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Abstract 

The problem of object recognition from sensory data 
is traditionally a problem of finding structure from an 
array  of intensity functions. To solve the problem, 
a depth map is recovered to match against a set of 
possible structures to suggest the most likely objects. 
However, few schemes of this nature have been able to 
perform beyond laboratory assumptions. 

We propose to study object recognition b y  asking 
the question in the context of an agent performing the 
recognition in an environment where the agent is per- 
forming a behavior. In our paradigm, the problem be- 
comes a problem of action from intensity functions. In  
accomplishing a behavior, we are determining our next 
step of action from the images. Acquiring the infor- 
mation for action is a solution for a recognition task. 
The recognition task is agent and behavior dependent 
and can use the output of different visual modules. 
One possible visual module for the object recognition 
process can be a module that gives qualitative depth 
information. We discuss the way such a module can 
operate. 

We conclude that many recognition tasks become 
easy under this paradigm, as recognition is reduced 
to qualitative judgements of the scene. We proof our 
point of view with a set of real world examples based on 
visual information from relative depth visual module. 

1 Behavior based recognition 

The problem of object recognition from sensory data 
is defined -in the literature as the association of vi- 
sual input with a name or a symbol. Although very 
good research on the topic has been published, we still 
lack vision systems that can recognize in real time a 
large number of objects (natural or man-made). This 
is because in order to recognize an object one would 
have to visually recover it (i.e. its shape and various 

properties) and then match this recovered information 
against a database of known objects [2]. However, full 
recovery is hard to achieve to date, and matching suf- 
fers from combinatorial explosion. 

Model-based recognition on the other hand has 
been suggested as a remedy to these problems. By re- 
quiring that the objects to be recognized are specific 
instances of a generic model (e.g., polyhedral, gener- 
alized cylinders, cones, superquadrics, etc.), the prob- 
lems of surface recovery and matching become easier. 
However, model-based approaches obviously employ 
strong assumptions about the nature of the scene and 
thus they lack generality. 

We proposed [3] to study the problem of object 
recognition by asking a different question, i.e. by con- 
sidering it in the context of an agent performing it in 
an environment, where the agent’s intentions translate 
into a set of behaviors. What are objects for? An ob- 
ject can suit a purpose, fulfill a function. If the agent 
recognizes this, it has in effect recognized the object. 
To perform this type of recognition we need on one 
hand a definition of the desired function, and on the 
other the means of determining whether the object can 
fulfill that function. To find out if an object can fulfill 
a function we need to perform various partial recovery 
tasks. 

An agent is defined as a set of intentions, 
I I , I ~ , .  . . , I,. Each intention I k  is translated into 
a set of behaviors, B k l ,  B k 2 , .  . . , B k m .  Each behav- 
ior B k i  calls for the completion of recognition tasks 
T k i l ,  T k i 2 ,  . . . , T k i , .  The agent acts in behavior B k i  
under intention 4. The behavior calls for the comple- 
tion of recognition tasks T k i l ,  . . . , Tki,,.  The behavior 
sets parameters for the recognition tasks. Note that 
the same object can answer positively to several recog- 
nition tasks. Under one behavior a chair will answer 
yes to some recognition task that is asking for obsta- 
cles, under another behavior it will answer yes to a 
recognition task that is asking for a sitting place, and 
under another it will answer yes to a task that is ask- 
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ing for an assault weapon. 
We view the recognition process along the axis in- 

tention, behavior, recognition task. For a theory of 
purposive object recognition we should be able to 
make two basic transformations: first from the d e  
sired intention to the set of behaviors that achieve it, 
second from a specific behavior to some needed recog- 
nition task(s). In [3] we showed that the intention- 
to-behaviors problem with a finite number of behav- 
iors is undecidable. We believe that a general au- 
tomatic transformation from behaviors to recognition 
tasks is also hard. A possible solution is to use com- 
piled knowledge and build a set of useful translations. 

2 Recognition tasks under a specific 
behavior 

In order for us to build working systems, a natural 
direction will be to use a set of translations. It seems 
that a certain class of robots will share some common, 
useful, functional translations. We can define cate- 
gories like animate, inanimate, prey, predator, obsta- 
cle, etc. that will belong to some hierarchical struc- 
ture. The hierarchies are functional and have percep 
tual substance. They must have perceptual character- 
istics that make them discriminable. These functional 
relationships (here functional is been used in the util- 
itarian sense), can be translated, for example, into 
surface characteristics and geometric properties in a 
crude qualitative way. 

Each recognition task activates a different collec- 
tion of basic perceptual modules. Each module finds 
a generic object property which is a result of one or a 
combination of direct low-level computations on some 
sensory data (possibly done by other modules). The 
result of a module’s operation is given as a qualitative 
value. Each module has its own neighboring open in- 
tervals which are parameter-specific. Such modules, 
for example, might provide information about the size 
of the object under consideration (very small, small, 
medium, large, very large) relative to the observer , 
various shape features of the object under considera- 
tion, etc. More complex modules might answer, for 
example, questions as is the object graspable? (based 
on low-level modules of size, shape, etc.), is the object 
a possible container? etc. 

A recognition task for a “cup concept” might be 
activated and performed in the following manner. A 
drinking intention could activate a searching behav- 
ior for “something that it is possible to drink from” 

This behavior calls for a recognition task with this 
definition as a source for the translation process to 
functional properties. This definition asks for a con- 
tainer that is open at  one end, of reasonable size and 
graspable. These sub-tasks will be answered by the 
different visual modules. 

As another example, in a defense scenario we might 
have the intention of throwing an object at  an at- 
tacker. This calls for a behavior of searching for 
“something that it is possible to throw and create 
damage”. This behavior will activate a recognition 
task for something that is rigid, mobile, graspable, 
and not too light or heavy. The following modules 
might be activated under this recognition task: Is it 
animate? mobile? graspable? hard? 

Note that the cup gives positive answers to all these 
questions. Under the defense intention the cup can be 
used as a missile. A cup and a stone will give the same 
values, and are equally good for the current intention 
and behavior. 

As a final example, a frog’s feeding intention calls 
for a prey-catching behavior which will include a 
recognition task for a “bug concept”. This task could 
make use of the following modules: Is it moving? Is 
the motion rapid (by the agent’s scale)? small (by the 
agent’s scale)? dark? reachable? 

3 Integrating visual modules for recog- 
nition 

Under our framework an agent acts in behavior Bki 

under intention I k .  The behavior calls for the comple- 
tion of recognition tasks Tkil, . . . , T‘i,,. The behav- 
ior sets parameters for the recognition tasks. Each 
recognition task activates a different collection of ba- 
sic perceptual modules. Each module finds a generic 
object property which is a result of one or a combina- 
tion of direct low-level computations on some sensory 
data (possibly done by other modules). The result of 
a module’s operation is given as a qualitative value. 
Each module has its own neighboring open intervals 
which are parameter-specific. The ith module can take 
one of qil , . . . , qin qualitative values 

The state of our recognition system, denoted by 
Qi, is a tuple of all the qualitative values of our mod- 
ules (q1, . . . , qm) under recognition task Tki,. Each 
recognition task Tkjj defines a system state that will 

’See for a similar approach [4]. 
2This, as well as the rigidity requirement for graspability, 

requires tactile sensory information. 
3Such qualitative values represent a partial recovery of the 

scene. 
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constitute a positive answer to that recognition task. 
Recognition is done when we complete our task, which 
means a stable answer from our modules. The re- 
quired system state is a setting of parameters in a 
model. From that point of view our paradigm can be 
considered as model-based, though the model consist 
of qualitative values ranging from time, motion, color, 
shape to infra-red values. A common recognition task 
can be defined as a new module. 

jFrom this point of view we see the recognition sys- 
tem as a a collection of processes or modules which 
solve particular recognition tasks. These processes are 
connected dynamically to sensory modules, as well as 
to other kinds of input. We have recognition mod- 
ules working in parallel, and we differentiate between 
two basic levels of modules: low and high. The low 
level modules get their inputs directly from the sen- 
sory data. The high level basic perceptual modules get 
their inputs either from the low level modules or from 
the raw sensory data (or both). In this sense the low 
and high level modules are just simple and complex 
modules respectively. The complex ones are given a 
task that requires a combination. These two types of 
modules work in parallel and are controlled in a mixed 
top-down/bot tom-up manner. 

In what follows we describe the implementation of 
one visual module and its use for purposive recogni- 
tion. We will show how to achieve robustly relative 
depth from a stereo setup without correspondence and 
calibration, and how this visual module can be used 
under some intentions and behaviors. 

4 A visual module - relative depth 

Consider two cameras in a stereo configuration. Let 
fL(z, y) and f R ( z ,  y) be the intensity functions of the 
left and the right images respectively. If point (z,y) 
in the left image corresponds to point (z +Ax, y+ Ay) 
(with (Az, Ay), the disparity vector) in the right, then 
the following equation holds: 

fL(z, Y) = f R ( .  + Ax, Y + AY) (1) 

Expanding Equation (1) in a Taylor series and keeping 
the linear terms we have: 

f L ( z ,  Y) = f R ( z ,  Y) + f% + f:AY 

or 
(f?, f,R)(Az, AY) = f L ( z ,  Y) - f R ( z ,  Y) (2) 

Equation (2) shows that we can determine the projec- 
tion of the disparity vector (Az, Ay) on the direction 

of the gradient (f:, f:). This projection is what we 
call “normal disparity” and this is the input to our 
algorithm. 

Assume that the camera is moving with a trans- 
lational velocity of (T,, Ty , TZ)T and a rotational ve- 
locity of (R,, 4, Rz)T,  the velocity of a world point 
P = (X, Y, Z )  is: 

The world point P is projected on the image plane as 
p(z,y). The optic flow is the velocity of image point 
p can be found as: 

T‘ Tz - - Z- - x ~ R ,  + (1 + z2)& - yR, z z  v, = 

m m 

vy = 3 - y 5  - (1 + y2)R, + zyR, + xR, z z  
Note that the unit normal vector (i.e. the direc- 

tion of the image gradient) at  p ( z ,  y) is (n,, ny). The 
normal disparity vector is the project of the optic flow 
on the unit normal vector. Thus the relationship be- 
tween the motion velocity and the normal disparity is 
U,, = v,n, + v y n y ,  thus 

Tz Ty Tz 
,z z 

-R,y(zn, + yny) 
+ 4 z ( z n ,  + yn,) 
+Rz(zny - yn,) 
+ 4 n z  - Rzny 

n , y  + n - - -(nzz + n,y) 21, = 

In the stereo setup, all motion parameters are zero 
except for T, and 4. Note that T, = b and 4 = +a, 
we have: 

Note that the terms involving z2 and zy are resulted 
from V,, and it is a by-product of the rotation Ry 
around the Y-axis. However, the effect is very small. 
It is dominated by the translation along the X-axis 
and the rotation around the Y-axis. Human vision 
has a small instantaneous field of view. A large field 
of view is achieved by head and eye movements and 
registration. Indeed, from Equation (3), when the field 
of view is small (< 30”), 11 x2 I [<< 1 and 11 xy \ I < <  
1. Terms involving z2 and zy can be omitted in a 
qualitative decision. Thus 

b - - - - + + a  
n, (4) 
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Equation (4) describes the relationship between the 
depth Z, the vergence angle a, the baseline b and the 
normal disparity. As a and b is generally unknown, the 
depth Z can not be readily recovered. However, for 
any two given points p l  = ( t1 ,y l )  and p2 = (22,y2) 
whose normal disparity can be found, we obtain two 
equations of the form of Equation (4). By the sub- 
traction of the two equations we obtain: 

(5) 

jF’rom the sign of the right hand side of Equa- 
tion (5), we can determine whether the 3D point of 
p l  is closer than that of p2. 

5 Experiments - relative depth for be- 
havior based recognition 

We used relative depth as a major visual module in 
two basic behaviors. Under basic navigation behavior 
an agent is moving in a known environment. In our ex- 
periment we used a corridor. The agent should avoid 
obstacles while it is moving. While it is keeping the 
center of the corridor, it is checking for anomalies. The 
motion can continue as long as no unexpected anom* 
lies are detected. When an anomaly was detected we 
use the relative depth module to estimate the position 
of the obstacle. The relative depth module segments 
the obstacle, and gives the actual recognition. Figure 
1 shows a corridor scene where an obstacle (a chair) 
is present in the middle of the robot’s path. The val- 
ues of the computed normal disparity are presented in 
figure 2. The qualitative depth results are presented 
in figure 3. Threshold on their values isolate the chair 
from the environment (figure 4). 

Another basic level behavior that uses relative 
depth is grasping. To reach a target object we need an 
estimate of the relative depth between the hand and 
the object. Under a grasping behavior we use relative 
depth to control the grasping process. The recognition 
here is of a situation: is the object before the hand? 
after it? Figure 5 shows the basic setup. Normal flow 
values are computed (see figure 6). These results are 
the input for the relative depth computation that en- 
ables the robot to evaluate its hand position (relative 
to the object). 

6 Conclusions 

mon two-stage, bottom-up process of complete scene 
recovery, followed by fitting to a model and match- 
ing in a database, we have formulated the problem as 
a topdown process. Recognition is studied in terms 
of the agent performing it, under its intentions and 
the behaviors triggered by them. It involves a verifi- 
cation process that checks for the existence of physi- 
cal properties that provide needed functionality. We 
have used relative depth to solve a class of behav- 
ior based recognition problems. Experimental results 
were achieved for some basic behaviors. For recog- 
nition under navigation behavior, relative depth was 
used to  recognize obstacles by isolating unexpected 
objects in close range. For grasping behavior relative 
depth was used to recognize the different stages in the 
process. 
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We have presented an alternative approach to the 
problem of object recognition. Instead of the com- 
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Figure 1: A chair is present in the corridor. Figure 4: T h e  chair is isolated as an obstacle. 

Figure 2: Normal disparity is computed from a stereo 
pair. 

Figure 5: The setup of a robot arm reaching an ohject . 



Figure 1: A chair is present in the corridor. Figure 4: The chair is isolated as an obstacle. 

Figure 2: Normal disparity is computed from a stereo 
pair. Figure 5: The setup of a robot arm reaching an object. 

Figure 3: Qualitative depth is prepresented with size 
of the square. relative depth. 

Figure 6: The result of normal flow is used to compute 
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