
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Newcastle University ePrints - eprint.ncl.ac.uk 

 

Seta A, Shukurov A, Wood TS, Bushby PJ, Snodin AP.  

Relative distribution of cosmic rays and magnetic fields.  

Monthly Notices of the Royal Astronomical Society 2017,  

https://doi.org/10.1093/mnras/stx2606  

 

 

Copyright: 

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society.  

© 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. 

All rights reserved.  

DOI link to article: 

https://doi.org/10.1093/mnras/stx2606  

Date deposited:   

10/10/2017 

 

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=240615
https://doi.org/10.1093/mnras/stx2606
https://doi.org/10.1093/mnras/stx2606


Cosmic rays and magnetic fields 1

Relative distribution of cosmic rays and magnetic fields

Amit Seta,1⋆ Anvar Shukurov,1 Toby S. Wood,1 Paul J. Bushby1 and Andrew P. Snodin2

1School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
2Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

6 October 2017

ABSTRACT

Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpret-
ing synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed
to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there
is no compelling observational or theoretical reason to expect such tight correlation to hold across all scales.
We use test particle simulations, tracing the propagation of charged particles (protons) through a random
magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the tur-
bulent flow in the interstellar medium (≃ 100 pc in spiral galaxies). In these simulations, we find that there
is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In
fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can
become trapped between magnetic mirrors, whose location depends more on the structure of the field lines
than on the field strength.

Key words: cosmic rays – ISM:magnetic fields – scattering – dynamo – MHD – radio con-
tinuum:ISM

1 INTRODUCTION

Synchrotron emission is the main source of information about

the nonthermal components of the interstellar and intergalactic

medium (ISM and IGM). Its interpretation depends crucially on

the relative distribution of magnetic fields and cosmic ray elec-

trons. Cosmic rays tend to gyrate around magnetic field lines, so

it is natural to expect some correlation between the cosmic ray and

magnetic energy densities. On sufficiently long length- and time-

scales, the cosmic ray distribution may achieve energy equiparti-

tion (Burbidge 1956), or pressure balance, with the magnetic field

(see review by Beck & Krause 2005). Although the assumption of

a tight, point-wise correlation between cosmic rays and magnetic

fields across a wide range of scales lacks a compelling justification,

it is often used in interpretations of synchrotron observations, re-

gardless of the spatial resolution. Most of the energy of cosmic rays

is carried by protons and heavier particles; therefore, such interpre-

tations rely on an additional assumption that relativistic electrons

are distributed similarly to the heavier cosmic ray particles.

The diffusivity of 5 GeV cosmic rays in a 5 µG magnetic field

is believed to be about 1028–1029 cm2 s−1, implying a diffusion

length of the order of 1 kpc over the time scale of cosmic ray con-

finement in galaxies, 106 yr (Berezinskii et al. 1990). This suggests

that the cosmic ray distribution will be significantly more uniform

than that of the interstellar magnetic field, which varies strongly

on scales smaller than 0.1 kpc (Ruzmaikin et al. 1989; Beck et al.

1996). However, cosmic rays are more tightly confined to field lines

where the field is strongest, and so we might still expect some pos-

⋆ a.seta1@ncl.ac.uk

itive correlation between cosmic ray density and magnetic energy

on small scales. On the other hand, overall pressure balance can,

equally plausibly, lead to local anticorrelation between cosmic ray

and magnetic energy densities (Beck et al. 2003). Indeed, from a

comparison of the observed and modelled magnitude of the fluctu-

ations in synchrotron intensity in the Milky Way and nearby spiral

galaxies, Stepanov et al. (2014) suggested that cosmic ray electrons

and interstellar magnetic fields are slightly anticorrelated at scales

. 100 pc.

Large-scale simulations of cosmic ray propagation in the

advection-diffusion approximation rely on various (often crude) pa-

rameterisations of the diffusion tensor and its dependence on the

magnetic field. Using a fluid description of cosmic rays in nonlin-

ear dynamo simulations, assuming anisotropic (but constant) dif-

fusion coefficients, Snodin et al. (2006) found no correlation be-

tween magnetic field and cosmic ray energy densities. Such simu-

lations may be appropriate at scales exceeding the diffusion length

(of order 1 kpc), but not at the smaller scales that are relevant in

the present study. For a typical cosmic ray proton, with energy

1–10 GeV, in a 5 µG magnetic field, the Larmor radius is about

10−6–10−5 pc, which is much smaller than the correlation length

of magnetic field (50–100 pc) or the diffusion length of cosmic rays

(which is of the order of 1 kpc). Thus, the small-scale structure of

the magnetic field will be particularly important for the propagation

of cosmic rays in this energy range.

In this paper, we use test particle simulations to explore, in de-

tail, the spatial distribution of cosmic ray particles propagating in a

random magnetic field. Whereas previous test particle simulations

have been mostly concerned with the calculation of the cosmic ray

diffusion coefficient, we primarily consider the spatial distribution
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of cosmic rays and its relation to the magnetic field. Our model is

kinematic, i.e., we only consider the effect of the magnetic field

on the cosmic rays and neglect any effects of cosmic ray pressure

on the gas flow and hence on the magnetic field. In Section 2 we

describe the numerical model for random magnetic fields and in

Section 3 we present our model for simulating cosmic ray prop-

agation. Our results on cosmic ray density and its relation to the

magnetic field are presented in Section 4. We conclude in Section 5

and suggest further avenues for study.

2 IMPLEMENTATION OF RANDOM MAGNETIC

FIELDS

The propagation of cosmic rays is sensitive to rather subtle

details of the magnetic field in which they move. The spec-

trum provides a complete statistical description of a Gaussian

random magnetic field, so it must also determine the correspond-

ing cosmic ray diffusivity for a given energy of particle. The

propagation of cosmic rays in an isotropic Gaussian random

magnetic field (for which the probability distribution function

of each vector component is Gaussian) has been the subject of

many studies (Berezinskii et al. 1990; Michalek & Ostrowski

1997; Giacalone & Jokipii 1999; Casse et al. 2002; Schlickeiser

2002; Parizot 2004; Candia & Roulet 2004; DeMarco et al.

2007; Globus et al. 2008; Shalchi 2009; Plotnikov et al. 2011;

Harari et al. 2014; Snodin et al. 2016; Subedi et al. 2017).

However, radio (Gaensler et al. 2011; Haverkorn & Spangler

2013), submillimeter (Zaroubi et al. 2015) and neutral hydrogen

(Heiles & Troland 2005; Kalberla & Kerp 2016) observations sug-

gest that the magnetic field in the ISM is strongly non-Gaussian,

spatially intermittent, and filamentary. Such an intermittent field

is also expected theoretically, as a result of turbulent dynamo

action (Wilkin et al. 2007) and random shock compression

(Bykov & Toptygin 1985, 1987; Bykov 1988). The magnetic

field generated by dynamo action in galaxy clusters is also likely

to be intermittent (Ruzmaikin et al. 1989; Subramanian et al.

2006). The presence of magnetic intermittency can significantly

affect the propagation of cosmic rays (Shukurov et al. 2017). In

non-Gaussian fields, the separation and size of magnetic structures

may play an important role (Shukurov et al. 2017), especially for

low energy particles. In this section, we describe the magnetic

fields that are used in our analysis of cosmic ray propagation. A

discussion of the structure of small-scale interstellar magnetic field

can be found in Appendix A. Throughout the text, the small-scale

or fluctuating field is represented by b, the large-scale (or mean)

field by B0 and the total field by B = b + B0.

2.1 Magnetic fields generated by a random flow

For our numerical study, we use a random magnetic field pro-

duced by kinematic fluctuation (small-scale) dynamo action. Using

a triply-periodic cubic box of length L, with 5123 grid points, we

solve the induction equation

∂b

∂t
= ∇ × (u × b) + η∇2

b, (1)

where u(x, t) is a prescribed velocity field and η is the magnetic

diffusivity, which we take to be constant. To ensure ∇ · b = 0,

we numerically solve for the corresponding magnetic vector poten-

tial. We define the magnetic Reynolds number to be Rm = l0u0/η,

where l0 is the outer scale of the turbulent velocity flow and u0 is

the root-mean-square (rms) velocity. Dynamo action occurs, i.e.,

the magnetic field grows exponentially, if Rm exceeds a critical

magnetic Reynolds number, Rm,c, whose value depends on the ve-

locity field.

We construct the velocity field, u, by superposing Fourier

modes with a range of wavenumbers, k, and a chosen energy spec-

trum E(k), using the same prescription as Fung et al. (1992) and

Wilkin et al. (2007):

u(x, t) =

N−1
∑

n=0

[

Cn (kn ) cos φn + Dn (kn ) sin φn
]

, (2)

where φn = kn · x + ωnt, kn is a randomly oriented wavevector

of magnitude kn , and ωn = [k3
nE(kn )]1/2 is the frequency at that

scale. The vectors Cn (kn ) and Dn (kn ) have random directions in

the plane perpendicular to kn , so that the flow is incompressible

(∇ · u = 0). Their magnitudes determine the power spectrum E(k),

and are chosen such that E(k) ∝ k−5/3 and the rms velocity is u0.

We chose N = 40 with kn such that the flow is periodic, and with

distinct kn between 2π/L to 8π/L, where L = 2π is the width of

our domain which is also equal to the outer scale, l0, of the velocity

flow. This flow acts as a dynamo if Rm > Rm,c ≃ 1000, and pro-

duces a spatially intermittent magnetic field, as can be seen in the

left-hand panel of Fig. 1 and Fig. 2.

The presence of structures in the magnetic field affects the

propagation of cosmic rays, especially for low energy particles.

For such particles, intermittency enhances cosmic ray diffusion

(Shukurov et al. 2017). Here we are interested in exploring the cor-

relation between the magnetic field and cosmic rays. The intermit-

tent nature of this dynamo-generated magnetic field provides an

excellent test case for this study since there are localized regions of

strong magnetic field.

We also consider a Gaussian random magnetic field having

the same power spectrum Mb (k) as the intermittent magnetic field.

Such a Gaussian random field is obtained as follows: First, a spa-

tial Fourier transform of the intermittent magnetic field is taken

and then each complex mode is multiplied with a random phase.

Then taking an inverse Fourier transform gives a Gaussian ran-

domized magnetic field with unchanged Mb (k), but where coher-

ent structures have been destroyed (Chapter 7 in Biskamp 2003;

Snodin et al. 2013; Shukurov et al. 2017). The structural difference

between intermittent and Gaussian random magnetic field is illus-

trated in Fig. 1 which shows the magnetic fields in a 2D cut through

the middle of the numerical domain, with colours showing the third

component. Figure 2 shows the filamentary structure of the inter-

mittent magnetic field (at b2/ b2
rms of order ten). The probability

distribution function (PDF) of a single component of both the in-

termittent and randomized field is shown in Fig. 3. The intermittent

field has long heavy tails, whereas the randomized field has a Gaus-

sian probability distribution.

2.2 Large-scale magnetic field

The ISM contains both fluctuating (small-scale) and mean (large-

scale) magnetic fields (Chapter 5 in Klein & Fletcher 2015;

Beck et al. 1996; Beck 2016). The large-scale component is cor-

related over several kpc whereas the small-scale component has

a correlation length less than the correlation scale of turbulence

(. 0.1 kpc). The small-scale and the large-scale components of the

magnetic field contain comparable energies. By comparing large-

scale magnetic field models (with resolution of ∼ 75 pc) of a spiral

galaxy with observations, Moss et al. (2007) found that a spatially

Downloaded from https://academic.oup.com/mnras/article-abstract/doi/10.1093/mnras/stx2606/4411829/Relative-distribution-of-cosmic-rays-and-magnetic
by University of Newcastle user
on 13 October 2017



Cosmic rays and magnetic fields 3

0 2 4 6

y

0

2

4

6

z

−2

−1

0

1

2

b
x
/
b
r
m
s

0 2 4 6

y

0

2

4

6

z

−2

−1

0

1

2

b
x
/
b
r
m
s

Figure 1. 2D cut in the yz–plane through the middle of the domain with vectors for (by / brms, bz / brms) and colours showing the magnitude of bx/ brms

for intermittent (left) and randomized (right) magnetic fields. For intermittent magnetic field the colours are saturated for both positive and negative values to

match the scale of the randomized field (see the x-axis of Fig. 3 for the actual difference in numbers). The intermittent magnetic field is more ordered and

stronger in the filaments whereas the randomized field lacks such structures.

Figure 2. The figure shows isosurfaces of b2/ b2
rms = 12 (blue) and

b2/ b2
rms = 15 (yellow) for the dynamo-generated magnetic field at Rm =

3182. It is intermittent, showing long filaments with large gaps between

filaments.

uniform distribution of cosmic rays was better at matching the ob-

servations than an equipartition assumption between cosmic rays

and large-scale magnetic field. This suggest that the cosmic rays

may not be correlated with large-scale magnetic field.

To explore the effects of a large-scale magnetic field on the

propagation of cosmic rays, we add a uniform mean field directed

along the x-axis to the random magnetic field as described in Sec-

tion 2.1. We consider several values for the ratio of the mean field

B0 to the random field, brms, up to B0/ brms = 3.

−4 −2 0 2 4

bx/brms

10
−3

10
−2

10
−1

10
0

P
D
F

Intermittent

Randomized

Gaussian Fit

Figure 3. The figure shows PDFs of bx/ brms for intermittent (blue) and

randomized (red) magnetic fields. Both have zero mean but the intermittent

magnetic field has long tails whereas the randomized field (obtained by

Fourier phase randomization) has a Gaussian PDF (dashed).

3 COSMIC RAY PROPAGATION

The propagation of cosmic rays in random magnetic fields is largely

determined by the ratio between the Larmor radius rL of the particle

gyration and the length scale lb of magnetic field variations, e.g.,

its correlation length. The Larmor radius and Larmor frequency of

a relativistic particle of rest mass m and charge q, travelling at a

speed v in a magnetic field of strength B, are given by

rL =
γmcv

qB
and ω0 =

v

rL
, (3)

respectively, where γ =
(

1 − v
2/c2

)−1/2
is the Lorentz factor, and

c is the speed of light in a vacuum. The correlation length lb of an

isotropic random field with power spectrum Mb (k) is defined as
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Figure 4. Single particle trajectories for rL/l0 = 0.011 (left-hand panel) and 0.318 (right-hand panel) in the intermittent magnetic field of the left-hand panel

of Fig. 1 and Fig. 2. Colours shows the strength of the magnetic field along the trajectory normalized to its maximum value along the part of trajectory shown.

For rL/l0 = 0.011, the particle path is more tangled than for rL/l0 = 0.318 where the particle motion is almost ballistic between rare scattering events.

(Monin & Yaglom 1971)

lb =
π

2

∫ ∞

0
k−1 Mb (k) dk

∫ ∞

0
Mb (k) dk

. (4)

The correlation length of a magnetic field produced by the

fluctuation dynamo action is significantly smaller than l0, at

least in the kinematic stage where lb/l0 is of order R
−1/2
m

(Kazantsev 1967; Zeldovich et al. 1990; Schekochihin et al. 2004;

Brandenburg & Subramanian 2005). For Rm = 3182, we have

lb/l0 ≈ 0.0244.

3.1 Test particle simulations of cosmic rays

We consider relativistic charged particles propagating in a static

magnetic field, B(x). The trajectory of each particle satisfies

d2
r

dt2
=

v0

rL

dr

dt
×

B

Brms
, (5)

where r is the particle’s position, v0 is its speed, B/ Brms is the

total magnetic field normalized to its rms value Brms, and rL is

the Larmor radius (defined with respect to Brms). The time-scale

over which interstellar magnetic fields change significantly is of

the order of the eddy turnover time in interstellar turbulence, 107 yr

(Beck et al. 1996). This time-scale is longer than the (diffusive)

confinement time of cosmic rays in galaxies, which is of the order

of 106 yr (Berezinskii et al. 1990). It is therefore customary to ne-

glect any time dependence of the magnetic field in Eq. (5) and, cor-

respondingly, neglect any electric fields (e.g., Giacalone & Jokipii

1999; Casse et al. 2002). This means that the speed of each particle

remains constant. This is equivalent to neglecting particle acceler-

ation, a process physically distinct from diffusive particle propaga-

tion (which is the focus of this article) which is due to scattering of

cosmic ray particles by magnetic inhomogeneities. Since we con-

sider static magnetic field, the diffusive reacceleration (Strong et al.

2007; Grenier et al. 2015), which is due to moving magnetic inho-

mogeneities, is also neglected.

We solve Eq. (5) numerically for an ensemble of cosmic ray

particles (specifically, 8192), all of the same speed v0, but giving

each a random initial position and velocity direction. The initial

conditions are chosen randomly, and are uniformly distributed over

all positions and directions, but do not very uniformly fill the mag-

netic field cube, due to there only being a finite number of parti-

cles. For a given energy of particle, we find the smallest Larmor

time (2π/ω0) based on the maximum magnetic field in the domain

and then fix the time step as 0.001 times the smallest Larmor time,

to ensure that we carefully resolve all particle gyrations. We also

check that the energy is conserved (as far as is permitted by the

numerical scheme) throughout the total propagation time T . For

a given magnetic field configuration, the nature of the trajectories

depends only on the parameter rL/l0, which is indicative of the

particle energy, as illustrated in Fig. 4. By construction, the static

magnetic field through which the particle propagates is periodic in

all three directions, with period L = 2π. Even though the mag-

netic field is periodic, the particle trajectories are not: they enter

and leave the domain at different points. There is an important dis-

tinction between the Eulerian frame of the computational domain

and the Lagrangian frame moving with each particle. Whilst the

magnetic field is periodic in the Eulerian sense, there is no period-

icity in the magnetic field along each particle trajectory (however

many times the particle enters and leaves the domain).

A high-energy particle, with rL ≫ lb , is typically deflected

by only a small angle of order lb/rL over a distance lb and its tra-

jectory is, therefore, rather insensitive to the structural properties

of the magnetic field at scales smaller than rL. By the central limit

theorem, the statistical properties of an ensemble of cosmic ray par-

ticles become Gaussian after a large number of such deflections.

Particles of smaller energies, rL . lb , are more sensitive to the fine

structure of the magnetic field, and it is not obvious how the spatial

distribution of such cosmic rays will be related to the magnetic en-

ergy density, especially given that their diffusion tensor is sensitive

to magnetic intermittency (Shukurov et al. 2017). In particular, the

distribution of cosmic rays may be intermittent in a spatially inter-

mittent magnetic field. Figure 4 shows the trajectories of particles

of low and high energy (left- and right-hand panels, respectively).

The latter move faster (note the different axis scales in the two pan-

els) and, at the scale of the left-hand panel, the trajectory of the

higher-energy particle is nearly straight almost everywhere.

The random nature of the magnetic field makes the parti-
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Figure 5. Normalized cosmic ray diffusivity κ/v0l0 as a function of normalized time ω0t for rL/l0 = 0.016, 0.159, 1.592 for the intermittent (left) and

randomized (right) magnetic fields shown in Fig. 1. Here ω0 = v0/rL is the Larmor frequency based on Brms. The dashed lines of the corresponding colours

show the time td after which the propagation becomes diffusive: κ (t ) ≈ κ at t > td. For low energy particles (rL 6 lb ), the diffusivity in the intermittent

magnetic field is larger than in the randomized (Gaussian) field of identical power spectrum.

cle propagation diffusive at sufficiently large spatial and temporal

scales. Without a mean field, the propagation is isotropic. We there-

fore calculate the isotropic diffusion coefficient as the limit of the

finite-time diffusivity κ(t),

κ = lim
t→∞

κ(t), κ(t) =
1

6t
〈|r(t) − r(0) |2〉, (6)

where the angular brackets denote averaging over the ensemble of

particles. Figure 5 shows κ(t) for the two magnetic fields shown

in Fig. 1, one intermittent and the other statistically Gaussian, and

for several values of rL/l0. In each case there is an initial phase of

ballistic particle motion, in which κ(t) is approximately linear in t,

followed by a diffusive phase where κ(t) settles to its asymptotic

value. The start of the diffusive phase, td, is the time when the slope

of κ(t) becomes small, dκ/d(ω0t) ≃ 10−6; this time is indicated by

a vertical dashed line in Fig. 5.

To obtain the number density of cosmic rays, ncr, from the

test particle simulations we calculate the coordinates of each par-

ticle modulo L = 2π, i.e., relative to the periodic magnetic field.

Next, we divide the periodic domain into 5123 cubes and count the

number of particles within each cube. The size of the cubes was

chosen to match the spatial resolution of the magnetic field, which

was obtained from a dynamo simulation on a 5123 grid, but we have

checked that the results are not very sensitive to the exact size of

the cubes. The result is the instantaneous number density of the par-

ticles ñ(x, t). We then average the density of particles within each

cube over a sufficiently long period T (≫ td), to obtain the cosmic

ray density ncr(x) = (T − td)−1
∫ T

td
ñ(x, t′) dt′. We have checked

that the results are not dependent on the sampling time (dt′) as long

as it is smaller than a few times the Larmor time (2π/ω0). But for

lower sampling rate the simulation has to be averaged over a longer

total time (higher T) to collect sufficient statistics. We note that dif-

ferent energies were simulated over different periods T to obtain

roughly the same 〈ncr(x)〉 for all energies.

3.2 Magnetic field at the Larmor scale

Cosmic ray particles are especially sensitive to magnetic fluctua-

tions at a scale comparable to their Larmor radius. As described

by Kulsrud (2005), when a cosmic ray particle encounters such a

magnetic fluctuation, its pitch angle θ defined via

µ ≡ cos θ =
v · B

|v| |B|
, v =

dr

dt
, (7)

changes by

δθ = −π
δB

B
cos χ , (8)

where δB/B is the ratio of the fluctuation amplitude at the Larmor

scale to the local mean magnetic field (i.e., the field averaged over

a scale significantly larger than rL), and χ is the relative phase

between the cosmic ray velocity vector and the wavevector of the

magnetic fluctuation with which the particle interacts.

Magnetic fluctuations at the Larmor scale can be a part of a

magnetic energy spectrum that extends from larger scales or be

excited by cosmic rays themselves via the streaming instability

(Kulsrud & Pearce 1969; Wentzel 1974; Kulsrud 2005). The lat-

ter are usually referred to as ‘self-generated waves’. The scattering

due to magnetic fluctuations at the Larmor scale is referred to as

pitch angle scattering, and Desiati & Zweibel (2014) stress its im-

portance for cosmic ray diffusion. The magnitude of the magnetic

fluctuations that are associated with pitch angle scattering due to

self-generated waves is estimated in Appendix B as δB/B ≃ 10−2

in the hot interstellar gas.

The spectrum of hydromagnetic turbulence in the ISM ex-

tends to very small scales. Schekochihin et al. (2009) suggest that

the spectrum of kinetic Alfvén waves is truncated by dissipa-

tion at scales as small as the thermal electron Larmor radius,

which is approximately 3 × 106 cm in the warm ionized ISM.

This scale is much smaller than the Larmor radius of the rela-

tivistic particles of cosmic rays. However the spectrum of Alfvén

wave turbulence is rather steep: k−5/3 at larger scales (above

1 pc – Brandenburg & Subramanian 2005) where the gas is col-

lisional and, at smaller scales, k−2
‖

for the perturbations parallel

to the magnetic field (which matter for the cosmic ray scattering

– Farmer & Goldreich 2004). For such steep spectra, the relative

magnitude of the magnetic fluctuations at the Larmor radius of a

5 GeV particle is of the order of δB/B ≃ 10−4, which is negligible

in comparison with the self-generated waves.

Within our model the magnetic field is imposed and the

streaming instability cannot occur. We therefore parametrize the

cosmic ray scattering by self-generated waves. This is done by
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Figure 6. Probability density function (PDF) of the relative number density of cosmic ray particles, ncr/〈ncr〉, for various rL/l0 in intermittent (left panel)

and randomized (Gaussian) magnetic fields (right panel), with no mean-field and no pitch angle scattering (PAS). Long tails are a signature of intermittent

structures in the cosmic ray distribution. For high-energy particles, the distribution is nearly Gaussian (with width increasing as energy decreases) in both

intermittent and Gaussian magnetic fields, but below a certain energy (rL . lb ) long tails develop. A black dashed line shows the PDF of a random variable
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with the pitch angle scattering further included (right-hand panel). Intermittency in the cosmic ray distribution increases as the mean field becomes stronger,

especially for B0/ brms > 1, manifested in heavier tails at larger ncr/〈ncr〉. The pitch angle scattering enhances diffusion and thus decreases the level of

intermittency.

Table 1. Representative selection of simulations, summarising the effects

of particle energy, magnetic field structure and pitch angle scattering (PAS).

All quantities are defined in the text.

Model rL/l0 b B0/ brms PAS f

A 0.0016 Intermittent 0 no 0.81

B 0.0016 Intermittent 1 no 0.68

C 0.0016 Intermittent 1 yes 0.84

D 0.0016 Randomized 0 no 0.96

E 0.1592 Intermittent 0 no 0.99

rotating the velocity vector of each particle every Larmor time

(2π/ω0) by an angle given by Eq. (8), with δB/B = 10−2 and χ

uniformly distributed between 0 and 2π. Throughout the text, this

is referred to as pitch angle scattering (PAS).

4 RESULTS

Figure 6 shows the probability density function (PDF) of the par-

ticle number density ncr obtained in intermittent and randomized

(Gaussian) magnetic fields. For cosmic rays of relatively high en-

ergy (rL/lb > 1 or rL/l0 > 0.0244), the number density ncr is very

nearly uniform in space, and its PDF is Gaussian. At lower ener-

gies, the PDF has a long, heavy tail, which signifies the presence of

spatially localized structures in the cosmic ray distribution. It is re-

markable that the distribution of cosmic rays is intermittent in both

intermittent and Gaussian magnetic fields. The PDF of ncr on in-

cluding mean magnetic fields of various strength, with (right-hand

panel) and without (left-hand panel) particle pitch angle scattering

is shown in Fig. 7. Here too, for low energies the cosmic ray num-

ber density distribution has a long tail.

4.1 Spatial intermittency of cosmic rays

Cosmic rays fill all the volume available. However, the distribu-

tion for low energy cosmic rays (especially for rL/l0 = 0.0016 or
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Figure 8. Isosurfaces of the number density of cosmic rays at ncr/〈ncr〉 = 3.5 for rL/l0 = 0.0016 in an intermittent magnetic field showing a highly

inhomogeneous distribution (left-hand panel). The right-hand panel shows the variation of the relative number density of the particles along the straight line

(x, z) = (π, 3.97), characterized by rare, strong maxima against a weakly fluctuating background.

Figure 9. Isosurfaces of the number density of cosmic rays at ncr/〈ncr〉 = 3.5 for rL/l0 = 0.0016 in an intermittent magnetic field with an imposed mean

field of a strength B0/ brms = 1 aligned with the x-axis (left-hand panel) and with pitch angle scattering further added (right-hand panel).

rL/lb ≃ 0.06) is not homogeneous. Random magnetic fields pro-

duce cosmic ray distributions where a significant fraction of the

volume is occupied by strong particle concentrations. The PDFs of

ncr shown in Fig. 6 have a Gaussian core and a heavy tail, a mani-

festation of the spatial intermittency. The core contains most of the

particles and has ncr close to its mean value. The tail represents rare

but intense small-scale spatial structures. Figure 8 shows the num-

ber density of cosmic rays, obtained as described in Section 3.1,

in the intermittent magnetic field shown in the left-hand panel of

Fig. 1 and Fig. 2. The distribution is inhomogeneous and evidently

sensitive to the magnetic field structure. The distribution of cosmic

rays is affected by both the mean magnetic field and pitch angle

scattering. As shown in Fig. 7, the mean magnetic field enhances

the intermittency in the cosmic ray distribution, whereas pitch an-

gle scattering reduces it. Fig. 9 illustrates how the shape and num-

ber of structures in the cosmic ray distribution are affected. With

a mean field, the structures are more numerous and many extend

along the mean field direction, aligned with the x-axis in the ex-

ample shown. This effect becomes significant when B0/ brms > 1.

On the other hand, pitch angle scattering enhances cosmic ray dif-

fusion and, consequently, reduces their intermittency, as shown in

the right-hand panel of Fig. 9. The degree of intermittency can be
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ν for Models A–E of Table 1. A black dashed line shows the fractional

volume for a random variable drawn from a Gaussian distribution with unit

mean value and standard deviation of 0.07.
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Figure 11. PDF of intermittent magnetic field energy density normalized to

its rms value, b2/ b2
rms, and the number density of cosmic rays normalized

to its mean, ncr/〈ncr〉, for rL/l0 = 0.0016, 0.0032. All three of them have

power-law tails and the same exponent. Statistical errors are considerable at

probability densities below about 6 5 × 10−5.

measured in terms of the parameter f = 〈ncr〉
2/〈n2

cr〉 (see Table 1).

For high energy particles, rL/l0 = 0.1592 or rL/lb ≃ 6.52, f is

close to unity, indicating a homogeneous particle distribution. This

feature of the cosmic ray distribution is further detailed in Fig. 10

where we show the dependence of the fractional volume of a re-

gion where ncr/〈ncr〉 > ν on ν for the configurations of Table 1.

Particles of sufficiently high energy, rL/lb ≫ 1, are not sensitive

to the fine structure of the magnetic field and the probability distri-

bution of their number density is Gaussian. The dependence of the

fractional volume, shown in Fig. 10, on the presence of the mean

magnetic field and its change due to pitch angle scattering confirms

that the spatially intermittency increases on including mean field

and decreases on including pitch angle scattering. Figure 11 shows

the PDF of magnetic field energy density and cosmic ray distribu-

tion for the tail region (values higher than the mean for each of the

distributions). Both distributions are power laws and the exponent

for the magnetic field roughly matches that for the cosmic ray num-

Figure 12. The scatter plot of cosmic ray number density, ncr/〈ncr〉

and magnetic energy density, b2/ b2
rms, in intermittent magnetic field for

rL/l0 = 0.0016.

ber density. The cosmic ray distribution for low energy particles is

intermittent with heavy power law tails.

4.2 Statistical relation between magnetic field and cosmic

rays

The simplest measure of a relation between cosmic rays and mag-

netic field is their cross-correlation coefficient,

C(ncr,B
2) =

ncrB2 − ncrB2

σncrσB2

, (9)

where the overbar denotes an average over the whole domain, and

σ is the standard deviation of the quantity specified in the subscript.

The value of C ranges from C = 1 for perfect correlation to C = −1

for perfect anti-correlation. In all cases considered, we find that

the two distributions are uncorrelated, C ≈ 0. This is true even

for the lowest-energy cosmic rays considered (rL/l0 = 0.0016),

despite the fact that they are closely confined to magnetic lines. The

correlation does not emerge even when the cosmic ray density and

magnetic field are smoothed to a coarser spatial grid. To confirm

that this behaviour is not an artefact of the initial conditions used

for the cosmic ray particles, we have also performed a simulation

with their initial positions in the regions of the strongest magnetic

field shown in Fig. 2. The value of C in this case is very close to

unity initially but vanishes quickly, within the time td.

Figure 12 shows the scatter plot of the cosmic ray number den-

sity and magnetic field energy density, whose form confirms that

the two variables are uncorrelated. We also confirm that cosmic

rays and magnetic field distributions are statistically independent.

As demonstrated in Appendix C (where more details can be found),

the joint probability distribution function of cosmic rays and mag-

netic field distributions, p(ncr,b
2), can be factorized as follows:

p(ncr,b) ≈ (1.6 + 9.9e−10.5b2/ b2
rms )e−(ncr/〈ncr〉−1)2/0.18 , (10)

for the intermittent magnetic field and

p(ncr,b) ≈ 0.5(b2/ b2
rms)−1e−0.3 ln(b2/ b2

rms)2

e−(ncr/〈ncr〉−0.9)2/0.32 ,

(11)

for the randomized (Gaussian) magnetic field. In both cases, the
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joint PDF is separable which illustrates that the cosmic rays and

magnetic field distributions are independent in the diffusive regime

of the cosmic rays.

4.3 Random magnetic traps

Since ncr is not correlated with the magnetic field strength, the re-

gions of high cosmic ray density must instead be caused by some

geometrical property of the magnetic field lines. In fact, we find

that these regions occur where cosmic rays become trapped be-

tween two magnetic mirrors, i.e., positions where magnetic lines

converge. As shown in Fig. 13, if a magnetic flux tube is pinched

at both ends, then particles are repeatedly reflected between the

two ends, creating a ‘magnetic trap’. Because the field lines must

be reasonably smooth in order to form a trap, the regions of high

cosmic ray density are typically smaller than the magnetic correla-

tion length, lb . The cosine of the particle’s pitch angle, µ, defined

in Eq. (7), is shown in the right-hand panel of Fig. 13 as a func-

tion of position and magnetic field strength. This quantity reverses

sign along the trajectory whenever the particle is reflected at an end

of the magnetic trap. This happens where the magnetic field is rela-

tively strong. Magnetic trapping is associated with the conservation

of v2
⊥/B, an adiabatic invariant (Jackson 1998), where v⊥ = v sin θ

is the particle speed perpendicular to the local magnetic field. We

have verified that v2
⊥/B = const with relative accuracy of order

10−5 along the trajectories of the trapped particles.

We estimate the enhancement of cosmic ray number density

due to magnetic traps as follows. Consider a magnetic trap of a

length l in a magnetic flux tube of a radius d. For an ensemble of

particles within the trap, the expected trapping time τ is d2/κ⊥ ,

where κ⊥ is the local transverse diffusivity of cosmic rays. Defin-

ing N to be the number of times that a particle travels along the

trap before leaving it, we expect N ∼ τv/l. The resulting number

density of particles within the trap is given by n0 = Nncr with ncr

the mean number density of cosmic rays. The number density of

the particles within the trap follows as

n0 ≃
vd2

lκ⊥
ncr. (12)

According to this order of magnitude estimate, we therefore expect

that the number of trapped particles will depend inversely upon the

local cosmic ray diffusivity as well as upon the size and number of

traps.

A mean magnetic field introduces a specific direction which

particles follow and so increases the probability for a magnetic trap

to occur, as shown in the left-hand panel of Fig. 9. On the other

hand, the pitch angle scattering due to self-generated waves de-

creases the level of intermittency in the cosmic ray number density,

as shown in the right-hand panel of Fig. 9, because it facilitates the

transverse diffusion. When the distribution on the right-hand panel

of Fig. 9 is smoothed over a coarser scale, it does not correlate with

the distribution on the left-hand panel of Fig. 9. This further illus-

trates that the pitch angle scattering not only reduces the length of

trapping region but also changes the propagation of particles sig-

nificantly.

It is important to note that the spatial intermittency of cos-

mic rays does not require the intermittent structure of the random

magnetic field. Even in the randomized magnetic field, which has

an almost perfect Gaussian statistics and is free of intermittency,

magnetic traps occur and lead to a spatial intermittency of cosmic

rays.

5 CONCLUSIONS AND DISCUSSION

Using test particle simulations of cosmic ray propagation, we have

demonstrated that the spatial distribution of cosmic rays is not cor-

related with magnetic field strength on spatial scales that are less

than (or comparable to) the outer scale, l0, of a random flow that

produces magnetic field. This implies that the local equipartition

between cosmic ray and magnetic field energy densities does not

occur on these scales. In fact, we find that cosmic ray number den-

sity and magnetic field are approximately statistically independent.

At high energies, rL > lb with lb the correlation length of

the magnetic field, the cosmic ray distribution is uniform. At low

energies, rL < lb , the spatial distribution of cosmic rays is inter-

mittent in both Gaussian and non-Gaussian (spatially intermittent)

magnetic fields. This occurs because of the presence of magnetic

traps in random magnetic fields where the local magnetic field has

a specific structure but is not necessarily strong. As a result, the cos-

mic ray number density is not directly related to the local magnetic

field strength.

The trapping, and the ensuing intermittency in the cosmic ray

distribution, are enhanced by a mean magnetic field and reduced

by the pitch angle scattering of cosmic ray particles or any other

additional diffusion. The number density of cosmic ray particles

within the traps depends on the size of the trap and the transverse

diffusivity of cosmic rays with respect to the local magnetic field.

Statistical properties of the traps (such as their rate of occurrence,

size, etc.) are controlled by subtle properties of the random mag-

netic field; it appears that finding them is a non-trivial probabilistic

problem.

For cosmic rays to become trapped, their Larmor radius must

be smaller than the correlation length of the magnetic field, i.e.,

rL 6 lb . In spiral galaxies, where lb . 100 pc, the proton energy

in a 5 µG field with rL = 100 pc is 108 GeV. Thus, the trapping

of cosmic rays described above should be effective and efficient

for galactic cosmic rays. In galaxy clusters, with lb . 10 kpc and

b ≃ 1 µG, protons of energy up to 109 GeV can be trapped and thus

exhibit spatial intermittency. This particle trapping can effectively

confine higher energy particles for which other confinement mecha-

nisms (scattering by self-generated waves, magnetic field structure,

field line random walk) are not very active (Chandran 2000).

The lack of correlation between cosmic rays and mag-

netic field in galaxies at small scales (below a few kilopar-

secs) is suggested by analyses of the radio–far-infrared correlation

(Hoernes et al. 1998; Berkhuijsen et al. 2013; Basu & Roy 2013).

Here we have presented a physical reason for that. Energy equipar-

tition (or pressure balance) between cosmic rays and magnetic field

may yet hold at scales much larger than the driving scale of turbu-

lence, l0 ≃ 100 pc in spiral galaxies and 10 kpc in galaxy clusters.

The assumption of energy equipartition between cosmic rays

and magnetic fields, and related assumptions of their pressure bal-

ance or minimum energy, are routinely used in interpretations

of synchrotron observations (Beck & Krause 2005; Arbutina et al.

2012; Beck 2016, and references therein). Apart from assuming

that the cosmic ray energy density, dominated by protons, is related

to the local magnetic energy density, these interpretations also rely

on a fixed ratio of the number densities of cosmic ray electrons and

protons and presume that the electrons and protons are identically

distributed in space. We have shown that local, small-scale energy

equipartition between cosmic rays and random magnetic field does

not occur. The spatial distribution of cosmic ray energy is sensitive

to the geometry of magnetic field rather than its strength. However,

the distribution of cosmic ray electrons responsible for synchrotron
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Figure 13. The left-hand panel shows a particle trajectory with magnetic field strength along the trajectory shown with colour. The dark grey lines show

magnetic field lines near the trajectory. The particle moves forward and backward between two magnetic mirrors. The right-hand panel shows the angle

between the particle velocity vector and the z-axis with magnetic field strength colour coded. The particle turns around (µ changes sign) at the magnetic

mirrors, regions where magnetic field is stronger.

emission must be modelled separately with allowance for their syn-

chrotron and inverse-Compton energy losses. We expect that the

distribution of cosmic ray electrons would differ significantly from

that of protons, plausibly exhibiting stronger intermittency since

the electrons would spend more time in magnetic traps as they lose

their energy. This would mean that equipartition-type estimates are

even less reliable when applied to the local energy densities. It can-

not be excluded, however, that the spatial distributions of cosmic

ray and magnetic field energy densities are related at larger scales

of order kiloparsec, comparable to the diffusion length of cosmic

ray particles over their confinement time. We shall discuss else-

where this version of the equipartition arguments.

The intermittency in the distribution of cosmic ray particles

discussed above is a robust feature of their propagation in a random

magnetic field that emerges in both Gaussian and non-Gaussian

magnetic fields. This extreme small-scale inhomogeneity may af-

fect interactions of cosmic rays with interstellar gas (Grenier et al.

2015, and references therein), including spallation reactions and

ionization, e.g., producing strong local variations in the ionization

rate. The γ-ray emissivity can also be affected by the trapping of

cosmic rays particles in random magnetic traps. Quantifying the

effect of cosmic ray intermittency on these and other observables

(such as spectra) will require energy losses to be included in the

model, which we aim to do in the future.The effects of intermit-

tency in the cosmic ray distribution may be numerous and require

a careful, systematic study.

Test particle simulations are constrained by the need to re-

solve the Larmor radius and period of the particle gyration. For this

reason, it is not practical to model those particles of energies of or-

der GeV that contribute most to the energy density of cosmic rays

if the magnetic field structure is to be resolved in full. For exam-

ple, the Larmor radius of a 5 GeV proton in a 5 µG ISM magnetic

field is 108 times smaller than 100 pc, the typical scale of the mag-

netic field. Our conclusions are based on an extrapolation of the

results obtained for particles of effectively much larger energies.

Then modelling of cosmic ray propagation at lower energies re-

quires a fluid model based on a variant of the diffusion-advection

equation but with the diffusion tensor that allows for the non-trivial

structure of the magnetic field. Such modelling is beyond the scope

of this paper but remains our high priority.
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APPENDIX A: FINE STRUCTURE OF INTERSTELLAR

MAGNETIC FIELDS

Several mechanisms produce the random magnetic fields in the in-

terstellar medium. Tangling of the large-scale magnetic field by

turbulent flows produces a volume-filling random field whose sta-

tistical properties are controlled by the turbulence. This magnetic

field is a byproduct of the large-scale (mean-field) dynamo action.

If the turbulent velocity has Gaussian statistical properties, the re-

sulting random magnetic field is also a Gaussian random field.

Random motions can also generate a random magnetic field di-

rectly through the small-scale (fluctuation) dynamo action. The re-

sulting magnetic field is spatially intermittent (magnetic field con-

centrated in filaments and ribbons) and has strongly non-Gaussian

statistical properties (Zeldovich et al. 1990; Schekochihin et al.

2004; Brandenburg & Subramanian 2005; Wilkin et al. 2007). An-

other similarly structured contribution is produced by compres-

sion in random shock fronts driven by supernova explosions

(Bykov & Toptygin 1985; Federrath et al. 2010). The result of such

compression is a complex random magnetic field represented by

both Gaussian and non-Gaussian parts that scatter cosmic rays dif-

ferently (Zelenyi et al. 2015; Shukurov et al. 2017). In this section

we estimate the contribution of each of the above mechanisms to

the small-scale interstellar magnetic fields. For clarity, we denote

b1, b2 and b3 the random magnetic fields produced by tangling

of the mean field, by the fluctuation dynamo action and by shock

compression, respectively.

The tangling of a large-scale magnetic field B0 by a ran-

dom flow u can be described by the induction equation, Eq. (1),

with magnetic diffusion neglected over the time-scales of interest,

∂b1/∂t ≈ ∇ × (u × B0) (e.g., Moffatt 1978). By order of magni-

tude, b1 ≃ uB0τ/l, where τ and l are the relevant time and length

scales. Assuming that τ is equal to the eddy turnover time, l/u, we

obtain b1 ≃ B0. This part of the random magnetic field is present

wherever B0 , 0, i.e., presumably at all positions. The strength of

the interstellar large-scale magnetic field is controlled by the global

properties of ISM, such as the velocity shear rate due to differen-

tial rotation, the Rossby number and the magnetic helicity flux (see

Chamandy et al. 2014, for a compilation of useful results for non-

linear mean-field dynamos). Observations suggests B0 ≃ 1–5 µG,

varying between galaxies and between various locations within a

given galaxy (Beck 2016). Thus b1 ≃ 1–5 µG.

Magnetic structures produced by the small-scale dynamo due

to a turbulent flow, with the kinetic energy spectrum E ∝ k−s

(where k is the wave number), produce magnetic structures of

length l0 that have a typical width of l0R
−1/2
m and thickness

l0R
−2/(1+s)
m (Wilkin et al. 2007). The magnetic correlation length

scale lb discussed in Section 3 (lb/l0 ≃ 0.02 in our simulations of

the kinematic dynamo) lies between the three characteristic scales.

Wilkin et al. (2007) find that lb/l0 ≃ R−0.4
m . Subramanian (1999)

suggests that the statistically steady (saturated) state of the dynamo

corresponds to the effective value of the magnetic Reynolds num-

ber Rm ≃ Rm,c, where Rm,c ≃ 102–103 is the critical magnetic

Reynolds number for the dynamo action. Then lb/l0 ≃ R−0.4
m,c ≃

0.2–0.05. Given that the magnetic field strength within such struc-

tures is close to energy equipartition with the turbulent energy,

the root-mean-square magnetic field strength (averaged over a vol-

ume l3
0
, or larger) follows as b2 ≃ (lb/l0)3/2 Beq ≃ R−0.6

m,c Beq ≃

(0.02–0.06) Beq with Beq = (4πρu2
0
)1/2 ≃ 5 µG. Numerical simu-

lations suggest that the fluctuation dynamo produces a stronger rms

magnetic field, b2 ≃ 0.3 Beq (Brandenburg & Subramanian 2005)

in a saturated state of non-linear dynamo. This implies that random
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magnetic fields outside the filaments and ribbons contribute signif-

icantly to the magnetic energy density.

Another contribution to non-Gaussian magnetic fields in the

ISM is due to shocks. Primary and secondary shock fronts pro-

duced by supernova explosions and strong stellar winds can be

described as pervasive shock-wave turbulence in the interstellar

medium (Bykov & Toptygin 1987). The typical separation between

random shocks in the warm interstellar medium is 1016–1017 cm

(Bykov 1988). The magnetic field associated with shock-wave tur-

bulence has a spectrum close to k−2 and is intermittent at scales

smaller than the separation of the shock fronts. It is reasonable to

expect that the energy density of these random magnetic fields is

of the same order of magnitude as the kinetic energy of turbulence,

b3 ≃ Beq.

Overall, the small scale magnetic field in the ISM is a com-

bination of both the non-Gaussian (due to fluctuation dynamo and

shocks) and Gaussian (due to tangling of mean field) components

of comparable energy density. Thus, we consider both the intermit-

tent and randomized field for our study of cosmic ray propagation.

The magnetic field structure is likely to be different in differ-

ent phases of the ISM. The warm, partially ionized gas occupies a

large fraction of the galactic disc volume and hosts both the large-

scale and small-scale dynamos. The gas has a scale height larger

than the disk thickness and flows up to fill the hot galactic corona.

Numerical simulations of the multiphase ISM driven by supernovae

suggest that the large-scale magnetic field is stronger in the warm

phase whereas random fields are present in all the phases of the

ISM (Evirgen et al. 2017). Also, scattering of cosmic rays due to

self-generated waves depends on the wave damping mechanisms,

which differs in different phases of ISM (Cesarsky & Kulsrud

1981; Felice & Kulsrud 2001). The damping is strongest in the cold

phase and is weakest in the hot phase (leading to efficient pitch an-

gle scattering of cosmic rays). So, the structure of the magnetic field

and the self-generated waves would vary depending on the phase of

the ISM.

APPENDIX B: MAGNITUDE OF MAGNETIC

FLUCTUATIONS AT THE LARMOR SCALE DUE TO

SELF-GENERATED WAVES

When the velocity of cosmic rays is greater than the local Alfvén

speed, the streaming instability excites Alfvén waves of a wave-

length comparable to the particles’ Larmor radius (Wentzel 1974;

Kulsrud & Pearce 1969). Cosmic rays (originally propagating at

speeds very close to the speed of light) are slowed down by pitch

angle scattering till they move around with the local Alfvén speed.

We assume that the cosmic rays, moving initially with the speed of

light, transfer all of their momentum to Alfvén waves (no damping

processes are assumed). Using conservation of momentum we can

then estimate the maximum possible amplitude (i.e. δB) of these

waves.

The initial momentum of cosmic rays is

p = ncrmv ≃ ncrmc ≃ ǫcr/c , (B1)

where ncr is the number density of cosmic ray particles, m is the

proton mass, v is the particle speed (taken to be close to c, the

speed of light) and ǫcr is the energy density of cosmic rays. When

all the momentum has been transferred to Alfvén waves, the bulk

speed of the ensemble of cosmic ray particles reduces to the Alfvén

speed. Momentum conservation then implies that

p =
δB2

8π

1

VA
+ ncrmVA , (B2)

where δB is the amplitude of the Alfvén waves generated by the

streaming instability, and VA is the local Alfvén speed. Combining

Eqs. (B1) and (B2), we obtain, for VA ≪ c,

ǫcr ≃
δB2

8π

c

VA
. (B3)

Assuming that the energy density of cosmic rays is comparable

to the energy density of the magnetic field at larger scales, ǫcr ≃

B2/(8π), it follows that

δB

B
≃

(

VA

c

)1/2

. (B4)

The pitch angle scattering is most efficient in the hot phase of the

ISM (Kulsrud & Pearce 1969; Cesarsky & Kulsrud 1981; Kulsrud

2005), where B ≃ 5µG and n ≃ 10−3cm−3 for the thermal gas

number density, the Alfvén speed is of the order of 107 cm s−1.

Equation (B4) then yields δB/B ≃ 10−2. Since the damping of

Alfvén waves (Kulsrud & Pearce 1969; Kulsrud 2005) is neglected,

this is an upper estimate.

A similar estimate can be obtained without direct appeal to the

energy equipartition between the magnetic fields at a larger scale

and cosmic rays. Farmer & Goldreich (2004), using properties of

MHD turbulence, obtain δB/B ≃ (rL/l0)1/4, where rL is the Lar-

mor radius of the particle and l0 is the outer scale of turbulence

(∼ 100 pc for the ISM). For a 5 GeV proton in a 5 µG magnetic

field, the Larmor radius of the particle is 1012 cm. Thus, at that

scale, δB/B ≃ (1012/1018)1/4 ≃ 10−2, which agrees with our es-

timate in the previous paragraph.

APPENDIX C: STATISTICAL INDEPENDENCE OF

COSMIC RAY AND MAGNETIC FIELD DISTRIBUTIONS

The distributions of cosmic rays and magnetic field energy density

are uncorrelated (as discussed in Sec. 4.2) and we check for their

statistical independence, i.e., whether p(ncr,b
2), the joint probabil-

ity distribution function of two components is equal to p(ncr)p(b2),

the product of the probability distribution function of each com-

ponent. This is tested especially for the core region where ncr is

close to its mean value. The upper left panels of Figures B1 and B2

show the joint probability densities of magnetic field strength and

cosmic ray number densities in the intermittent and Gaussian (ran-

domized) magnetic fields, respectively. We use the Kolmogorov–

Smirnov (KS) test to check whether the two distributions are inde-

pendent. We perform KS test on marginal probability distributions,

p(b|ncr) and p(ncr |b) to check whether each of them are drawn

from the same distribution. This is measured by the D statistics of

the test, which is the absolute maximum distance between the cu-

mulative distribution function of the two samples. A value of D

smaller than 0.087 represents 95% confidence that the two sam-

ples are drawn from the same distribution. For this we consider two

samples from the marginal probability distribution p(b|ncr) with

consecutive ncr (cuts along consecutive values of y axis of upper

left panel of Fig. B1). We performed the KS test for all such pairs

and found the mean value of D to be ≃ 0.062. A similar calculation

for p(ncr |b) gives ≃ 0.072. The mean D values for Gaussian (ran-

domized) magnetic fields are ≃ 0.054 for p(ncr |b) and ≃ 0.114 for

p(b|ncr) respectively. The small D values suggest that the cosmic
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Figure B1. The joint probability density function (PDF) p(ncr, b
2) of b2/ b2

rms and ncr/〈ncr〉 in the intermittent magnetic field for 0 6 b2/ b2
rms 6 0.5 and

0.25 6 ncr/〈ncr〉 6 1.75 (upper left panel). The joint PDF p(ncr, b
2) as a function of ncr/〈ncr〉 alone for various fixed values of b2/ b2

rms is shown in the

upper right panel together with least-square fits of the form p(ncr, b
2) = A(b2)e− (ncr−1.0)2/0.18 (smooth dashed curves). The lower left panel presents A as

a function of b2/ b2
rms fitted with an exponential (red, dashed). The lower right panel shows the 2d histogram of the computed and fitted values of p(ncr, b

2),

with a linear fit (dashed, blue).

ray number density and magnetic field distributions are indepen-

dent of each other and the joint probability p(ncr,b
2) can be fac-

torized into p(ncr) and p(b2). We find the functional dependence

of p(ncr) on ncr and p(b2) on b2 as follows. Cuts through the joint

PDF in the intermittent magnetic field, shown in the upper right

panel of Fig. B1 are well fitted with a Gaussian which, remarkably,

has neither the mean value nor the standard deviation dependent on

b. The dependence of the maximum value of the conditional PDF

pn (ncr |b
2) on b2 is shown in the lower left panel of Fig. B1 to-

gether with its fit with an exponential function. Thus, the joint PDF

of ncr and b has the form

p(ncr,b) ≈ (1.6 + 9.9e−10.5b2/ b2
rms )e−(ncr/〈ncr〉−1)2/0.18 (C1)

for 0 6 b2/ b2
rms 6 0.3 and 0.25 6 ncr/〈ncr〉 6 1.75. The relative

accuracy of the fitted parameters is better than 5 per cent. This is

confirmed by the 2d histogram of the measured and fitted values of

p(ncr,b) shown in the lower left panel of Fig. B1: for a perfect fit,

the points would be all on the bisector of the quadrant angle. The

scatter about that line, shown dashed (blue) provides a measure of

the accuracy of the fit. A very small number of points systemati-

cally deviate from the main dependence, yet lying on a straight line

as well. The joint PDF is thus factorizable emphasizing that both

the distribution are independent.

Similar analysis for p(ncr,b) in the randomized (Gaussian)

magnetic field is illustrated in Fig. B2. As in the intermittent mag-

netic field, the joint PDF is roughly factorizable and thus ncr and

b are statistically independent. The form of the conditional PDF of

magnetic field strength is a lognormal distribution,

p(b|ncr) ≈ 0.5(b2/ b2
rms)−1e−0.3 ln(b2/ b2

rms)2

(C2)

for 0 6 b2/ b2
rms 6 3. We find that

p(ncr,b) ≈ 0.5(b2/ b2
rms)−1e−0.3 ln(b2/ b2

rms)2

e−(ncr/〈ncr〉−0.9)2/0.32 .

(C3)

The 2d histogram of the measured and fitted values is shown (with

the dashed (blue) line for the perfect match) in the lower right panel

of Fig. B2.

To summarize, the distributions of cosmic ray number density

and magnetic field strength are statistically independent in the dif-

fusive regime of the cosmic rays. In the intermittent magnetic field,

the joint PDF of ncr and b is well approximated by a Gaussian in ncr
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Figure B2. As in Fig. B1 but for the randomized (Gaussian) magnetic field for 0 6 b2/ b2
rms 6 3.0 and 0.25 6 ncr/〈ncr〉 6 1.75 and the lower right panel

shows the 2d histogram with blue-dashed line as y = x (the bisector of the angle between the axes).

and a modified Gaussian in b. In randomized (Gaussian) field, the

joint PDF is approximated by a Gaussian in ncr and a lognormal

distribution in b2. The two variables remain statistically indepen-

dent for cosmic rays of other energies too. The exact parameters of

the joint PDF are likely to depend on details of the magnetic field

structure and the energy of the particle.
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