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Relative Docking and Formation Control via Range

and Odometry Measurements
Kun Cao, Zhirong Qiu, and Lihua Xie, Fellow, IEEE

Abstract—This paper studies the problem of distance-based
relative docking of a single robot and formation control of
multi-robot systems. In particular, an integrated localization and
navigation scheme is proposed for a robot to navigate itself to a
desired relative position with respect to a fixed landmark at an
unknown position, where only range and odometry measurements
are used. By carefully embedding historical measurements into
equilibrium conditions, we design an integrated estimation-
control scheme to achieve the relative docking asymptotically. It
is rigorously proved that the robot will converge to the desired
docking position asymptotically provided that control gains are
chosen to satisfy certain conditions. This scheme is further
extended to multi-robot systems to consider an integrated relative
localization and formation control problem. Unlike widely used
spatial cooperation in existing literature, we propose to exploit
both spatial and temporal cooperations for achieving formation
control. It is proved that multi-robot formation can be achieved
with zero error for directed acyclic graphs (DAG). Several
simulation examples are provided to validate our theoretical
results.

Index Terms—Docking, range-only measurements, formation
control, persistent excitation.

I. INTRODUCTION

RECENT decade has witnessed a dramatic surge of robots

which enjoy wide applications in civilian, industrial and

military areas, such as cooperative search and exploration [1],

environmental monitoring [2], aerial surveillance [3], accurate

collaborative mapping [4], etc. Two fundamental problems,

localization and navigation, have been investigated separately

in robotics, control and signal processing communities, see

[5]–[12] and the references therein.

As a subtopic of navigation, the docking problem has

extensive applications in spacecraft, UAV precision landing

and autonomous parking. When the relative position to a

fixed landmark can be obtained, the docking problem can be

readily solved by a naive proportional controller. Otherwise,

it becomes quite challenging and requires an integrated lo-

calization and navigation scheme. In [13], the target pursuit

problem with a fixed unknown landmark was addressed by

adopting a diminishing persistent excitation to reconcile the

localization and position tracking problems, where range and

global position measurements are required. A similar idea is

further applied in [14] to solve the station-keeping problem.
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of Major International (Regional) Joint Research Program NSFC (Grant
no. 61720106011). K. Cao, Z. Qiu and L. Xie (corresponding author) are
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ical University, 50 Nanyang Avenue, Singapore 639798 (email: {kun001,
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However, the GPS signal may be not precise enough (meter

accuracy in general) or even unavailable (e.g., indoor envi-

ronments and urban canyons), and other positioning systems

(e.g., UWB, VICON and WiFi) require extra infrastructures

(e.g., anchors or cameras which are expensive), extensive

labors and costs (e.g., deployment, calibration and mainte-

nance). Recently, the authors in [15] introduced an integrated

localization and navigation as a discrete-time counterpart of

[13], where input saturation was explicitly considered and

only self-displacement (odometry) and distance information

are required. However, docking to a desired position with

known relative position to a fixed unknown landmark, referred

to as relative docking, is more general and practical since in

many cases, for example in a search and rescue task, a beacon

cannot be placed exactly at an unaccessible location such as

roof top or a disaster site but at an accessible location with

known relative position to the docking point. This problem is

rather challenging since a single range measurement cannot

indicate the proximity of the robot to the desired docking

position.

On the other hand, formation control, navigation of multiple

robots, can be regarded as a generalized relative docking

problem for multiple robots. Existing research on formation

control can be generally categorized into six classes according

to the specification of the desired configuration: 1) position-

based [16]; 2) displacement-based [17], [18]; 3) distance-based

[19]; 4) bearing-based [20]; 5) angle-based [21]; and 6) ratio-

of-distance-based [22]. Among the existing works and the

references therein, almost all require relative position measure-

ments except a few works, such as, range-only [23], [24] and

bearing-only [20], [25] formation control. However, currently,

no exteroceptive sensor can generate relative position mea-

surements directly; they can only be obtained by data fusion

of distance and bearing sensor measurements (e.g. LiDAR).

As distance and bearing sensors sample at different times

and frequencies, the accuracy of the fused relative position

estimations may not be sufficient for highly accurate control.

Therefore, it is highly preferable to design an integrated

localization and formation control scheme to achieve desired

configuration via bearing-only or range-only measurements.

The authors in [26], [27] have proposed integrated schemes

by using deterministic and probabilistic approaches for relative

localization and formation control of multi-agent systems, re-

spectively. However, notice that the localization and formation

errors converge to zero only if the initial relative positions

between agents are exactly known since the two objectives

are conflicting, i.e., relative localization requires persistently

excited measurements while formation control aims to keep
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agents relatively stationary. Furthermore, observe that most of

the existing research on cooperative formation control focus

on spatial cooperation, i.e., using inter-node measurements,

while the other essential perspective, temporal cooperation

which can be embodied as intra-node measurements, is not

fully exploited. Some related ideas can be found in [12] and

the references therein.

Motivated by the above observations, the first contribution

of this work is to generalize the distance-based docking [15]

to distance-based relative docking. This generalization is non-

trivial since the distance measurement in the former can

directly indicate whether the mission has been completed, i.e.,

zero distance measurement implies the exact docking, which

is not the case for the latter. Inspired by the multi-lateration

method in localization, we propose a novel motion controller

which is triggered at several time instants (the number of trig-

gering depends on the dimension and required accuracy) such

that the distances measured at those time instants can signal

the completion of a mission. Furthermore, the convergence of

the system employing the proposed controller is proved via

the discrete-time Lasalle’s invariance principle [28] provided

that the triggering positions satisfy some mild condition.

Secondly, we further extend this idea to the formation

control problem and address the inherent conflict aroused in

integrated localization and formation control [26] by applying

the diminishing persistent excitation idea [13]–[15] or the

adaptive radius assignment idea in [24]. The main idea is that

each agent is performing a deliberate motion whose amplitude

decreases with the formation error, which is delineated by

the distance measurements at several triggering time instants.

Compared to [24], [26], this work inherits the practicality

of [15] by considering discrete-time formulation and input

saturation; more importantly, the formation error is proved

to converge to zero globally asymptotically under a proper

parameter setting. Our proposed controllers require weaker

graphical condition (directed acyclic graphs instead of being

distance rigid) compared to [24] and take an explicit and

continuous expression compared to [23], where only a descrip-

tive stop-and-go strategy was given. Moreover, our proposed

scheme can deal with high dimensional spaces while [23],

[24], [26] can only achieve formation control in 2D space.

A preliminary version of this work can be found in [29],

where only the relative docking problem of a single robot is

considered.

The remainder of this paper is structured as follows. Section

II introduces some preliminaries and formulates the problems.

Section III presents an integrated localization and navigation

scheme for relative docking of a single robot. Section IV

further extends this scheme to the integrated localization and

formation control of multiple robots. Simulation results are

given in Section V and the conclusion is finally drawn in

Section VI.

II. PRELIMINARIES

A. Notations

Throughout the paper, R,R+ and R≥0 denote the sets of real

numbers, positive real numbers and nonnegative real numbers,

respectively. Let Z+ and Z≥0 represent the sets of positive

integers and nonnegative integers, respectively. Rn and R
m×n

denote the sets of n-dimensional real vectors and m× n real

matrices, respectively. |c| is the absolute value of c ∈ R. Let

‖x‖ and ‖x‖∞ denote the 2 norm and infinity norm for a

vector x ∈ R
n. Given a matrix A ∈ R

n×n, A⊤, A−1 and ‖A‖
are its transpose, inverse and induced 2 norm, respectively.

Let Diag{a1, a2, · · · , an} (Diag{A1, A2, · · · , An}) be the

diagonal (block-diagonal) matrix with ai (Ai) being its i-th
diagonal entry (block). Let In ∈ R

n×n be the identity matrix

of dimension n× n and 0n the n-dimensional column vector

with all entries of 0 or n×n zero matrix conformed to context.

Let ⊗ denote the Kronecker product. Define In ≔ {1, · · · , n}
and Card(I) denotes the cardinality of a given set I.

B. Graph Theory

A directed graph is defined as G = (V, E), where V and

E ⊆ V × V denote the node set and edge set, respectively.

Agent j is regarded as a neighbor of agent i if (j, i) ∈ E ,

which means agent i can access the information of agent

j. The neighbor set of agent i is denoted as Ni = {j :
(j, i) ∈ E , j ∈ V , j 6= i}. A walk is an ordered sequence

of nodes such that any two consecutive nodes in the sequence

correspond to an edge of the digraph. A path is a walk with

no repeated vertices, i.e., a sequence of vertices v1, · · · , vk
with (vi, vi+1) ∈ E , ∀i ∈ Ik−1 is called a path from node v1
to node vk. |(v1, vk)| denotes the length of the path from v1
to vk. A cycle is defined as a walk which starts and ends at

the same node with all other nodes on the walk being distinct.

A digraph without cycles is a directed acyclic graph (DAG).

The adjacency matrix A = (aij) ∈ R
N×N of G is defined as

follows: aij > 0 if (j, i) ∈ E and aij = 0 otherwise, i, j ∈ V .

In addition, we assume that G does not include self loops, i.e.,

aii = 0, ∀i ∈ V . The degree matrix of graph G is defined

as D = Diag{deg1, deg2, · · · , degN} ∈ R
N×N , where

degi =
∑N

j=1 aij . The Laplacian matrix of G is then defined

as L = D − A ∈ R
N×N . A leader node labeled 0 is added

to the graph G with ai0 > 0 if agent i can access agent 0’s

information and ai0 = 0 otherwise. Denote the resultant graph

by G = (V, E) with Ni = {j : (j, i) ∈ E , j ∈ V, j 6= i} and let

a0i = 0 for all i ∈ V and L0 = L+Diag{a10, a20, · · · , aN0}.

C. Problem Statement

1) Single robot relative docking: Consider a single robot

whose motion is modeled by single-integrator with bounded

input:

pk+1 = pk + Tuk, ‖uk‖∞ ≤ U, (1)

where pk ∈ R
n, T and U denote the position of the robot

at time instant k, the sampling period and maximal velocity,

respectively. Given a fixed landmark at an unknown position

p∗ ∈ R
n (n = 2, 3), we aim to dock a robot to a position

relative to p∗ by x∗ ∈ R
n, i.e.,

lim
k→∞

pk = p∗ + x∗, (2)

based on range measurements dk = ‖pk − p∗‖ and odometry

measurements φk = Tuk. The problem can be formally

defined as follows:
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Problem II.1. Given the relative position x∗, design a con-

troller uk based on the distance measurements dk = ‖pk−p∗‖
and self displacements, such that pk → p∗ + x∗ as k → +∞.

2) Multi-robot formation control: Consider a team of N
robots with single-integrator dynamic model:

pik+1 = pik + Tui
k, ‖ui

k‖∞ ≤ U, i ∈ V, (3)

where pik ∈ R
n and ui

k ∈ R
n denote the position and

control input of robot i, respectively. Given a fixed landmark

at an unknown position and assume that part of robots have

range measurements to the landmark, we aim to cooperatively

navigate the team of robots to the prescribed relative position

x∗
i , i ∈ V , i.e.,

lim
k→∞

pik = p∗ + x∗
i , i ∈ V, (4)

based on range measurements dijk = ‖pik−pjk‖, odometry mea-

surements φi
k = Tui

k and local communications. In the above,

the underlying graph for measurements and communications is

described by G (defined in Sec. II-B) with the landmark being

the leader node labeled “0”. We formally state the problem as

follows:

Problem II.2. Given relative positions x∗
i to p∗, i ∈ V ,

design a distributed controller ui
k for each robot i, where

only the distance measurements dijk = ‖pik − pjk‖, j ∈ N i,

self displacements and local communications are available,

such that pik → p∗ + x∗
i , i ∈ V , as k → +∞.

The following assumption is presented first.

Assumption II.3. G satisfies the following conditions:

1) G is a directed acyclic graph with the landmark “0”

being the root; and

2) the inequality
∑

j∈N i

aij < 1, (5)

holds for all i ∈ V .

Remark II.4. Assumption II.3 is mild and can be easily

fulfilled. DAGs are a general class of graphs, which have

been widely used in formation control with leader-follower

architectures [30], [31]. Given a general topology, we can

select a DAG as in [32]. (5) can be easily satisfied by choosing

aij according to Card(N i) [33].

G has a hierarchical structure and can be partitioned into

L + 1 layers according to the longest path from 0 to i, i.e.,

V = ∪L
l=0Vl with V0 = {0} and Vl = {i ∈ V : max |(0, i)| =

l}, l ∈ IL. Additionally, for each agent i ∈ Vl, one has

j ∈ Ul−1 ≔ ∪l−1
m=0Vm for its neighboring agent j ∈ N i.

Therefore, G can be considered as a concatenation of L layers

of leader-follower structures with Ul−1 and Vl (l ∈ IL) being

the leader(s) and the follower(s) in each structure, respectively.

Remark II.5. It can be found that Problem II.1 is the simplest

case of Problem II.2 when L = 1, V1 = {1} and no local

communications are involved. We will first address the former

in the next section as a stepping stone to handle the latter,

which is more complicated. Nevertheless, these two problems

Fig. 1: An illustration of the robot’s control diagram for rela-

tive docking. dk and φk are from range sensor and odometer,

respectively. dkχ
is range measurement at some triggering time

instant, which will be elaborated in subsection III-A.

may have different potential applications: the former can

be applied to many cases in adversarial environments (no

GPS signal is available and anchor cannot be placed exactly

at the target position), ranging from airdrops for disaster

relief or water tanks for forest fire-fighting, to navigation of

various unmanned vehicles [34]; the latter can be applied to

environmental monitoring with large-scale swarms subject to

limited budgets since it has weaker requirements on sensor

measurements.

III. INTEGRATED LOCALIZATION AND NAVIGATION FOR

RELATIVE DOCKING

In this section, we present an integrated localization and

navigation scheme to tackle Problem II.1. Specifically, as

shown in Fig. 1, we design an adaptive estimator for estimating

the desired docking position with distance measurements from

range sensor and self displacements from odometer. Then

this estimate is used in the proposed motion controller for

navigating the robot to the desired docking position.

A. Adaptive Estimator

Let qk = pk − (p∗ + x∗) and q̂k be the estimate of qk. It

follows from (1) that

qk+1 = qk + φk. (6)

On the other hand, notice that

d2k+1 − d2k = ‖pk+1 − p∗‖2 − ‖pk − p∗‖2
= ‖qk+1 + x∗‖2 − ‖qk + x∗‖2

= ‖φk‖2 + 2φ⊤
k (qk + x∗),

(7)

from which the following adaptive updating law can be

designed:

q̂k+1 = q̂k + φk + Γφkǫk+1, (8)

where ǫk+1 = 1
2 (d

2
k+1−d2k−‖φk‖2)−φ⊤

k (q̂k+x∗) = φ⊤
k (qk+

x∗)− φ⊤
k (q̂k + x∗), Γ ∈ R

n×n and 0 < Γ < γIn.

B. Motion Controller

We first introduce a function f and a periodic signal σk that

will be used in our proposed motion controller.

f : R≥0 → R≥0 is a function satisfying the following

assumption:

Assumption III.1. f(0) = 0, and 0 < f(x) ≤ x, ∀x > 0.
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σk is an external signal generated from an autonomous

system [15]:
ρk+1 = Π(ρk),

σk = Σ(ρk), k ∈ Z≥0,
(9)

where Π(·) and Σ(·) are two continuous mappings to be

chosen. The autonomous system (9) is introduced for reconcil-

ing two conflicting objectives: adaptive estimation of docking

position and navigation. In other words, the adaptive estimator

(8) requires excited motion for convergence, while the motion

controller tends to navigate the robot to a fixed position.

Thus, the autonomous system needs to persistently perturb

the robot’s motion until reaching the docking point, and the

magnitude of the perturbation should decrease as the robot

approaches the docking point. Specifically, σk is required to

be constructed such that the following assumption holds:

Assumption III.2. [15] 1) ρk is bounded, ∀k ∈ Z≥0, and

supk∈Z≥0
‖σk‖ ≤ 1; and

2) there exists some constant τ0 ∈ Z+ such that σk+τ0 = −σk,

∀k ∈ Z≥0 and Span{σ0, · · · , στ0−1} = R
n.

Remark III.3. 1) Assumption III.1 can be easily satisfied

by choosing f(x) = x and other choices can be found

in [13] and references therein;

2) For n = 2, Assumption III.2 can be fulfilled by

choosing ρ0 ∈ R
2 with ‖ρ0‖ = 1, Σ = I2 and

Π =

[

cos(2π/a) − sin(2π/a)
sin(2π/a) cos(2π/a)

]

with a ≥ 4 being an

even integer. For n = 3, ρ0 and Π remain the same

as in the case of n = 2 while Σ([ρ0,1 ρ0,2]
⊤) =

[b1ρ0,1 b1ρ0,2 b2(4ρ
3
0,1 − 3ρ0,1)]

⊤/(b21 + b22), ρ0 =
[ρ0,1 ρ0,2]

⊤ [15].

With a careful design of f and σk, a bounded motion

controller for the robot is proposed as follows:

uk = projU uk, uk = −βq̂k + Cf(ξk)σk, (10)

where projU (·) is a projection operator defined by

projU uk =
U

max(U, ‖uk‖)
uk ≔ skuk (11)

and

ξk = max(ζk, |dk − ‖x∗‖|),

ζk = max
χ∈{1,··· ,n}

(|‖x∗ −
k

∑

t=kχ

φt‖ − dkχ
|), n ≥ n,

(12)

with kχ being the time step triggering the running sum term
∑k

t=kχ
φt and dkχ

being the distance measurement at the

same time with respect to the landmark. In comparison with

[15], ζk is carefully designed by using accumulated odom-

etry measurements
∑k

t=kχ
φt = pk − pkχ

and past distance

measurement dkχ
, where pkχ

should be chosen properly and

its condition will be given later. In real implementation, the

running sum term will accumulate error with respect to time.

To alleviate this effect, we can apply the controller (8) in

[15] to quickly approach Sn−1(p∗, ‖x∗‖) first and choose pkχ

near Sn−1(p∗, ‖x∗‖). Furthermore, the running sum can be

Fig. 2: An illustration of triggering in 2-D.

replaced by subtracting the buffered fused estimates (by on-

board camera and IMU) of position at the triggering time

instants from the current fused estimates, which is obtained

from the off-the-shelf flight controller.

We first provide some insight of our controller design.

Suppose n = n = 2, then the three constraints in ξk = 0 form

three circles which can be expressed by dk = ‖pk − p∗‖ =
‖x∗‖ and dkχ

= ‖pk − (pkχ
+ x∗)‖, χ = 1, 2, see Fig. 2. The

intersection point corresponds to pk = p∗ + x∗. This idea is

closely related to multi-lateration approaches, if we regard p∗,

pk1
+ x∗ and pk2

+ x∗ as the positions of three transmitters

and p∗ + x∗ as that of a receiver. However, whether p∗ + x∗

can be uniquely determined depends on the choice of pkχ
, and

we need the following assumption.

Assumption III.4. The coordinates of n triggering points

{pkχ
}nχ=1 satisfy Rank([· · · , pkχ

− p∗ + x∗, · · · ]) = n,

χ = 1, · · · , n.

Remark III.5. Compared with docking problem [15], where

a single range measurement implies exact docking, i.e., dk =
0 ⇒ pk = p∗, it is not the case for relative docking, i.e.,

dk = ‖x∗‖ 6⇒ pk = p∗ + x∗. Therefore, relative docking is

more challenging and require more measurements ((12)) which

satisfy certain condition (Assumption III.4).

Remark III.6. Assumption III.4 can be easily fulfilled, e.g.,

the agent can move n − 1 random step(s) and record the

displacement(s) and distance measurement(s) at the beginning.

This idea shares some similarity with the station keeping

problem [14]; actually, our method can be considered as

putting n artificial landmarks along the motion trajectory in

addition to the fixed landmark at p∗. However, [14] requires

GPS which may not be available for many environments.

Furthermore, we consider the discrete-time controller design,

which can be implemented directly. The strategy of a mobile

sensor triplet unit (MSTU) in [35] can be regarded as a special

case of (12), where we can replace the term
∑k

t=kχ
φt and dkχ

with a known spacing between two receivers and the distance

measurement of one of them, respectively.
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C. Stability Analysis

In this section, we shall provide the stability analysis of the

closed-loop system in the integrated scheme. To this end, the

following result should be presented firstly.

Lemma III.7. If Assumption III.4 holds, then ξk = 0 implies

pk = p∗ + x∗.

Proof. Let q∗ = p∗ + x∗ and qχ = pkχ
− p∗. ξk = 0 implies

‖pk − q∗ + x∗‖ = ‖x∗‖ and ‖pk − q∗ − qχ‖ = ‖qχ‖. Taking

square on both sides, one has

‖pk − q∗‖2 = −2(pk − q∗)⊤x∗,

‖pk − q∗‖2 = 2(pk − q∗)⊤qχ, χ = 1, · · · , n
(13)

Subtracting them, we have (pk − q∗)⊤(qχ +x∗) = 0 for all

χ = 1, · · · , n, and pk = q∗ if Rank([· · · , qχ + x∗, · · · ]) = n.

Remark III.8. Assumption III.4 is sufficient but not necessary

since ξk = 0 ⇒ pk = q∗ still holds if q∗ lies on the surface

of the simplex formed by at most n + 1 elements in {p∗} ∪
{pkχ

+ x∗}nχ=1. For example, if x∗ = 0, we can simply set

ζk = 0, and recover the controller for the docking problem

studied in [15].

In the following two propositions, we establish the condi-

tions of control gains for guaranteeing the boundedness of the

closed-loop system.

Proposition III.9. Under the adaptive estimator (8), q̃k ≔
q̂k − qk ∈ ℓ∞ and ǫk ∈ ℓ∞ ∩ ℓ2 if

γ(TU)2 < 2. (14)

Proof. See Appendix A.

Proposition III.10. Under the motion controller (10), there

exists a constant M such that lim supk→∞ ‖qk‖ ≤ M if

condition (14) holds and

C < β < 1/T. (15)

Proof. See Appendix B.

Now, we are ready to establish the convergence result of

the relative docking.

Theorem III.11. Under Assumptions III.1, III.2 and III.4,

Problem II.1 with dynamic model (1) can be solved by

adopting adaptive estimator (8) and motion controller (10)

with gains satisfying (14) and (15).

Proof. The overall system under controller (6), (8), (10) and

(9) can be written as

qk+1 = qk + φk,

q̃k+1 = (I − γφkφ
⊤
k )q̃k,

ρk+1 = Π(ρk).

(16)

By the boundedness result of Propositions III.9 and III.10,

as well as Assumption III.2, we can invoke Lasalle’s invariance

principle [28] to show that all trajectories will converge to the

largest invariant set M included in {[q⊤k , q̃⊤k , ρ⊤k ]⊤ ∈ R
3n |

∆Vk = 0}, where V is the Lyapunov function defined in the

proof of Proposition III.9. It suffices to show that qk ≡ 0 holds

for any trajectory {[q⊤k , q̃⊤k , ρ⊤k ]⊤}k∈Z≥0
in M.

By (30), we have ∆Vk ≡ 0 iff ǫk+1 = −φ⊤
k q̃k ≡ 0, which

also follows from (29) that q̃k ≡ q̃ss for some constant q̃ss.

It suffices to show that φ⊤
k q̃k ≡ 0 is equivalent to qss = 0.

Consider the following three cases:

1) φk 6≡ 0 and q̃ss 6= 0. In this case, since

0 ≡ φ⊤
k q̃k = (qk+1 − qk)

⊤q̃ss = (q̂k+1 − q̂k)
⊤q̃ss,

one has q̂⊤k q̃
ss ≡ c† for some constant c† ∈

R. Moreover, 0 ≡ φ⊤
k q̃

ss also implies that 0 ≡
φ⊤
k q̃

ss = [−βq̂k + Cf(ξk)σk]
⊤q̃ss, or equivalently

βc† ≡ βq̂⊤k q̃
ss = Cf(ξk)σ

⊤
k q̃

ss. Specifically, we have

f(ξk)σ
⊤
k q̃

ss = f(ξk+τ0)σ
⊤
k+τ0

q̃ss. Next we establish

f(ξk) > 0 by contradiction. Suppose f(ξk) = 0, then

ξk = max(ζk, |dk − ‖x∗‖|), or equivalently dk = ‖x∗‖
and ‖x∗ − ∑k

t=kχ
φt‖ = dkχ

for χ ∈ {1, · · · , n},

which implies pk = p∗ + x∗ by Assumption III.4 and

Lemma III.7. Then it follows from uk = −βq̂k = −βq̃ss

that φ⊤
k q̃

ss = Tsku
⊤
k q̃

ss = −βTsk‖q̃ss‖2 6= 0, a

contradiction. Therefore, f(ξk) > 0, ∀k ∈ Z≥0. On the

other hand, by σk+τ0 = −σk, we have

[f(ξk) + f(ξk+τ0)]σ
⊤
k q̃

ss ≡ 0. (17)

It follows from f(ξk) > 0 that σ⊤
k q̃

ss ≡ 0. By

Assumption III.2, q̃ss can be expressed as a linear

combination of {σm}τ0−1
m=1 , i.e., q̃ss =

∑τ0−1
m=0 c

‡
mσm

for some constants c‡m ∈ R, then one has ‖q̃ss‖2 =
q̃ss⊤

∑τ0−1
m=0 c

‡
mσm = 0, another contradiction.

2) φk ≡ 0. In this case, one has uk = −βq̂k+Cf(ξk)σk =
0, qk ≡ qss, q̂k ≡ q̂ss and ξk ≡ ξss. On the other hand,

uk = −βq̂ss + Cf(ξss)σk = 0,

uk+τ0 = −βq̂ss + Cf(ξss)σk+τ0 = 0,
(18)

which hold only if q̂ss = 0 and ξss = 0. It follows from

Assumption III.4 and Lemma III.7 that pss = p∗ + x∗,

i.e., qss = 0.

3) q̃ss = 0. One has

qk+1 = qk + Tsk(−βqk + Cf(ξk)σk), (19)

then ∆Mk ≤ −Tsk(β−C)‖qk‖, which implies that qk
converges to 0 for each trajectory.

This completes the proof.

Remark III.12. It can be seen that the parameter settings in

Propositions III.9 and III.10 are the same with that in [15]

while the key differences lie in analysis, i.e., the use of reverse

triangle inequalities (31) and the proof of the global stability

of qss = 0 with the sophisticated design of ξk.

IV. INTEGRATED LOCALIZATION AND FORMATION

CONTROL

In this section, we aim to generalize the distance-based

relative docking to multi-robot formation control, where an

integrated localization and formation control scheme is pro-

posed to tackle Problem II.2. If each robot can measure

the distance w.r.t. the landmark, then the formation control
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Fig. 3: An illustration of the control scheme for cooperative

formation control. Each rounded rectangular represents a robot

whose internal control diagram is the same with Fig. 1. The

arrow from j to i denotes information transmissions through

communication and local distance measurements w.r.t. robot

j, j ∈ N i ⊂ Ul−1.

problem can be solved via applying (8) and (10) to each

robot. However, it puts a heavy burden of communication on

the landmark, and compromises the robustness in the case of

link failure. Therefore, we would leverage on the cooperation

among agents and design a distributed cooperative estimator

and a motion controller for each agent which can communicate

with and measure its distance to neighbors, but not necessarily

to the landmark. In communication, we assume that each

agent can transmit its own displacement measurements and

their estimates of relative positions w.r.t. the landmark to its

neighbors, see Fig. 3.

A. Cooperative adaptive estimator for localization

Denote the relative position to the desired docking position

by qik = pik − (p∗ + x∗
i ) and its estimate by q̂ik. Denote pijk =

pik −pjk and p̂ijk its estimate. Let qijk = qik − qjk, x∗
ij = x∗

i −x∗
j

and φij
k = φi

k − φj
k, p0k = p∗, x∗

0 = q0k = 0 and φ0
k = 0.

Observe that

dij
2

k+1 − dij
2

k = ‖pijk+1‖2 − ‖pijk ‖2

= ‖pijk + φij
k ‖2 − ‖pijk ‖2

= ‖φij
k ‖2 + 2φij⊤

k pijk ,

(20)

from which the following adaptive updating law can be

designed:

p̂ijk+1 = p̂ijk + φij
k + Γφij

k ǫ
ij
k+1, ∀(i, j) ∈ E , (21)

where ǫijk+1 = 1
2 (d

ij2

k+1−dij
2

k −‖φij
k ‖2)−φij⊤

k p̂ijk = φij⊤
k pijk −

φij⊤
k p̂ijk . Then a consensus-based estimator for each i ∈ V can

be designed as:

q̂ik+1 = q̂ik + φi
k +

∑

j∈N i

aij(p̂
ij
k − (q̂ik + x∗

i − q̂jk − x∗
j )). (22)

In the above, (21) is designed for estimating the relative

position of neighbors, which are further fed into (22) to

estimate the relative position to the landmark.

B. Cooperative motion controller

We assume that each agent i generates σi
k according to

the autonomous system (9), which satisfies the following

assumption.

Assumption IV.1. For each i ∈ V ,

1) ρik is bounded, ∀k ∈ Z≥0, and supk∈Z≥0
‖σi

k‖ ≤ 1; and

2) there exists some constant τi ∈ Z+ such that σi
k+τi

=
−σi

k, ∀k ∈ Z≥0 and Span{σi
0, · · · , σi

τi−1} = R
n.

For robot i, the bounded input is designed as:

ui
k = projU ui

k, u
i
k = −βq̂ik + Cf(ξik)σ

i
k, (23)

where

ξik = max
j∈N i

ξijk ,

ξijk = max(ζijk , |dijk − ‖x∗
ij‖|),

ζijk = max
χ∈{1,··· ,nij}

(|‖x∗
ij −

k
∑

t=kχ

φij
t ‖ − dijkχ

|), nij ≥ 0.

(24)

In the above, we denote nij as the number of triggering

instants of agent i for agent j, and we require the following

assumption:

Assumption IV.2. For each i ∈ V , the coordinates of {x∗
j :

j ∈ N i} ∪ (∪j∈N i
{pijkχ

}nij

χ=1) satisfy

Rank([x∗
jm, · · · , (pijkχ

+ x∗
im), · · · ]) = n,

where j,m ∈ N i, χ = 1, · · · , nij .

Remark IV.3. Note that the above assumption is different

from Assumption III.4 as now we may rely on more than one

neighbor to fulfill the relative localization. If agent i has less

than n + 1 neighbors, it requires some artificial constraints

generated from ζijk in (24) such that Assumption IV.2 can be

satisfied. Otherwise, if agent i has no less than n+1 neighbors

and their desired formation is generic, then no other artificial

constraints are needed.

Remark IV.4. Our method can be interpreted as spatio-

temporal cooperative formation control, i.e., in addition to

the spatial cooperation of inter-node distance measurements,

we further exploit the temporal cooperation of intra-node

displacement measurements. This setting shares some similar-

ity with [24], where each agent performs a circular motion

with different periods. However, [24] requires the signals

to be commensurate for Fast Fourier Transform, which is a

stronger requirement than Assumption III.2. Moreover, global

stability and applicability in high dimensional spaces can be

established by using our method with a weaker graphical

condition, i.e., DAG.

Remark IV.5. Collision avoidance is not explicitly considered

in our controller design. However, in practical implementation,

it can be incorporated in the low-level motion controller by

using techniques such as that in [36].
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C. Stability Analysis

In this subsection, we aim to analyze the stability of the

integrated localization and formation control system. We prove

the boundedness of signals under proper parameter settings

and establish the convergence result by virtue of Lasalle’s

invariance principle.

Proposition IV.6. Under the adaptive estimator (21), p̃ijk ≔
p̂ijk − pijk ∈ ℓ∞ if

γ(2TU)2 < 2. (25)

Proof. See Appendix C.

Proposition IV.7. Under Assumption II.3 and the adaptive

estimator (21) and (22), q̃ik ≔ q̂ik − qik ∈ ℓ∞ if condition (25)

is satisfied.

Proof. See Appendix D.

Proposition IV.8. Under Assumption II.3 and the mo-

tion controller (23), there exists a constant Mi such that

lim supk→∞ ‖qik‖ ≤ Mi, i ∈ V , if the conditions in Propo-

sition IV.7 and (15) hold.

Proof. See Appendix E.

Consider agent i ∈ Vl, whose dynamics can be rewritten as:

qik+1 = qik + Tφi
k,

q̃ik+1 = q̃ik −
∑

j∈N i

aij(q̃
i
k − q̃jk) + υi,

p̃ijk+1 = (I − Γφij
k φ

ij⊤
k )p̃ijk ,

ρik+1 = Π(ρik),

(26)

where j ∈ N i ⊂ Ul−1. When all neighbors j are located at the

desired position p∗+x∗
j , we have φj

k = 0 and φij
k = φi

k. Hence,

we consider (26) as a cascade system with
∑

j∈N i
aij q̃

j
k being

an input to the following unforced system

qik+1 = qik + Tφi
k,

q̃ik+1 = q̃ik −
∑

j∈N i

aij(q̃
i
k − p̃ijk ),

p̃ijk+1 = (I − Γφi
kφ

i⊤
k )p̃ijk ,

ρik+1 = Π(ρik).

(27)

The following results are presented to characterize the state

trajectory of (27).

Proposition IV.9. Let qssj = 0, q̃ssj = 0,
∑

w∈N j
p̃ssjw = 0 hold

for all j ∈ N i. Under Assumptions II.3, III.1, IV.1 and IV.2,

qik, q̃ik and
∑

j∈N i
aij p̃

ij
k converge to 0 for each trajectory of

the unforced system (27) if gains are chosen to satisfy (25)

and (15).

Proof. See Appendix F.

Now, we are ready to present the following result.

Theorem IV.10. Under Assumptions II.3, III.1, IV.1 and IV.2,

Problem II.2 can be solved by adopting cooperative adaptive

estimators (21) and (22), and motion controller (23) with gains

being chosen to satisfy (25) and (15).

Proof. We prove this by considering agent i ∈ Vl where l
is taken from 1 to L. For i ∈ V1, it can be found that qik,

q̃ik and
∑

j∈N i
aij p̃

ij
k converge to 0 for each trajectory of

the system by Theorem III.11. Then considering i ∈ V2,

one has qik, q̃ik and
∑

j∈N i
aij p̃

ij
k converge to 0 for each

trajectory of unforced system (27) in view of Proposition

IV.9. By Propositions IV.6, IV.7 and IV.8, one gets that every

orbit of system (26) is bounded in the future. Then it follows

from Theorem 1.1 in [37] that qssi = 0, i ∈ U2, is globally

asymptotically stable. Traversing all the nodes until l = L,

one has qssi = 0, ∀i ∈ V and this completes the proof.

V. SIMULATION EXAMPLES

In this section, we will present two sets of simulation

examples: one set for relative docking of a single robot

in 2-D and 3-D spaces, respectively; and the other set for

formation control of N = 3 robots in 2-D and 3-D spaces,

respectively. The parameters for relative docking are set as

follows: U = 0.75m/s, T = 0.1s, γ = 10, a = 36,

β = 2, C = 1, q̂0 = 0, ρ0 = [1 0]⊤, b1 = b2 = 1. p∗

and x∗ are set as [5 5]⊤ (resp. [5 5 5]⊤) and [5
√
3 − 5]⊤

(resp.
√
2[5

√
3 − 5 10]⊤/2) for 2-D (resp. 3-D). Π and Σ

are chosen according to Remark III.3. For formation control

simulations, let x∗ = [x∗⊤
1 , x∗⊤

2 , x∗⊤
3 ]⊤ = 10[0 1 − 1 0 1 0]⊤

(10[1 1 0 0 1 1 1 0 1]⊤ for 3-D, which describes a regular

tetrahedron), a = [a1, a2, a3]
⊤ = [24 36 24]⊤,

A =
1

4





0 0 0
0 0 0
1 1 0



 , (28)

a10 = a20 = 1/4 and other parameters remain the same

as in the relative docking tasks. The trajectories of a single

robot (denoted by green solid lines) with 2-D and 3-D relative

docking tasks are recorded in Figs. 4 and 6, respectively. Figs.

7 and 8 show the trajectories of robots with 2-D and 3-D

formation control tasks, respectively. It can be found that all

of the robots (red asterisks) converge to their desired positions

(red circles) asymptotically. Fig. 5 shows the states of the robot

with 2-D relative docking task.

In addition, additive white Gaussian noises with zero mean

and variance of 10−4 have been added to both distance and

odometry measurements. The trajectories of robots are denoted

by light blue dash-dot lines as shown in Figs. 4, 6, 7 and 8.

It can be found that the robots (denoted by red pentagrams)

converge to a small neighborhood of the desired positions.

VI. CONCLUSION

In this paper, we have addressed the distance-based relative

docking problem for a single robot and the distance-based

spatio-temporal cooperative formation control problem for

multiple robots. The former has been tackled by introducing

multiple constraints constructed from measurements at sev-

eral proper triggering time instants along motion trajectory.

Furthermore, this idea has been extended to handle the lat-

ter problem such that the desired formation control can be

achieved for directed acyclic graphs without using relative

position measurements as the temporal cooperation has been
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Fig. 4: The trajectory of robot with 2-D relative docking task.

Trajectories under noise-free and noisy cases are denoted by

green solid and light blue dash-dot lines, respectively. Figs. 6,

7 and 8 use the same legends.
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Fig. 5: States of robot with 2-D relative docking task (noise-

free case).

Fig. 6: The trajectory of robot with 3-D relative docking task.
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Fig. 7: Trajectories of robots with 2-D formation control task.

Fig. 8: Trajectories of robots with 3-D formation control task.

exploited. For both cases, the results of global asymptotical

convergence have been rigorously established via discrete-time

Lasalle’s invariance principle.

Future work can be on the experimental validation and

generalization to more general graphs (e.g. with cycles).

APPENDIX

A. Proof of Proposition III.9

It follows from (6), (8) and ǫk+1 = −φ⊤
k q̃k that

q̃k+1 = q̃k + Γφkǫk+1 = (I − Γφkφ
⊤
k )q̃k. (29)

Let Vk = q̃⊤k Γ
−1q̃k and ∆Vk = Vk+1 − Vk, one has

∆Vk = −ǫ2k+1(2− φ⊤
k Γφk). (30)

If γ(TU)2 < 2, φ⊤
k Γφk = γ‖φk‖2 ≤ γ(TU)2 < 2, or

equivalently, ∆Vk ≤ 0. Thus, one has Vk ≤ Vk−1 ≤ · · · ≤
V0, i.e., q̃k is bounded. On the other hand, it follows from
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the boundedness of φk that ǫk+1 is also bounded. ǫk+1 ∈
ℓ2 follows from

∑∞
k=0 ∆Vk = −∑∞

k=0 ǫ
2
k+1(2 − γ‖φk‖2) =

limk→∞ Vk+1 − V0 ≤ 0.

B. Proof of Proposition III.10

Let Mk = ‖qk‖ and ∆Mk = Mk+1 −Mk. One has

∆Mk = ‖qk + Tsk(−βqk − βq̃k + Cf(ξk)σk)‖ − ‖qk‖
≤ |1− βTsk|‖qk‖+ βTsk‖q̃k‖

+ CTsk|f(ξk)|‖σk‖ − ‖qk‖
≤ |1− βTsk|‖qk‖+ βTsk‖q̃k‖

+ CTsk‖qk‖ − ‖qk‖,
where we used the triangular inequality in the second line,

while the last inequality follows from Assumption III.2, sk ∈
(0, 1] and f(ξk) ≤ ξk ≤ ‖qk‖ in view of Assumption III.1 and

the following reverse triangle inequalities

|dk − ‖x∗‖| = |‖pk − p∗‖ − ‖x∗‖|
≤ ‖(pk − p∗)− x∗‖
= ‖qk‖,

|‖x∗ −
k

∑

l=kχ

φl‖ − dkχ
| = |‖x∗ − (pk − pkχ

)‖ − ‖pkχ
− p∗‖|

≤ ‖(x∗ − (pk − pkχ
))− (pkχ

− p∗)‖
= ‖qk‖.

(31)

Moreover, βT < 1 implies that

∆Mk ≤ (1− βTsk + CTsk − 1)‖qk‖+ βTsk‖q̃k‖
= Tsk(C − β)‖qk‖+ βTsk‖q̃k‖

Therefore, it follows from β > C that there exists some

constant M ′ such that ∆Mk < 0 if ‖qk‖ ≥ M ′ as ‖q̃k‖
is bounded from Proposition III.9. Then one has ∆Mk < 0,

which completes the proof.

C. Proof of Proposition IV.6

It follows from (21) and ǫijk+1 = −φij⊤
k p̃ijk that

p̃ijk+1 = (I − Γφij
k φ

ij⊤
k )p̃ijk . (32)

Letting V ij
k = p̃ij⊤k Γ−1p̃ijk and ∆V ij

k = V ij
k+1 − V ij

k , one

has

∆V ij
k = −ǫij

2

k+1(2− φij⊤
k Γφij

k ). (33)

The rest of the proof follows that of Proposition III.9 and

‖φij
k ‖ ≤ 2TU (‖φi0

k ‖ ≤ TU ≤ 2TU ).

D. Proof of Proposition IV.7

By (22), one has

q̃ik+1 = q̃ik −
∑

j∈N i

aij(q̃
i
k − q̃jk) + υi, i ∈ V, (34)

where υi =
∑

j∈N i
aij p̃

ij
k .

Concatenating them together, one has

q̃k+1 = ((IN − L0)⊗ In)q̃k +Υ, (35)

where Υ = [υ⊤
1 , · · · , υ⊤

N ]⊤. By the proof of Theorem 4.2 in

[33], Assumption II.3 and (5) imply that (IN −L0) is a Schur

matrix and hence q̃k is bounded.

E. Proof of Proposition IV.8

We prove this by considering agent i ∈ Vl, where l is taken

from 1 to L.

Consider agent i ∈ V1, which only has the single neighbor

from V0 (landmark 0). It follows from Proposition III.10 that

lim supk→∞ ‖qik‖ ≤ Mi, ∀i ∈ V1.

Next, consider agent i ∈ V2, which only has neighbors from

previous layers U1. Let M i
k = ‖qik‖ and ∆M i

k = M i
k+1−M i

k.

By (23), one has

∆M i
k = ‖qik + Tsik(−βqik − βq̃ik + Cf(ξik)σ

i
k)‖ − ‖qik‖

≤ |1− βTsik|‖qik‖+ βTsik‖q̃ik‖
+ CTsik|f(ξik)|‖σi

k‖ − ‖qik‖
≤ |1− βTsik|‖qik‖+ βTsik‖q̃ik‖

+ CTsik‖qik‖+ max
j∈N i

CTsik‖qjk‖ − ‖qik‖,
(36)

where the last inequality results from the following reverse

triangle inequalities

|dijk − ‖x∗
ij‖| = |‖pijk ‖ − ‖x∗

ij‖|
≤ ‖(qijk + x∗

ij)− x∗
ij‖

= ‖qijk ‖ ≤ ‖qik‖+ ‖qjk‖,

|‖x∗
ij −

k
∑

t=kχ

φij
t ‖ − dijkχ

| = |‖x∗
ij − (pijk − pijkχ

)‖ − ‖pijkχ
‖|

≤ ‖x∗
ij − (pijk − pijkχ

)− pijkχ
‖

= ‖qijk ‖ ≤ ‖qik‖+ ‖qjk‖.
(37)

Since j ∈ N i ⊂ U1 by Assumption II.3 and the

boundedness of ‖qjk‖ is proved above, we can prove that

lim supk→∞ ‖qik‖ ≤ Mi, ∀i ∈ V2 by following the proof of

Proposition III.10.

Traversing all the nodes until l = L, one has

lim supk→∞ ‖qik‖ ≤ Mi, ∀i ∈ V , which completes the proof.

F. Proof of Proposition IV.9

By the boundedness result of Propositions IV.7, IV.6

and IV.8, as well as Assumption III.2, we can invoke

Lasalle’s invariance principle [28] to show all trajectories

will converge to the largest invariant set Mi included

in {[qi⊤k , q̃i⊤k , p̃ij⊤k , ρi⊤k ]⊤ ∈ R
(3+Card(N i))n | ∆V i

k =
∑

j∈N i
∆V ij

k = 0}, where V ij is the Lyapunov function

defined in the proof of Proposition IV.6. It suffices to show that

qik ≡ 0 holds for any trajectory {[qi⊤k , q̃i⊤k , p̃ijk , ρ
i⊤
k ]⊤}k∈Z≥0

in Mi.

It follows from (33) that ∆V i
k ≡ 0 iff ǫijk+1 = −φi⊤

k p̃ijk ≡
0, ∀j ∈ N i, which also follows from (32) and the sec-

ond equation of (27) that p̃ijk ≡ p̃ssij and q̃ik ≡ q̃ssi =
∑

j∈N i
aij p̃

ss
ij /

∑

j∈N i
aij . It suffices to show that φi⊤

k p̃ssij ≡
0, ∀j ∈ N i, is equivalent to qssi = 0. Similar to the proof

of Theorem III.11, we consider the following three cases: 1)

φi
k 6≡ 0 and ∃r ∈ N i, p̃

ss
ir 6= 0; 2) φi

k ≡ 0; and 3) ∀j ∈ N i,

p̃ssij = 0.

For Case 1), since

0 ≡ φi⊤
k p̃ijk = (qik+1 − qik)

⊤p̃ssij = (q̂ik+1 − q̂ik)
⊤p̃ssij (38)
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for all j ∈ N i, one has q̂i⊤k p̃ssij ≡ c†ij for some constant

c†ij ∈ R. On the other hand, 0 ≡ φi⊤
k p̃ssij also implies that

0 ≡ φi⊤
k p̃ssij = [−βq̂ik + Cf(ξik)σ

i
k]

⊤p̃ssij , or equivalently

βc†ij ≡ βq̂i⊤k p̃ssij = Cf(ξik)σ
i⊤
k p̃ssij . Specifically, we have

f(ξik)σ
i⊤
k p̃ssij = f(ξik+τij

)σi⊤
k+τij

p̃ssij , ∀j ∈ N i, where τij is

the least common multiple of τi and τj . Next we establish

f(ξik) > 0 by contradiction. Suppose f(ξik) = 0, one has

pik = p∗ + x∗
i by Assumption III.4, Lemma III.7 and the

fact that agent j is located at the desired position p∗ + x∗
j ,

∀j ∈ N i ⊂ Ul. Then it follows from ui
k = −βq̂ik = −βq̃ssi =

−β
∑

j∈N i
aij p̃

ss
ij /

∑

j∈N i
aij that ui

k is a linear combination

of p̃ssij , j ∈ N i. By (38), one has φi⊤
k p̃ssij = Tsiku

i⊤
k p̃ssij = 0,

which implies that ui
k is orthogonal to p̃ssij for all j ∈ N i, a

contradiction. Therefore, f(ξik) > 0, ∀k ∈ Z≥0.

On the other hand, by σi
k+τir

= −σi
k, we have

[f(ξik) + f(ξik+τir
)]σi⊤

k p̃ssir ≡ 0. (39)

It follows from f(ξik) > 0 that σi⊤
k p̃ssir ≡ 0. By Assumption

III.2, one has p̃ssir =
∑τi−1

m=0 c
‡
ij,mσi

m for some c‡ij,m ∈ R

and hence ‖p̃ssir ‖2 = p̃ss⊤ir

∑τi−1
m=0 c

‡
ij,mσi

m = 0, another

contradiction.

It can be easily obtained from Case 2) and 3) that qik, q̃ik and
∑

j∈N i
aij p̃

ij
k converge to 0 for each trajectory by following

the proof of Theorem III.11.
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