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Relative contributions of internal variability and external
forcing to the inter-decadal transition of climate patterns in
East Asia
Fang Huang 1,2, Zhongfeng Xu 2✉, Weidong Guo 1,3, Jinming Feng 2, Liang Chen2, Hui Zheng 2 and Congbin Fu 1,3

The annual precipitation in North China and South China shows a dipole pattern with a clear inter-decadal transition around the
late 1970s. However, the relative contribution of internal variability and external forcing to this inter-decadal transition is still
unclear. Here, we separate internal variability from the externally forced climate response through a set of dynamical downscaling
simulations with lateral boundary conditions derived from reanalysis data and a large ensemble mean of the CMIP5 historical
simulations. We find that internal variability accounts for about 65 and 55% of the inter-decadal transition of the annual
precipitation in South and North China, respectively. By contrast, external forcing accounts for about 70% of the warming trend in
eastern China over the second half of the 20th century. This study highlights the differential response of regional precipitation and
air temperature to internal variability and external forcing over eastern China on an inter-decadal timescale.
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INTRODUCTION
An inter-decadal transition of the pattern of annual precipitation
was observed over eastern China during the second half of the
twentieth century. This transition occurred around the late 1970s
and caused a long-term drying trend in North China and a wetting
trend in South China, commonly referred to as the “south
flood–north drought” (SFND) pattern1–6. In association with this
inter-decadal transition, the summer surface air temperature (SAT)
also shows a cooling trend over the Yangtze River basin under the
current background of global warming5,7,8. Severe drought/flood
disasters resulting from these anomalous precipitation patterns
have major effects on water resources, agriculture, ecosystems
and human society in eastern China9–12. A number of factors have
been identified that can affect the inter-decadal transition in the
SFND pattern13–16, but their relative contribution to the inter-
decadal climate transition has received little attention. Under-
standing the causes of the inter-decadal climate transition around
the late 1970s is of great importance in climate predictions on a
decadal scale.
Both observational data and modeling studies suggest that the

anomalous precipitation and temperature patterns in eastern
China are linked to internal climate variability—that is, the Pacific
decadal oscillation (PDO) and the Atlantic multi-decadal oscilla-
tion13,14,17,18. The SFND pattern occurs in the PDO warm phase19.
A combination of the warm phase of the PDO and the cold phase
of the Atlantic multi-decadal oscillation further enhances the SFND
pattern14. The abrupt increase in spring snow depth on the
Tibetan Plateau after the late 1970s contributed to wetting of the
Yangtze River basin15,20,21. This increase in snow depth led to a
decrease in the land–sea thermal contrast and weakened the
Asian summer monsoon, which favored drying in North China and
wetting in South China.
Many studies have argued that external forcing also affects the

SFND pattern. A rapid increase in greenhouse gas concentrations

could induce a westward shift of the western North Pacific
subtropical high, causing more precipitation over the Yangtze
River basin22. Anthropogenic aerosols suppress convection pre-
cipitation in North China and enhance precipitation in South
China16,23,24. The cooling effect of anthropogenic aerosols also
reduces the land–sea thermal contrast, weakening the East Asian
summer monsoon and altering the distribution of rain belts in
eastern China22,25–28.
How much of this inter-decadal transition of precipitation over

eastern China is attributable to internal variability and how much
is due to external forcing remains unclear26,29. Most numerical
simulation studies have focused on the attribution of the inter-
decadal variance in the pan-Pacific, the North Atlantic or the
Northern Hemisphere30–33. The attribution of the phase transition
in inter-decadal variations of the Earth’s climate is hindered by the
inability of coupled models to capture the observed temporal
evolution of climate and the model biases in the multi-decadal
variability of precipitation and temperature in East Asia34,35.
Some studies have assumed that the externally forced

responses are linear and independent of internal climate
variability. Linear trends and generalized linear regression-based
optimal fingerprint method have been widely applied to climate
detection and attribution studies36–38. However, the linear trends
may lead to biases in the phase estimation of the internal
variability39,40, which is crucial in decadal climate attribution.
Moreover, the optimal fingerprint method is not well applicable at
the regional scale and may miss forcing factors41,42. Other studies
have used ensemble empirical mode decomposition (EEMD) or
quadratic trends42 to identify the nonlinear climate response to
external forcing. However, the linear and nonlinear trends are
unable to represent the external forcing without a clear trend, e.g.,
volcanic eruptions.
Because the internal variation in individual realizations of

coupled models varies independently43, averaging over a large
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number of members can greatly remove the internal variability
and retain the response to changes in external forcing42,44–47. The
difference between the observed climate and the multi-model
ensemble (MME) mean can therefore be treated as a less biased
presentation of internal climate variability, especially for phase
estimations40,48.
To identify the response of the East Asian climate to external

forcing and internal climate variability, we carried out two
numerical simulations with the Weather Research and Forecasting
(WRF) model during the time period 1958–2002 (see “Methods”).
The first WRF simulation was driven by the ERA40 reanalysis
dataset representing the joint impacts of internal variability and
external forcing (the HIST simulation). The second WRF simulation
was driven by the difference between the ERA40 data and the
MME of 51 members from the Coupled Model Intercomparison
Project Phase 5 (CMIP5) representing the impact of internal
climate variability (the IV simulation). The externally forced
response was represented by the historical (HIST) run minus the
internal variability (IV) run, referred to here as the external forcing
effect (EF). These WRF simulations can isolate the response of the
regional climate to the global internal climate variability and
external forcing.

RESULTS AND DISCUSSION
Observed and simulated precipitation and SAT variations in
eastern China
The observed annual precipitation over eastern China
(22°–43°N, 110°–122°E) shows a dipole pattern, characterized
by a drying trend in the north and a wetting trend in the south
(Fig. 1a). The coarse-resolution reanalysis data ERA40 (Fig. 2b),
the CMIP5 MME (Fig. 2c) and a HIST experiment with 2.5° grid
spacing (Supplementary Fig. 2) were unable to reproduce the

observed change in precipitation. However, the HIST experi-
ment with 0.5° grid spacing, driven by the ERA40 reanalysis
dataset, was able to successfully capture the observed dipole
pattern of the precipitation (Figs. 1b and 2d), and the
corresponding temporal variation (Fig. 1e, f). The ERA5 dataset,
which has a finer resolution than the ERA40 dataset, can also
reproduce the observed inter-decadal transition of the annual
precipitation (Supplementary Fig. 3). The different performance
between coarse and finer resolution simulations is likely related
to their ability to resolve complex terrain. Compared with the
smooth terrain in coarse resolution model, the small-scale
terrain with higher elevation in finer resolution model can easily
trigger convection process when large-scale circulation brings
more water vapor to South China. Consequently, the finer
resolution model can better capture the dipole pattern of
precipitation in eastern China (Supplementary information;
Supplementary Figs. 4–6). This indicates that reanalysis-driven
dynamic downscaling with a higher spatial resolution is
conducive to the simulation of the inter-decadal transition of
the annual precipitation in eastern China. We were therefore
able to quantify the relative contributions of the internal
variability and external forcing to the inter-decadal climate
transition in eastern China during the second half of the
twentieth century based on the HIST and IV simulations.
The leading empirical orthogonal function (EOF) modes of

both the HIST and IV experiments showed dipole patterns (Figs.
2d, e), which are similar to the spatial pattern of linear trends of
annual precipitation (Fig. 1b, d). The WRF simulations with
internal climate variability (HIST and IV) reasonably captured
the temporal variation of the observed precipitation—in
particular, the inter-decadal transition from a negative phase
to a positive phase in the late 1970s. This indicates that the
internal climate variability dominated the inter-decadal
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Fig. 1 Linear trends in the annual mean precipitation. Linear trends (mm day−1 decade−1) in a observational data (CN05.1 and APHRO),
b the WRF historical (HIST) run, c the response to external forcing (EF), and d the WRF internal variability (IV) run during the time period
1959–2001. The hatched areas and asterisks denote a significance level of 0.05. The two boxes in a indicating the location of North China
(35–43°N, 110–122°E) and South China (24°–32°N, 110°–122°E). The two gray lines on the map show the location of the Yellow River in North
China and the Yangtze River in central China. The time series of regional mean precipitation anomalies (shaded areas; mm day−1) and the
linear trends (lines; mm day−1 yr−1) over e North China and f South China. The correlation coefficients between HIST and observation are
shown in the upper right corner of each panel.
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transition of the anomalous precipitation pattern over eastern
China during the second half of the twentieth century. Previous
studies suggested that the PDO is one of the important modes
of internal variability affecting the decadal variation of
precipitation in eastern China14,18. The warm phase of the
PDO tends to generate a cyclonic anomaly at 850-hPa over the
Pacific Ocean with northwesterly wind anomalies over northern
China. Consequently, the rain belt retreats to southern China
and leads to a SFND pattern14. In contrast, external forcing
tends to cause a drying trend over the eastern China (Fig. 1c, f).
Such a drying trend can be further attributed to the increasing
anthropogenic aerosol over the second half of the twentieth

century (Supplementary Fig. 10). The heavy aerosols over East
Asian region can result in suppression of precipitation via the
decrease in droplet radius49–51. Aerosol particles act as cloud
condensation nucleus to form cloud droplets. The aerosol
particles compete for available water vapor. Consequently, the
droplets become too small to fall as rain52,53.
The observed annual mean SAT generally showed a clear

warming trend over eastern China, especially in North China
(Fig. 3a). The WRF simulations show high consistency with the
observed SAT changes, having significant (p < 0.05) correlation
coefficients over North China (0.86) and South China (0.64) (Fig. 3e,
f). This warming pattern was also seen in the first EOF mode derived

OBS ERA40 CMIP5

HIST IV EF

a b c

d e f

Fig. 2 Spatial patterns of the first leading empirical orthogonal functions and time series of the principal components in the annual
mean precipitation during the time period 1959–2001 in eastern China. a Observational data (CN05.1 and APHRO), b ERA40 reanalysis data,
c the MME of 17 CMIP5 models, d the WRF historical (HIST) run, e the WRF internal variability (IV) run, and f the response to external forcing
(EF). The black thick solid lines are 9-year running mean of the principal components.
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from both the observed SAT54 and the HIST simulation (figure not
shown), with the second and third EOF modes displaying a
south–north dipole and tri-pole patterns, respectively. In addition
to the overall warming in eastern China, the HIST experiment also
showed a slight cooling trend over the Yangtze River basin, which
became clearer in the IV experiment (Fig. 3). This indicates that the
cooling trend over the Yangtze River basin primarily results from the
internal climate variability. Note that the decrease in the SAT was
particularly significant in summer in both the HIST experiment and
the observations (Supplementary Fig. 8)5,7,8.
In addition to cooling over the Yangtze River basin, the IV

experiment also showed a cooling trend in northeast China and a
warming trend in North China (Fig. 3d). The external forcing
produced a significant (p < 0.05) warming pattern over eastern
China during the second half of the twentieth century (Fig. 3c).
Comparisons among the HIST, IV and EF experiments suggested
that the warming of North China resulted from both external
forcing and internal variability. However, the internal variability
canceled out the warming trend induced by external forcing over
the Yangtze River basin and amplified the warming trend over
North China. The decrease in the annual mean SAT induced by IV
mainly occurs in summer (Supplementary Fig. 8) when the
Yangtze River basin experiences excessive rainfall in response to
the internal climate variability (Supplementary Fig. 7). The cooling
(warming) trend generally corresponds to a wetting (drying) trend.
An increase in precipitation is usually associated with more cloud
cover, which reduces the downward solar radiation and cools the
land surface. A wetter (dryer) land surface tends to partition more
energy into latent (sensible) heat, leading to cooling (warming) of
the land surface. Synergistic changes in the SAT and precipitation
over the Yangtze River basin have also been reported in previous
observational and modeling studies5,55–57.

Relative contributions of internal and external forcing to the
dipole climate pattern
Considering that both internal variability and external forcing
contribute to the inter-decadal climate transition over eastern
China, we carried out a relative weight analysis (RWA)58 based on
the HIST and IV experiments to quantify their relative contribu-
tions to the annual mean precipitation and SAT. RWA is an
effective approach to quantify the relative contribution among
predictors of collinearity58–60. Here, the RWA was applied to
intrinsic mode functions (IMFs) from EEMD, which allows us to
quantify the relative contribution of internal variability and
external forcing to temperature or precipitation variations at
different time scales.
The results showed that internal variability can explain the

majority (about 85–90%) of the interannual variation in annual
precipitation over eastern China (Fig. 4a). External forcing
becomes more important in determining the variation of
precipitation and SAT on longer timescales—for example, external
forcing accounts for about 10% (35–55%) of the interannual
variability (inter-decadal transition) of the annual precipitation.
Notably, external forcing and internal variability make comparable
contributions to the decadal variability and inter-decadal transi-
tion of precipitation in North China (Fig. 4a).
The intensified drought in North China during the last few

decades is related to the weakened East Asian monsoon resulting
from both the phase transition of the PDO61 and the direct effect
of increased aerosols (precipitation efficiency decreases as the
number and radius of cloud droplets increase)62. The indirect
effect of anthropogenic aerosols can also suppress precipitation in
North China via a reduction in droplet size49. By contrast, the
internal climate variability is more important in explaining the
variations in precipitation over South China, with the proportion of
variance explained ranging from about 65 to 90% on different
timescales.
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Fig. 3 Linear trends in the annual mean temperature at 2m. Linear trends (°C decade–1) in a Observational data (CRU and UDEL), b the WRF
historical (HIST) run, c the response to external forcing (EF), and d the WRF internal variability (IV) run during the time period 1959–2001. The
hatched areas and asterisks denote a significance level of 0.05. The two gray lines on the map show the location of the Yellow River in North
China and the Yangtze River in central China. The time series of regional mean temperature anomalies (shaded areas; °C) and the linear trends
(lines; °C yr–1) over e North China (35°–43°N, 110°–122°E) and f South China (24°–32°N, 110°–122°E). The correlation coefficients between HIST
and observation are shown in the upper right corner of each panel.
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Similarly, the internal variability also dominates the interannual
and decadal variation of the SAT over eastern China—for example,
the internal variability accounts for about 90% of the interannual to
decadal variability of the SAT in both North China and South China
(Fig. 4b). By contrast, external forcing dominates the nonlinear
warming trend, with an explained variance of about 70–75% over
eastern China. In addition to the nonlinear warming trend, the long-
term linear trend of the SAT is also dominated by external forcing
(Supplementary Table 1). Compared with precipitation, SAT shows
stronger response to external forcing, which is likely related to the
strong long-range persistence of SAT47.
In summary, the annual precipitation over eastern China

showed an inter-decadal transition during the second half of the
twentieth century, with a decrease in precipitation in North China
and an increase in South China. In association with the changes in
precipitation, the SAT also showed an inter-decadal variability over
eastern China. Our results suggest that internal climate variability
accounted for about 65% (55%) of the inter-decadal transition in
anomalous precipitation in South (North) China during the second
half of the twentieth century. The internal climate variability
clearly dominates the inter-decadal transition in precipitation over
South China. However, both the internal climate variability and
external forcing have important roles in determining drying
tendency in North China. In terms of the changes in the annual
mean SAT, external forcing accounts for 70% of the warming trend
over North China. By contrast, the internal variability dominates
the cooling trend of the summer SAT over the Yangtze River basin.
Unlike previous studies that have focused on the attribution of

changes in the mean climate or variance induced by various external

forcing factors, we examined the relative contribution of internal
variability and time-varying external forcing to the phase transition
of the inter-decadal climate variation in eastern China. We proposed
a dynamical downscaling approach to separate the response of the
regional climate to internal climate variability from external forcing.
This study provides a novel framework for the attribution of decadal
climate change that could also be applied to other regions, such as
North America and northeastern Australia.
The results presented in this paper should be interpreted with

caution. Firstly, we used an ensemble mean of 51 members of
CMIP5 models to separate external forcing response from internal
climate variability. Ensemble mean over such an ensemble size
may still contain a small portion of internal climate variation,
which may slightly affect the quantitative estimation of the
relative contribution of internal variability and external forcing to
regional climate transition over eastern China. Secondly, our WRF
simulations used a simplified aerosol treatment. Although the
direct and indirect effects of water- and ice-friendly aerosols were
considered, the simplified treatment may still cause an inaccurate
estimation of the aerosol effect to a certain degree. Lastly, we
assumed the internal climate variation and external forcing are
independent of each other. However, recent studies suggested
that the internal climate variation (e.g. Pacific Decadal Oscillation/
Inter-decadal Pacific Oscillation, Atlantic Multidecadal Oscillation)
may be partly affected by external forcing (e.g., GHG and aerosols),
particularly since the early 1990s31,32. It remains a challenge to
quantify the contribution of external forcing, through modulating
PDO/IPO and AMO, to the inter-decadal climate transition in East
Asia. These issues still warrant for further study.
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Fig. 4 Relative weight analysis of the annual mean precipitation and temperature. Relative weight analysis was applied to quantify the
contributions of internal variability (IV) and external forcing (EF) to various timescales of the annual mean precipitation/temperature at 2 m
over the grids in North China (NC: 35–43°N, 110–122°E; gold), South China (SC: 24–32°N, 110–122°E; green) and eastern China (EC: 22–43°N,
110–122°E; gray), respectively. Different combinations of intrinsic mode functions (IMFs) from EEMD represent the interannual variability
(IMF1+ 2), decadal variability (IMF3+ 4) and nonlinear trend (IMF5), respectively. The nonlinear trend corresponds to the inter-decadal
transition of a the annual precipitation pattern or b the warming trend. Bootstrap sampling with replacement was performed 1000 times on
the spatial fields of the combinations of IMFs to estimate the uncertainty range of the relative weights of IV and EF. Box-plot elements: center
line, median; dots, mean; box limits, upper (75th) and lower (25th) percentiles; whiskers, 1.5 times the interquartile range.
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METHODS
Data
Gauged precipitation and temperature. The observational
monthly precipitation data were from the National Climate Center
China CN05.1 dataset63 and the Asian Precipitation–Highly-
Resolved Observational Data Integration Towards the Evaluation
of Water Resources (APHRODITE‐MA) project of Japan64. The
CN05.1 dataset was constructed from >2400 observational
stations across China and interpolated to a resolution of (0.25° ×
0.25°) using the anomaly approach65. The dataset covers the time
period 1961–2014 and is widely used in studies of the impact of
climate change66,67 and model evaluations68,69. The monthly SAT
data were from the gridded Climatic Research Unit Time-Series
Version 4.03 (CRU TS4.03) dataset and the University of Delaware
Precipitation and Air Temperature (UDEL v501) dataset.

Reanalysis and CMIP5 data. The European Centre for Medium-
Range Weather Forecasts Reanalysis-40 (ERA40) dataset and the
CMIP5 MME were used to generate the large-scale driving fields for
the WRF model. We used historical simulations derived from 17
CMIP5 models, each with three ensemble runs. The ensemble mean
was calculated using 51 historical runs (17 models × 3 ensemble
runs; Table 1). The historical experiments of the CMIP5 models were
forced by time-varying observed natural and anthropogenic forcing,
including atmospheric greenhouse gases, solar forcing, natural and
anthropogenic aerosols, and land use70. Detailed model information
can be obtained from http://cmip-pcmdi.llnl.gov/cmip5. In addition,
ERA5 data was also used to examine the impact of model spatial
resolution on the simulation of precipitation over eastern China.

Model experimental design and construction of WRF lateral
boundary conditions
The ensemble mean over a large number of models can remove
sufficient amounts of the internal climate variability because the
internal variations among individual global climate model
simulations are unrelated. The MME of the CMIP5 historical
simulations therefore mainly contains the response to changes in

historical external forcing42,44–47. The MME mean can better
identify the forced climate response and has been used to assess
various statistical methods of extracting the external forcing signal
(e.g., linear trends, quadratic trends and EEMD nonlinear trends)42.
By contrast, the reanalysis or observational data contain both
internal and external forcing signals. The internal climate
variability can be obtained by subtracting the MME from the
observation/reanalysis data39.
The ERA reanalysis data can be divided into a climatological

mean plus an anomaly:

ERA ¼ ERAj1959�2001 þ ERA0 (1)

ERA0 ¼ ERA0jFC þ ERA0jIV (2)

where ERA0jFC and ERA0jIV are the externally forced response and
the internal climate variability of the reanalysis data, respectively.
The anomalous MME is:

MME0 ¼ MME�MME (3)

where MME is the climatological mean of MME. Because the
ensemble mean over a number of CMIP5 models largely cancels
out the internal variabilities, the MME0 is assumed to contain
mainly the effect of external forcing (e.g., solar radiation, volcanic
activity, greenhouse gas-induced warming trends and anthropo-
genic aerosols). If it is assumed that the MME can reasonably
represent the temporal response of the climate to external forcing,
then

MME0 ¼ ERA0jFC (4)

To examine the difference between the MME and the
observations in representing external forcing, we calculated the
nonlinear trends of the regional mean SAT derived from the MME
and various observational datasets. The results indicate that the
root-mean-square difference between the MME and the observa-
tions is comparable with, or even smaller than, that between
various observations (Supplementary Fig. 1). This suggests that the
MME approach can reasonably isolate the climate response to
external forcing.

Table 1. CMIP5 models used in this study.

Model Institution Ensembles

1 BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration (China) 3

2 CCSM4 NCAR (National Center for Atmospheric Research) Boulder (USA) 3

3 CNRM-CM5 Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees en Calcul
Scientifique (France)

3

4 CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate Change
Centre of Excellence (Australia)

3

5 CanESM2 Canadian Centre for Climate Modelling and Analysis (Canada) 3

6 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and CESS, Tsinghua University (China) 3

7 GFDL-CM3 Geophysical Fluid Dynamics Laboratory (USA) 3

8 GISS-E2-H NASA Goddard Institute for Space Studies (USA) 3

9 GISS-E2-R NASA Goddard Institute for Space Studies (USA) 3

10 HadCM3 Met Office Hadley Centre (England) 3

11 IPSL-CM5A-LR Institute Pierre-Simon Laplace (France) 3

12 MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University
of Tokyo), and National Institute for Environmental Studies (Japan)

3

13 MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies,
and Japan Agency for Marine-Earth Science and Technology (Japan)

3

14 MPI-ESM-LR Max Planck Institute for Meteorology (Germany) 3

15 MPI-ESM-MR Max Planck Institute for Meteorology (Germany) 3

16 MRI-CGCM3 Meteorological Research Institute (Japan) 3

17 NorESM1-M Norwegian Climate Centre (Norway) 3
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We use the ERA reanalysis data as the lateral boundary
conditions (LBCs) of the historical (HIST) experiment:

LBCjHIST ¼ ERA

¼ ERAj1959�2001 þ ERA0

¼ ERAj1959�2001 þ ERA0jFC þ ERA0jIV
(5)

Using Eqs. (1–4), we constructed the LBCs for the internal
variability (IV) experiment:

LBCjIV ¼ ERAj1959�2001 þ ERA0jIV
¼ ERAj1959�2001 þ ERA0 � ERA0jFC
¼ ERAj1959�2001 þ ERA0 �MME0

¼ ERA�MME0

(6)

Note that, similar to Eq. (5), the LBCs in Eq. (6) have a reanalysis-
based mean climate, which removes the mean bias in the MME
and generates more reliable dynamical downscaling simulations
for the historical climate.
We carried out two sets of WRF simulations (HIST and IV) driven

by the large-scale forcing variables, including SST, surface pressure,
sea level pressure, air temperature, zonal wind, meridional wind,
relative humidity, and geopotential height, constructed in Eqs. (5)
and (6), respectively (Table 2). In the HIST experiment, the WRF
simulations considered the observed transient variation of natural
and anthropogenic external forcing factors (e.g., solar radiation,
volcanic aerosols, ozone, greenhouse gases, anthropogenic aero-
sols, and changes in land use and land cover; see Supplementary
Information). In the IV experiment, the natural and external
forcings were fixed at their climatological mean to remove the
temporal variation of external forcing. The HIST experiment
considered the time-varying external forcing and internal climate
variability in both the WRF inner domain and its LBCs. By contrast,
the IV experiment considered the internal variability only and held
the external forcing factors at their climatological means in the
WRF model and the external forcings were removed from its LBCs.
Both the LBCs of the HIST and IV experiment inherit the internal
climate variability from the ERA40 reanalysis.
The effect of external forcing can be represented by the

difference between the HIST and IV experiments (HIST− IV), which
isolates the climate response to external forcing under realistic
internal climate variability. The HIST− IV and CMIP5 MME show
comparable temporal variation in eastern China, which gives us
more confidence to use the HIST− IV representing external
forcing effect (Supplementary Fig. 11).

Relative weight analysis
We used Johnson’s relative weight analysis (RWA)58 to quantify the
relative importance of internal variability (IV) and external forcing
(EF). RWA addresses the problem of collinearity among predictors
in the attribution based on multivariate linear regression59,60. It first
creates a new set of uncorrelated predictors Z(zk) by orthogonally
transforming the original set of predictors X(xj). Two regression
analyses are then conducted using the orthogonal predictors: one

generates the standardized regression coefficient β by regressing
the dependent variable Y on Z. Another generates the standar-
dized regression coefficient λ by regressing the original predictor X
on Z. The relative contribution of the original variable X to the
dependent variable Y is then obtained through combining β with λ:

εj ¼
Xp

k¼1

λ2jkβ
2
k (7)

where εj is the relative importance of predictor j, which is IV or EF in
this study. β2k and λ2jk are the squares of the standardized regression
coefficients linking orthogonal predictor k with the dependent
variable and original predictor j, respectively. The actual relative
contributions of IV and EF are quantified as εIV

εIVþεEF
and εEF

εIVþεEF
,

respectively. The RWA method was successfully applied to the
quantification of the relative contributions of different external
drivers and internal variability to regional changes in tempera-
ture71, the relative contribution rate of meteorological and land use
factors to a reduction in surface runoff72 and the biophysical and
socioeconomic drivers of changes in forest and agricultural land73.
RWA was performed on different combinations of the intrinsic

mode functions (IMFs) of the ensemble empirical mode decom-
position in the annual mean precipitation and surface air
temperature. Different combinations of IMFs represent the
information in various timescales of climate variations74–76. We
obtained four IMFs and the residual based on the ensemble
empirical mode decomposition of the 43-year time series from
1959 to 2001. The first and second IMFs are of high-frequency
oscillation signals on timescale <10 years, representing internal
variability. The third and fourth IMFs are decadal oscillation signals
with timescales >10 years. The residual component is a nonlinear
trend that describe the inter-decadal transition in the second half
of the twentieth century (Supplementary Figs. 12 and 13).
Bootstrap sampling with replacement was performed 1000 times
on the spatial fields of different combinations of IMFs to estimate
the uncertainty range of the RWA analysis of the IV and EF effects.

DATA AVAILABILITY
The original CMIP5 database can be downloaded from the Earth System Grid
Federation (ESGF) server (https://esgf-node.llnl.gov/projects/cmip5/). The ERA40 and
ERA5 data were obtained from the European Center for Medium-Range Weather
Forecast (https://www.ecmwf.int/en/forecasts/datasets). The CN05.1 data was down-
loaded from http://data.cma.cn/. The APHRODITE‐MA data were downloaded from
http://search.diasjp.net/en/dataset/APHRO_MA. The CRU data were downloaded
from https://crudata.uea.ac.uk/cru/data/hrg/. The UDEL data were obtained from the
NOAA web https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html. Derived
data supporting the findings of this study are available from the corresponding
author upon reasonable request.
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Table 2. WRF model attribution experiments.

Experiment External forcing in WRF model External forcing in the lateral boundary
conditions

HIST Time-varying external forcings, including greenhouse gas concentrations, anthropogenic
aerosols, ozone, land use and land cover change, volcanic aerosols, solar insolation

ERA40

IV Climatological mean external forcings, including greenhouse gas concentrations,
anthropogenic aerosols, ozone, land use and land cover change, volcanic aerosols, solar
insolation

ERA40�MME0
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