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INTRODUCTION

Otolith chemistry is used extensively to address
critical issues relating to the population structure,
movement patterns and environmental histories of
fish (Campana 2005). Although much of the
research is focused on marine and estuarine envi-
ronments, otolith chemistry is being increasingly
utilised for a diverse range of applications in fresh-
water systems. Such applications include the identi-
fication of recruitment and natal sources (Crook &
Gillanders 2006, Pangle et al. 2010), invasive spe-
cies’ origins (Munro et al. 2005, Wolff et al. 2012)
and habitat use (Brazner et al. 2004); the discrimina-
tion of wild and hatchery-reared stocks (Bickford &

Hannigan 2005, Coghl an et al. 2007) and diadro-
mous and non-diadromous ecotypes (Godbout et al.
2010); and the determination of release-site fidelity
(Boehler et al. 2012) and riverine infrastructure
impacts (Clarke et al. 2007). Environmental inter-
pretations based on otolith elemental composition
rely on the underlying assumption that fish derive
elements predominantly from the water, either via
the gills in freshwater fish or via the intestine in
marine fish (Campana 1999), and that there is a pre-
dictable and consistent relationship between the
chemistry of the otolith and the chemistry of the
water. However, some elements have been shown
to be derived from dietary sources (e.g. Kennedy et
al. 2000), potentially confounding otolith−water
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chemistry relationships and reducing the accuracy
of data interpretation in the field.

Strontium (Sr) and barium (Ba) are perhaps the
most informative and commonly used elements in
otolith chemistry as they are easily measured in the
otolith, heterogeneously distributed throughout the
aquatic environment, metabolically inert, and have
been found to reflect environmental parameters
(Campana et al. 1999, Elsdon et al. 2008, Brown &
Severin 2009). Controlled laboratory experiments
have shown that Sr and Ba levels in otoliths reflect
ambient water concentrations in freshwater species
(classified here as either potamodromous or diadro-
mous species raised in freshwater) (Gibson-Reinemer
et al. 2009, Collingsworth et al. 2010), which concurs
with similar studies on marine (Bath et al. 2000) and
estuarine (Elsdon & Gillanders 2003) species. Several
studies have also examined the influence of diet on
Sr otolith chemistry in freshwater species through
diet manipulation (e.g. changing food type or en -
riching food with specific elements); however, they
report conflicting results (Limburg 1995, Milton &
Chenery 2001, Marohn et al. 2009), which was also
observed in analogous studies on marine and estuar-
ine species (see Hoff & Fuiman 1995, versus Buckel
et al. 2004).

Studies that examine the influence of diet and
water chemistry on otolith chemistry are vital for
building our understanding of otolith−water chem-
istry relationships and the proportional contributions
of both water and diet need to be determined to
explicitly test the influence of diet on otolith chem-
istry. This can be achieved by comparing isotope
variations, either naturally occurring or artificially
induced, in the diet, water and otolith. We are
aware of only 3 studies that have examined the pro-
portional contributions of water and diet to Sr
uptake in freshwater species. Of these studies, each
concluded that diet had either very little influence
(Farrell & Campana 1996, Gibson-Reinemer et al.
2009) or a substantial influence (Kennedy et al.
2000) on Sr otolith chemistry. There are no known
studies that have examined the effect of diet on Ba
otolith chemistry, either through food manipulation
or analysis of natural isotopic variation in freshwater
systems. Isotopic studies on marine and estuarine
fish species found that Ba (and also Sr) is predomi-
nantly sourced from water (Walther & Thorrold
2006, Webb et al. 2012); however, comparisons with
freshwater fish are tenuous as the physiological
mechanism underlying osmoregulation, and thus
elemental uptake, is fundamentally different (Evans
1980).

This study aims to determine the relative contribu-
tions of water and diet to Sr and Ba otolith chemistry
in 3 potamodromous fish species through the use of
enriched stable isotopes. By altering the natural iso-
topic ratio of diet and water in a controlled laboratory
experiment, enriched isotopes were used to inde-
pendently track the uptake of elements from each
source (water and diet) into otoliths, providing a
definitive test of proportional contributions.

MATERIALS AND METHODS

Experimental design

Three potamodromous fish species, native to the
Murray-Darling Basin, Australia, were utilised in this
study: silver perch Bidyanus bidyanus (SP), golden
perch Macquaria ambigua (GP) and Murray cod
Maccullochella peelii (MC). Juveniles (weighing
approx. 0.6 to 2 g) were obtained from the Silverwa-
ter Native Fish Hatchery in Grong Grong, New South
Wales, in February 2012. Upon arrival at The Uni -
versity of Adelaide, South Australia, each species
was held in 200 l holding tanks at ambient tempera-
ture (21°C). Aged (dechlorinated) tapwater was used
throughout the pre-experimental and experimental
periods. SP and MC were fed commercial fish food
(Ridley AgriProducts) in the first week after arrival
and were gradually weaned onto the experimental
diet (composed of gelatine, shrimp, oats and vegeta-
bles; see Royes & Chapman 2003), hereafter called
‘shrimp diet’. GP were fed a modified version of the
diet (composed of just gelatin and fish [Lates niloti-
cus]; and called hereafter ‘fish diet’) throughout the
pre-experimental and experimental periods. Twelve
days after arrival all fish were marked with calcein,
a fluorescent marker, using an osmotic induction
method (Crook et al. 2009). Briefly, marking involved
immersing fish in a salt solution (3% for MC, 5% for
SP and GP) for several minutes (3.5 min for MC and
SP, 5 min for GP) and then a freshwater solution con-
taining 1% calcein. This facilitated the differentia-
tion of pre- and post-experimental otolith growth.
Fish were then randomly assigned to experimental
tanks at a density of 13 fish per tank. Each tank con-
tained 20 l of aged water, along with a small sub-
merged filter and an air stone to aerate and circulate
the water.

Experimental treatments involved spiking either
the diet or tank water with a combination of enriched
stable isotopes of 86Sr and 137Ba. Isotopically enriched
BaCO3 and SrCO3 (Oak Ridge National Laboratories)
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were used to spike the diet (at concentrations of 0.26
and 0.58 μg g−1 for each element, respectively) or
water (at concentrations of 0.14 and 0.17 mg l−1 for
each element, respectively). For the diet, appropriate
spiking concentrations (i.e. to achieve a detectable
shift from the natural ratio) were estimated from a
previous study (Webb et al. 2012). For the water,
baseline levels of Sr and Ba in the tank water were
measured (Ba = 0.035 mg l−1 and Sr = 0.16 mg l−1)
with appropriate spiking concentrations subse-
quently calculated. Prior to spiking, the enriched iso-
topic compounds were combined, dissolved in a drop
of hydrochloric acid and then mixed with ultrapure
water. The experimental design consisted of 2 in -
dependent experimental treatments (spiked diet or
water) plus a control treatment, which were repli-
cated, resulting in a total of 6 tanks per species. Each
of the 6 tanks were randomly assigned within one
water bath and all water baths were gradually
heated to 24°C, providing conditions for optimal fish
growth. Fish were exposed to experimental condi-
tions for either 31 d (MC and GP) or 39 d (SP).

Fish were fed daily to satiation and any food or
waste remaining after 1 h was siphoned away to
avoid potential isotope contamination of the water. It
was not possible to accurately measure the amount of
food consumed per day due to the use of mechanical
filters (which sucked up the finer food particles)
and difficulties associated with separating excess
food from waste. Water changes (approximately 25 to
50%) were conducted when required and replace-
ment water was spiked with appropriate levels of
each enriched stable isotope. At the end of the
experi ment fish were euthanised through immersion
in an ice slurry and immediately frozen until otolith
extraction.

Water and diet analyses

Water samples were collected from each tank at
the start, middle and end of the experimental period.
Each sample was collected using a 25 ml syringe, fil-
tered through a 0.45 μm filter into acid-washed 30 ml
plastic vials, acidified with 0.5 ml of ultrapure nitric
acid and frozen until analysis. Samples from the
water-spiked treatments were diluted 10:1, due to
enhanced levels of Sr and Ba isotopes. A second set
of samples, diluted 100:1, were also run to measure
Ca (due to extremely high levels in the tap water).

Three diet samples from each of the 4 diet types
(‘shrimp diet’ unspiked and spiked; ‘fish diet’ un -
spiked and spiked) were prepared for analysis

 following the method outlined in Woodcock et al.
(2012). Briefly, the samples were oven dried, crum-
bled, dissolved in ultrapure nitric acid, diluted 50:1
and then filtered through a 0.45 μm filter.

Water and diet samples were analysed using an
Agilent 7500cs inductively coupled plasma-mass
spectrometer (ICP-MS) (see Table 1 for operating
parameters). To calculate isotope ratios, 138Ba, 137Ba,
88Sr and 86Sr were measured, alongside 43Ca for ele-
ment:Ca ratios. A natural multi-element stock stan-
dard was run for Ca, Ba and Sr at 0, 1, 50, 100 and
500 μg l–1. Two additional standards for each Sr and
Ba isotope were also analysed at the following con-
centrations: 138Ba and 137Ba at 50 and 200 μg l–1; and
88Sr and 86Sr at 100 and 350 μg l–1. Standards and
blanks were analysed regularly throughout each ses-
sion. Agilent Mass Hunter software was used to col-
lect the raw data, which were calibrated against the
elemental standards. Both the elemental and isotope
standards were used to measure instrument drift and
precision. To calculate total Ba:Ca and Sr:Ca ratios
(in mmol mol–1) 138Ba and 88Sr were utilised.

Otolith preparation and analyses

Otoliths were dissected from each fish, cleaned in
ultrapure water and air-dried. One otolith from each
individual was embedded in epoxy resin (Epofix,
Struers) spiked with 40 ppm of indium and cut into
sections (200−300 μm thick) using a low speed dia-
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Solution ICP-MS
   Collision cell               He (5 ml min−1)
   Cone                           Pt
   Integration time         0.1 s with 3 replicates for each

 isotope
Laser
   Wavelength                213 nm
   Mode                          Q-switch
   Frequency                  5 Hz
   Spot/transect size      30 μm
   Transect scan rate      3 μm s−1

   Laser power               75%
   Carrier                        Ar (0.92 l min−1)

Laser ICP-MS
   Optional gas               He (58%)
   Cone                           Pt
   Dwell times (ms)        138Ba (300), 137Ba (400), 86Sr and 

88Sr (200), 43Ca (100), 115In (50)

Table 1. Operating parameters for the Agilent 7500cs in -
ductively coupled plasma mass spectrometer (ICP-MS) and 

New Wave Nd Yag 213 UV laser with ICP-MS
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mond saw (Isomet, Buehler). Indium (In) was used so
that the epoxy resin could be distinguished from the
otolith material during analysis. Sections were pol-
ished using several grades of lapping film before
being fixed onto a glass microscope slide using
indium-spiked thermo-plastic glue (CrystalBond™
509). Sections were viewed under fluorescent light to
visualize the calcein mark and ensure that sufficient
experimental otolith growth had occurred.

Otolith sections were analysed on a New Wave Nd
Yag 213 nm UV laser operated in Q-switch mode
connected to an Agilent 7500cs ICP-MS (see Table 1
for operating parameters). For SP and MC, the otolith
edge region outside the calcein mark (i.e. experi-
mental growth) was ablated using 30 μm spot analy-
ses (Fig. 1a,b). For GP, relatively little experimental
otolith growth occurred (approximately ≤10 μm), thus
making spot analyses unfeasible. As an alternative
short transects (30 μm wide and approximately 150 μm
long) were run perpendicular to the otolith edge,
enabling the experimental isotopic signal to be sam-
pled (Fig. 1c,d). The 2 different ablation methods
required separate approaches to the isotope data
analysis (see below).

To determine enrichment, the following isotopes
were measured: 138Ba, 137Ba, 88Sr and 86Sr, alongside
43Ca for element:Ca ratios and 115In to ensure otolith
material was ablated at all times. To measure in -
strument drift and precision a reference standard,
NIST612, was analysed approximately every 10 sam-
ples, and carbonate standard, MACS-3 (United States
Geological Survey), was analysed at the beginning
and end of each 7 to 9 h laser session.

All isotope ratio data (138Ba:137Ba and 88Sr:86Sr) were
smoothed using a 6-point running mean. For spot
analyses (SP and MC) the average value of the
smoothed data was used as the isotopic value for
each individual (see Fig. 1b for example data). For
transect analyses (GP), the minimum value of the
smoothed data was used for each individual (see
Fig. 1d for example data). As the lighter isotopes
were enriched, the minimum values were assumed to
represent a shift away from the natural isotopic ratios
(i.e. artificially induced isotope ratios will have a
lower value than the natural ratio) (see also Munro et
al. 2008, Woodcock et al. 2011). To calculate total
Ba:Ca and Sr:Ca ratios (in mmol mol–1), 138Ba and
88Sr were utilised.
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Fig. 1. Comparison of the 2 ablation methods utilised with relevant data outputs. (a) Sectioned silver perch otolith with 30 μm
spot ablation crater (indicated by square). (b) Smoothed 138Ba:137Ba data from 2 spot analyses (solid line: individual exposed to
control treatment; dashed line: individual exposed to water-spiked treatment). (c) Sectioned golden perch otolith with 150 ×
30 μm ablation transect (indicated by square) running from otolith to epoxy. (d) Smoothed 138Ba:137Ba data from 2 transect 

analyses (solid and dashed lines as above). Scale bars (a,c): 200 μm
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Statistical analyses

Differences in 138Ba:137Ba and 88Sr:86Sr
otolith ratios among treatments and repli-
cates (n = 6) were tested for each species
using 1-way ANOVA and Tukey’s HSD test.
Data were examined for normality and
homogeneity of variances using graphical
methods and  Levene’s test. To meet model
assumptions, all data were transformed
using power transformations (y −3 and y −0.7

for Sr and Ba, respectively). A range of com-
mon transformations were initially tested,
but they did not improve homogeneity
of variances. No significant differences
were observed between replicate tanks
for all  species, thus transformed data from
each replicate were pooled and re-analysed
using the same tests. Otolith data from one
of the spiked diet treatment tanks, which
indicated very slight levels of isotope con-
tamination in the water, were included in the
analysis as they were not significantly dif -
ferent from the uncontaminated replicate.
All statistical tests were performed in SPSS
(version 19).

The percent contribution of tank water and diet to
otolith Sr and Ba was determined for the 2 independ-
ent experiments (water-spiked vs. diet-spiked) using
a simple  isotope mixing model detailed in Kennedy et
al. (2000):

Water and diet ratios used in the above model were
averaged across the multiple samples taken from
each tank/diet type.

RESULTS

Water and diet chemistry

For all species, elemental water concentrations
remained relatively consistent throughout the exper-
iment, having a group mean (±SE) of 0.94 ±
0.01 mmol mol–1 for Ba:Ca and 6.54 ± 0.04 mmol mol–1

for Sr:Ca (Table 2). Slight variations in elemental con-
centrations were presumably due to changes in the
chemistry of the tap water over the course of the
experiment. The isotope ratios of the water-spiked
treatments were significantly altered for all spiked
tanks and re mained consistent throughout the ex -
periment, having a group mean of 0.58 ± 0.01 for
138Ba:137Ba and 1.48 ± 0.02 for 88Sr:86Sr, compared
with the natural ratios of 6.38 and 8.38, respectively
(Table 2). Overall, the water samples from the control
tanks were slightly higher in Sr and lower in Ba than
the natural ratios; however, this appears to be an
analytical artefact rather than a representation of
real ratios as a similar pattern was observed in the
natural stock standards (control tanks: mean
88Sr:86Sr = 8.69 ± 0.02, mean 138Ba:137Ba = 6.24 ± 0.02;
standards: mean 88Sr:86Sr = 8.79 ± 0.05; mean
138Ba:137Ba = 6.27 ± 0.01). Water isotope ratios from
the spiked diet tanks were similar to those of the con-
trol tanks, suggesting that isotopes did not leach out
of the food to contaminate the water. However, an
exception was one of the spiked diet tanks for MC,
which showed both lower isotope ratios and greater
variation among samples over the experimental
period. It is likely that the tank was contaminated
during the experiment, possibly as a result of human
error. Isotope ratios in the spiked diet were signifi-
cantly altered in both diet types, with elemental con-
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Tank Sr:Ca Ba:Ca 88Sr:86Sr 138Ba:137Ba

Murray cod
Control 1 5.85 ± 0.09 0.76 ± 0.02 8.70 ± 0.04 6.22 ± 0.02
Control 2 5.90 ± 0.20 0.77 ± 0.02 8.76 ± 0.06 6.28 ± 0.03
Spiked diet 1 6.10 ± 0.28 0.81 ± 0.03 8.61 ± 0.02 6.18 ± 0.05
Spiked diet 2 5.96 ± 0.24 0.76 ± 0.02 8.42 ± 0.12 5.73 ± 0.23
Spiked water 1 6.33 ± 0.15 1.08 ± 0.06 1.46 ± 0.05 0.57 ± 0.01
Spiked water 2 5.80 ± 0.20 1.02 ± 0.03 1.49 ± 0.08 0.60 ± 0.01

Silver perch
Control 1 7.18 ± 0.22 0.87 ± 0.04 8.66 ± 0.06 6.20 ± 0.02
Control 2 6.95 ± 0.24 0.89 ± 0.04 8.69 ± 0.04 6.31 ± 0.01
Spiked diet 1 6.64 ± 0.29 0.88 ± 0.06 8.64 ± 0.05 6.16 ± 0.04
Spiked diet 2 6.50 ± 0.16 0.84 ± 0.01 8.62 ± 0.06 6.13 ± 0.03
Spiked water 1 6.78 ± 0.17 1.19 ± 0.05 1.42 ± 0.03 0.56 ± 0.01
Spiked water 2 6.12 ± 0.12 1.05 ± 0.02 1.47 ± 0.05 0.57 ± 0.02

Golden perch
Control 1 6.61 ± 0.10 0.89 ± 0.03 8.63 ± 0.07 6.15 ± 0.04
Control 2 7.16 ± 0.22 0.96 ± 0.03 8.72 ± 0.06 6.28 ± 0.02
Spiked diet 1 6.91 ± 0.30 0.93 ± 0.03 8.58 ± 0.07 6.19 ± 0.05
Spiked diet 2 7.47 ± 0.50 0.99 ± 0.08 8.60 ± 0.05 6.15 ± 0.02
Spiked water 1 6.71 ± 0.25 1.16 ± 0.03 1.53 ± 0.05 0.58 ± 0.01
Spiked water 2 6.73 ± 0.50 1.16 ± 0.09 1.54 ± 0.06 0.58 ± 0.01

Table 2. Mean (±SE) elemental (mmol mol–1) and isotopic composition 
of tank water for each treatment and replicate
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centrations remaining relatively consistent between
spiked and unspiked diets (Table 3).

Otolith chemistry

Otolith Sr and Ba ratios were significantly different
among treatments for all species (Table 4, Fig. 2).
Post hoc tests indicated that all treatments were sig-
nificantly different from each other for all species (p <
0.05), except between the diet-spiked and control
treatments for GP. Sr and Ba isotopic ratios from the
water-spiked treatments were dramatically different
from the control treatments for all species, with mean
isotope ratios ranging from 3.56 to 4.09 for 138Ba:137Ba
and 1.03 to 1.25 for 88Sr:86Sr (Fig. 2). In contrast,

ratios from the diet-spiked treatments
showed much smaller (but largely signifi-
cant) shifts from the control treatments. Sr
isotope ratios from the control treatment
were slightly higher than the natural ratio for
both MC and SP (where the average values
of the smoothed data were taken); however,
again, this appears to be an analytical arte-
fact. Sr isotope ratios in the control treatment
were consistent among individuals for both
species and very similar to the internal car-

bonate standard measured at the beginning and end
of each laser session (mean SP = 8.72 ± 0.02; mean
MC = 8.82 ± 0.04; mean carbonate standard = 8.84 ±
0.04). Sr and Ba isotope ratios for GP were lower than
MC and SP, most likely as a result of taking the min-
imum value of the smoothed isotope ratio data.

Percent contributions

Percent contributions indicate that water was the
predominant source of Sr and Ba in otoliths for all
species, with mean percentages ranging from 64 to
71% for Sr and 88 to 92% for Ba (Fig. 3). Food con-
tributed to otolith chemistry to a much lesser degree,
with percent contributions ranging from 4 to 6% for
Sr and 10 to 26% for Ba. Overall, there was remark-
able consistency in results among species, except for
the contribution of diet in SP, which was double that
of MC and GP. For all species, the combined percent
contribution of water and diet to otolith chemistry
was noticeably different between the 2 elements
(mean combined contribution: Sr = 71%, Ba = 105%).

DISCUSSION

Here we show that water is the predominant
source of Sr and Ba in the otoliths of 3 potamodro-
mous fish species, which represent 3 different genera
and 2 families. Although limited, results from similar
isotope studies examining relative contributions of
water and/or diet in a range of aquatic environments
indicate that water is the predominant source of Sr
and Ba in the otolith, with contributions ranging from
62 to 88% for Sr and 59 to 92% for Ba (Table 5). Iso-
tope studies examining proportional contributions of
C (Solomon et al. 2006), Ca (Farrell & Campana 1996)
and Mg (Woodcock et al. 2012) also found that water
was the primary contributor for these 3 elements in
freshwater teleosts. An exception to this pattern,
however, was observed in the study by Kennedy et
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Source df MS F p

Murray cod
88Sr:86Sr
Treatment 2 1634374 406 <0.001
Error 43 4022

138Ba:137Ba
Treatment 2 29.6 775 <0.001
Error 43 0.038

Silver perch
88Sr:86Sr
Treatment 2 1456274 752 <0.001
Error 44 1934

138Ba:137Ba
Treatment 2 28 903 <0.001
Error 44 0.31

Golden perch
88Sr:86Sr
Treatment 2 1404684 553 <0.001
Error 50 2539

138Ba:137Ba
Treatment 2 28 664 <0.001
Error 50 0.042

Table 4. One-way ANOVA comparing differences in
138Ba:137Ba and 88Sr:86Sr in otoliths among treatments for 

each species

Diet type Sr:Ca Ba:Ca 88Sr:86Sr 138Ba:137Ba

1 − unspiked 6.58 ± 0.34 0.50 ± 0.12 8.69 ± 0.02 6.21 ± 0.01
1 − spiked 6.86 ± 0.11 0.44 ± 0.04 3.46 ± 0.12 1.74 ± 0.12
2 − unspiked 6.69 ± 0.28 0.26 ± 0.04 8.36 ± 0.12 6.14 ± 0.14
2 − spiked 6.35 ± 0.22 0.53 ± 0.16 1.50 ± 0.12 0.60 ± 0.01

Table 3. Mean (±SE) elemental (mmol mol–1) and isotopic composition 
of each diet type. 1: prawn diet; 2: fish diet
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Fig. 2. Mean (±SE) otolith ratios for (a) 88Sr:86Sr and (b)
138Ba:137Ba for each species reared in water-spiked, diet-
spiked and control treatments. Black dotted line indicates
natural isotope ratio. Dark grey: Murray cod; white: silver 

perch; light grey: golden perch

Fig. 3. Mean (±SE) percent contributions of water and diet for
(a) Sr and (b) Ba in the otoliths of each species. Dark grey:
Murray cod; white: silver perch; light grey: golden perch

Species Family Salinity Isotope Water % Diet % Source
type Sr Ba Sr Ba

Silver perch Terapontidae FW Enriched 71 92 6 15 Present study
Bidyanus bidyanus

Murray cod Percichthyidae FW Enriched 64 89 8 18 Present study
Maccullochella peelii

Golden perch Percichthyidae FW Enriched 64 87 2 5 Present study
Macquaria ambigua

Nile tilapia Cichlidae FW Radio 88 − 12 − Farrell & Campana (1996)
Oreochromis niloticus

Rainbow trout Salmonidae FW Natural 66 − 34 − Gibson-Reinemer et al. (2009)
Oncorhynchus mykiss

Atlantic salmon Salmonidae FW Natural 30 − 70 − Kennedy et al. (2000)
Salmo salar

Black bream Sparidae E Enriched 62−84 59−84 16−38 16−41 Webb et al. (2012)*
Acanthopagrus butcheri

Mummichog Fundulidae M Enriched 83 98 − − Walther & Thorrold (2006)
Fundulus heteroclitus

Table 5. Summary of literature examining proportional contributions of water and/or diet to otolith chemistry based on isotopic 
variations. FW: freshwater; E: estuarine; M: marine. *ranges associated with different temperature and salinity treatments
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al. (2000), which found that diet contributed 70% of
the Sr in otoliths in a freshwater-raised diadromous
species. Unlike other studies on Sr and Ba, however,
percent contributions in the present study did not
equal 100%. This is because we examined both
water and diet and tested the proportional contribu-
tions of each independently (i.e. different individuals
were exposed to the enriched diet and water treat-
ments). The studies detailed in Table 5 either exam-
ined water alone, and assumed the remaining per-
centage was derived from diet, or combined water
and diet treatments in the same tank (i.e. individuals
were exposed to both treatments simultaneously). In
the present study, variations from 100% were likely
due, in part, to analytical error and individual vari-
ability. Additionally, the observed difference in per-
cent contributions between Sr and Ba may relate to
relative differences in the incorporation rates of the
2 elements in the otolith from both water and diet.
Little is known about the relative incorporation rates
of Sr and Ba (but see Elsdon & Gillanders 2005,
Woodcock et al. 2013); nonetheless, exposing indi-
viduals to experimental conditions for longer time
periods maybe an important factor to consider in
future studies.

Even if water is the predominant source of ele-
ments to the otolith, the results from the present
study and others suggest that diet has some varying
level of influence on Sr and Ba otolith chemistry (2 to
41%, excluding Kennedy et al. 2000; Table 5). Fur-
thermore, studies that have examined the effect of
diet on Sr and Ba otolith chemistry, either through
artificial enrichment of food or changing natural food
types, suggest that diet has either no effect (Hoff &
Fuiman 1995, Milton & Chenery 2001, Marohn et al.
2009), or a significant and/or detectable effect on
otolith chemistry (Limburg 1995, Gallahar & Kings-
ford 1996, Buckel et al. 2004, Engstedt et al. 2012). In
regards to the latter group, however, it is difficult to
assess to what level diet influences otolith chemistry
relative to water, particularly if diet effect has only
been tested. A variety of factors, such as taxonomic
differences, temperature, salinity, life history stage,
food availability, feeding and growth rates, captivity
and elemental concentration in the water, may at
varying degrees confound the proportional contri -
butions of water and diet to otolith chemistry; how-
ever, these factors have been largely untested.
Although not relevant to freshwater systems, one
study examining an estuarine species found that
although temperature alone did not influence the
percent contribution of water to otolith chemistry,
high temperatures were shown to influence the in -

corporation of Sr at difference salinities (Webb et al.
2012). Results from Webb et al. (2012) also suggested
that Sr and Ba were still predominantly derived from
water re gardless of elemental concentration in the
water, which has also been observed in a similar
study on Mg (Woodcock et al. 2012). In our study
many of the above factors were constant among spe-
cies and treatments and results were generally con-
sistent; nonetheless, based on daily observations,
feeding activity, overall condition and level of stress
associated with captivity did appear to vary among
species and may explain, in addition to taxonomy,
why diet had a greater contribution to otolith chem-
istry in SP (the ‘hardiest’ of the 3 species).

In light of the current evidence presented, which
implies that water is the predominant source of ele-
ments in the otolith, a key question researchers may
ask is to what level is diet seen as having a significant
or noteworthy influence on otolith chemistry? This
may depend on the question being asked and the
magnitude of relative variations in the physical
and chemical properties of the water and diet being
examined. For instance, Buckel et al. (2004) states
that although statistically significant differences
were found between otolith Sr levels in shrimp- and
fish-fed individuals, the differences were relatively
small compared with results from studies examining
fish collected across large salinity gradients. The
authors concluded, therefore, that diet effects may
influence the successful detection of smaller salinity
gradients, but should not result in the misclassifica-
tion of individuals from low and high salinity envi-
ronments. In regard to measuring movement of fish
across heterogeneous environments (e.g. marine to
freshwater, upper to lower reaches of a river, and
among tributaries with distinct bedrock geochem-
istry), a relatively minor contribution from diet, as
observed in the present study, may have a significant
effect on how otolith chemistry data, and thus move-
ment patterns, are interpreted. When investigating
movement across relatively homogeneous water
bodies (e.g. a single tributary or the open ocean),
however, the proportional contribution of diet, even
if small, should be considered, as well as the level of
spatial and temporal diet variation among individu-
als. Another application of otolith chemistry, which
may be impacted by small dietary effects, is the
reconstruction of environmental parameters such as
temperature, dissolved oxygen and salinity, where
the aim is more focused on tracking a changing envi-
ronment (and its potential impact on the fish) rather
than delineating fish movement (e.g. Limburg et al.
2011). A study examining the effect of diet on Sr and

278



Doubleday et al.: Sources of elements in freshwater fish otoliths

Ba levels in cuttlefish statoliths (analogues to otoliths)
suggested that even the small effects they observed
(up to 10%) could affect the accuracy of Ba as a tem-
perature proxy by 2°C (Zumholz et al. 2006). In con-
trast, the source of the chemical variation in otoliths
may be relatively irrelevant in some applications,
such as in the discrimination of wild and hatchery-
reared stocks (e.g. Coghlan et al. 2007), whereby a
distinct signature between the two is all that is
required.

Our study has increased our understanding of the
relative contributions of water and diet to otolith
composition and reinforced our confidence in Sr and
Ba as informative and useful elements for under-
standing the environmental histories and movement
patterns of fish living in freshwater environments. Of
the fish studied, evidence suggests that water is the
predominant source of Sr and Ba in the otolith, which
aligns, for the most part, with similar isotope-based
studies. However, depending on the question being
answered, relatively minor dietary contributions
could affect how otolith chemistry data, and thus
movement and environmental histories, are inter-
preted. Furthermore, to address discrepancies among
studies and the substantial level of variation in how
diet may affect otolith chemistry, further research is
required that not only allows direct comparisons
between the effects of water and diet, but also in -
vestigates potential factors that may influence such
variability.
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