variable as a covariate in this way also improves generality by

controlling for the bias introduced by limiting the sample to those

giving consent. This process resulted in seven variables, each

representing the unique contribution made by that variable over

and above the base level. The first two research questions (i.e. “Is

tracing skill associated with writing ability?” and “Is reading skill

(i.e. explain in plain English) associated with writing ability?”

were then addressed by a hypothesis of positive correlation

between the appropriate variables.

A technique of step-wise multiple regression was used to address

the third research question (i.e. Can we elaborate the

relationships between these and other constructs?). With this

technique, writing was used as the criterion variable and all other

variables were initially introduced into the model as potential

predictors. At each step, the variable with the smallest unique

contribution was removed until we reached the three stopping

conditions of (1) maximum adjusted R2, (2) a significant (at .01)

overall regression, and (3) a significant (at .05) contribution from

each variable.

Having identified the significant predictors of writing variance,

the process was then repeated taking each of these predictors in

turn as the criterion variable and searching for significant

predictors among the remaining variables. This process was

repeated for each identified predictor to build a path diagram of

potential chains of association.

Regression residuals were tested for normality, homoscedasticity

and serial independence with a Jarque-Bera test (Bera and Jarque,

1980).

5. RESULTS
In this section, we begin by setting out the results of the data

screening process and then address the results of the research

questions. The changes made to the procedures a posteriori are

addressed under the appropriate research questions.

5.1 Data screening
All constructs were uni-dimensional with the exception of tracing

which appears to have two underlying factors. Question 7, parts

A, B and C loaded strongly on the first factor, and parts D and

E(i) on the second factor. The main difference between these parts

appears to be that the first three parts involved tracing a single

sequential pass through code and the last two involved a repetition

structure. The factor loadings, with separation optimized by a

varimax rotation, are summarized in Table 3.

Table 3: Tracing factor loadings

Part Characteristic F1 F2

A sequence 0.5335 0.0579

B sequence 0.6901 -0.0320

C non-iterative 0.7617 0.2836

D repetition (while) -0.0272 0.9030

E(i) repetition (for) 0.1236 0.8691

Because of the two factors, two additional variables were created:

Tracing1 (non-iterative) and Tracing2 (iteration) and these two

were used for the elaboration of the third research question.

The “General” variable had a mean of 48% and a standard

deviation of 29%. Only two students received a zero mark

suggesting that, although it was the last question in the exam, time

pressure was not a major barrier to students attempting the

question.

All of the derived variables showed positive inter-correlations

with the exception of “Data” vs. “Explain” which had a small (but

not significant) negative correlation. The mean inter-correlation

between all variables was 0.3864.

5.2 Tracing skill
To address the proposition that program writing skill is associated

with tracing skill, we tested the hypothesis that the correlation

between tracing and writing is positive. A Pearson correlation

analysis produced a correlation of 0.5621 between (Tracing) and

(Writing). This was significant at the 0.01 level (r(36)=0.5621;

p=0.0001), and positive. The relationship accounts for 32% of the

variability; adjusted R2 was 30%. The regression equation is

"Writing = 0.9728 • Tracing - 3.1803"; the confidence interval of

the coefficient is: CI.99 = (0.3269 ≤ Tracing ≤ 1.6187). A Jarque-

Bera test of normality indicates (p=0.9794) that the distribution of

the residual from the regression is acceptably close to a normal

distribution, which suggests that a parametric approach is

appropriate.

Because two underlying factors were associated with the tracing

variable, separate tests were then made for each of these. No

significant correlation (r(36)=0.3028; p=0.0308) was found

between Tracing1 (non-iterative) and Writing. There was a

significant positive correlation between Tracing2 (iteration) and

Writing (r(36)=0.6267; p<.0001). The relationship accounts for

39% of the variability; adjusted R2 was 38%. A Jarque-Bera test

of normality indicates (p=0.3947) that the distribution of the

residual from the regression is acceptably close to a normal

distribution, which suggests that a parametric approach is

appropriate.

Figure 7: The Path Diagram

5.3 Reading (“Explain”) skill
To address the proposition that program writing skill is

associated with program reading skill, we tested the hypothesis

that the correlation between the ability to explain code and

writing was positive. A Pearson correlation analysis produced a

correlation of 0.5586 between (Explain) and (Writing). This was

significant at the 0.01 level (r(36)=0.5586; p=0.0002), and

positive. The relationship accounts for 31% of the variability;

adjusted R2 was 29%. The regression equation is: "Writing =

0.6100 • Explain + 1.1772"; the confidence interval of the

coefficient is: CI.99 = (0.2013 ≤ Explain ≤ 1.0187). A Jarque-

Bera test of normality indicates (p=0.3661) that the distribution

of the residual from the regression is acceptably close to a

normal distribution, which suggests that a parametric approach

is appropriate.

5.4 Elaboration
The stepwise regression procedure identified the relationships

shown in Figure 7. In this path diagram, variables are shown in a

titled box containing the variance explained, adjusted R2 in

square brackets and the significance of the overall regression.

The boxes on the paths show the beta weights of the paths with

the semi-partial correlation squared shown underneath. This last

represents the unique contribution made to the explanation of

the criterion variable over and above that shared with other

predictor variables. The direction of the arrows should not be

interpreted as evidence of causation (although that is of course

plausible).

A degree of multicollinearity is to be expected in any valid

assessment instrument, but has the consequence that estimates of

the relative contribution of each predictor to a criterion have an

increased confidence interval, even though the overall regression

remains stable. In this dataset, the variance inflation factor

attributable to multicollinearity in the regression ranged from

1.30 to 1.43.

Although this is moderate, it should be noted that at this sample

size, the relative contribution of predictors is subject to

considerable uncertainty.

6. DISCUSSION
With regard to the first two research questions addressed in this

study:

● We found strong support for an association between code

tracing and code writing skills, particularly when the tracing

involved loops (i.e. Tracing2). The correlation between

Tracing2 and Writing was 0.6267 (p<.01), accounting for

39% of the variability, with an adjusted R2 of 38%.

● We found support for an association between code reading

(i.e. “Explain in plain English”) and code writing skills, with

a correlation 0.5586 (p<.01) accounting for 31% of the

variability, and an adjusted R2 of 29%.

6.1 Evidence for a hierarchy?
This subsection explores the third research question addressed in

this study, by exploring evidence in this exam for a hierarchy of

programming-related skills.

As with any statistical analysis, the co-variances identified in

this study are not, alone, evidence of causality. However, if we

begin by positing a causal model, then a subsequent statistical

analysis can increase our confidence in that model by

manifesting co-variances consistent with the model. Prior to

undertaking the statistical analysis (indeed, prior to setting the

exam), we had our own intuitions as to how the hierarchy of

programming-related skills was structured. This subsection

explores whether our intuitions, and past literature, about such a

hierarchy are consistent with the path diagram that emerged

from the statistical analysis.

6.1.1 Basics and Data
We begin at the bottom of our hypothetical hierarchy. Given the

influence upon us of the revised Bloom’s Taxonomy (Anderson

et al., 2001) we believe knowledge of basic programming

constructs forms the bottom of the hierarchy. This is consistent

with “Basics” and “Data” appearing at the bottom of the path

diagram. Taken together, these two variables are strong

predictors of both elementary tracing skills (Tracing1) and the

Sequence tasks.

6.1.2 Tracing1 and Sequence
We were surprised that there isn’t a statistically significant

relationship between Tracing 1 and Tracing 2. In retrospect,

perhaps the Tracing1 tasks in his exam were too simple to show

a relationship with Tracing2. If that is so, then characterizing

the difficulty of a task simply by its nature alone may be

insufficient. The difficulty of a task may also be a function of its

size, and perhaps also the programming constructs involved.

Such a multidimensional view of difficulty may be consistent, in

principal, with the two-dimensional revised Bloom’s Taxonomy

(Anderson et al., 2001).

Prior to the statistical analysis, we suspected that the Sequence

tasks were intermediate, and the path diagram is consistent with

that suspicion. However, we were surprised that the Sequence

variable appeared lower in the path diagram than Tracing2, as

our intuition is that the Sequence tasks ─ both completing

skeleton code and Parsons Puzzles ─ are a higher skill than

tracing. However, as we discussed earlier, perhaps the particular

Parsons puzzle we used was too easy. As discussed in the

previous paragraph, with regard to Tracing1 and Tracing2,

perhaps there are other characteristics of a task, apart from its

nature, that determine its level of difficulty.

6.1.3 Tracing2 and Explain
The relationship between Tracing2 and Explain in the path

diagram is consistent with Philpott, Robbins and Whalley's

(2007) "traffic light” conjecture ─ the green light for relational

thinking is mastery of code tracing.

In combination, Tracing2 and Explain account for 46% of the

variance in Writing (a percentage considered good by many in

the social sciences, given a preponderance of other factors in the

messy lives of people). This is consistent with our prior

intuition, and also consistent with prior literature, that Tracing

and Explain are intermediate skills. However, we were surprised

that Explain alone accounts for a smaller amount of the variance

in Writing than Tracing2 alone. Again, perhaps there are other

characteristics of a task, apart from its nature, that determine its

level of difficulty. Also, perhaps programming-related skills do

not form a strict hierarchy, but instead skills from more than one

lower level may influence the performance of a skill at some

higher level of the hierarchy. And perhaps, more prosaically, the

reading tasks in our exam may not have been very effective

assessment tasks.

6.1.4 Exceptions and other issues
In retrospect, we are not surprised that Exceptions is

unconnected in the path diagram. The particular writing tasks in

this exam did not require a grasp of exceptions.

This exam is a reflection of our hybrid times, with its mixture of

object-oriented concepts and classic 3GL control structures.

The writing tasks emphasized messages to objects (or procedure

calls, in 3GL terms), but both the Tracing2 and Explain tasks

emphasized an understanding of the code that occurs within

methods, particularly control structures. It may therefore be

surprising that Tracing2 and Explain account for 46% of the

variance in Writing. Perhaps the strong combined connection of

the Tracing2 and Explain tasks to the Writing tasks is less a

reflection of specific programming knowledge, and more a

reflection of generic reasoning skills required in these tasks.

7. CONCLUSION
For most academics, an exam paper is an instrument for

assigning grades to students. From a computing education

research perspective, an exam paper is also a research

instrument, an opportunity to study the knowledge, skills and

learning of novices. In this paper we have used an exam paper as

a research instrument to explore the concept of a hierarchy of

programming-related skills. We found statistical evidence

which is consistent with our prior intuition, and the prior

literature, on the structure of such a hierarchy.

There were also unanticipated results in our analysis, such as

indications that solving Parsons Puzzles might be a lower skill

than tracing iterative code. However, there may be other

characteristics of a task, apart from its nature, that determine its

level of difficulty. As we (and we hope others) design and

analyse future exams, such issues and anomalies will be

resolved.

Are there limitations to using exams as a research instrument?

For example, to better understand the relationship between

“explain in plain English” tasks and code writing, perhaps we

need to have each student complete 20 explanation tasks, and

write 20 short pieces of code. That is not possible in an exam,

given the short time length of an exam, and the need to test

students on wide spectrum of knowledge and skills. But that

raises an interesting conundrum at the nexus of teaching and

research ─ if an exam is too short to be a valid instrument for

researching students, can it then still be a valid instrument for

grading students?

8. ACKNOWLEDGMENTS
The authors thank Tony Clear and their other colleagues in the

BRACElet project. Raymond Lister is an Associate Fellow of

the Australian Learning and Teaching Council (ALTC).

However, the views expressed in this paper are not necessarily

the views of the ALTC.

9. REFERENCES
Adelson, B. When novices surpass experts: The difficulty of a

task may increase with expertise. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 10, 3 (1984),

483-495.

Anderson, L. W., Krathwohl, D. R., Airasian, P. W.,

Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., &

Wittrock, M. C. (eds). (2001). A taxonomy for learning and

teaching and assessing: A revision of Bloom's taxonomy of

educational objectives. New York: Addision Wesley Longman

Inc.

Andrich, D. (1978). A rating formulation for ordered response

categories. Psychometrika, 43, 561-73.

Bera, A., Jarque, C. (1980), "Efficient tests for normality,

homoscedasticity and serial independence of regression

residuals". Economics Letters 6 (3): 255–259. doi:10.1016/0165-

1765(80)90024-5.

Biggs , J. B., & Collis, K. F. (1982). Evaluating the quality of

learning: The SOLO taxonomy (Structure of the Observed

Learning Outcome). New York: Academic Press.

Corritore, C. and Wiedenbeck, S. What Do Novices Learn

During Program Comprehension? Int. J. of Human-Computer

Interaction, 3, 2 (1991), 199-222.

Biggs, J. B. & Collis, K. F. Evaluating the quality of learning:

The SOLO taxonomy (Structure of the Observed Learning

Outcome). New York, Academic Press, 1982.

Lister, R. On blooming first year programming and its blooming

assessment. Proceedings of the Australasian Conference on

Computer Science Education. ACM Press, 2000, 158-162.

Lister, R., Simon, B., Thompson, E., Whalley, J. and Prasad C.

Not seeing the forest for the trees: novice programmers and the

SOLO taxonomy. ACM SIGCSE Bulletin,38(3), 2006, 118 - 122

Parsons, D. and Haden, P. (2006). Parson's Programming

Puzzles: A Fun and Effective Learning Tool for First

Programming Courses. In Proc. Eighth Australasian Computing

Education Conference (ACE2006), Hobart, Australia. CRPIT,

52. Tolhurst, D. and Mann, S., Eds., ACS. 157-163.

Philpott, A, Robbins, P., and Whalley, J. Accessing The Steps

on the Road to Relational Thinking. Proceedings of the 20th

Annual NACCQ. Mann, S and Bridgeman, N. (eds), Nelson,

NZ, July 8-11, 2007, 286.

Rasch, G. (1960/1980). Probabilistic models for some

intelligence and attainment tests. (Copenhagen, Danish Institute

for Educational Research), expanded edition (1980) with

foreword and afterword by B.D. Wright. Chicago: The

University of Chicago Press.

Soloway, E. and Ehrlich, K, Bonar, J., and Greenspan, J. (1983)

What do novices know about programming? In B. Shneiderman

and A. Badre, editors, Directions in Human-Computer

Interactions, 27–53. Ablex, Inc., Norwood, NJ.

Spinellis, D. Reading, writing and code. ACM Queue, 1(7),

2003, 84 - 89.

Thompson, E., Whalley, J., Lister, R., Simon, B. (2006) Code

Classification as a Learning and Assessment Exercise for

Novice Programmers. Proceedings of the 19th Annual

Conference of the National Advisory Committee on Computing

Qualifications, NACCQ, Wellington, New Zealand, July 7-10.

pp. 291-298.

http://bitweb.tekotago.ac.nz/staticdata/allpapers/2006/papers/29

1.pdf

Thompson, E., Luxton-Reilly, A., Whalley, J., Hu, M., &

Robbins, P. (2008). Bloom’s taxonomy for CS assessment.

Proceedings of the Tenth Australasian Computing Education

Conference (ACE2008), Wollongong, Australia, January 2008.

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P.,

Kumar, P. K. A., & Prasad, C. (2006). An Australasian Study of

Reading and Comprehension Skills in Novice Programmers,

using the Bloom and SOLO Taxonomies. Proceedings. of the

Eighth Australasian Computing Education Conference

(ACE2006) (pp. 243-252). Hobart, Australia :CRIPT.

Whalley, J, Clear, T, and Lister, R. (2007), The Many Ways of

the BRACElet Project. Bulletin of Applied Computing and

Information Technology (BACIT) Vol. 5, Issue 1. ISSN 1176-

4120. http://www.naccq.co.nz/bacit/

0501/2007Whalley_BRACELET_Ways.htm

Whalley, J and Robbins, P (2007) Report on the Fourth

BRACElet Workshop. Bulletin of Applied Computing and

Information Technology (BACIT) Vol. 5, Issue 1. ISSN

1176-4120.

http://www.naccq.ac.nz/bacit/0501/2007Whalley_BRAC

ELET_Workshop.htm

Wiedenbeck, S., Fix, V. & Scholtz, J. Characteristics of the

mental representations of novice and expert programmers: An

empirical study. International Journal of Man-Machine Studies,

39 (1993) 793-812.

