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Relative Entropy and the Multivariable
Multidimensional Moment Problem

Tryphon T. Georgiou, Fellow, IEEE

Abstract—Entropy-like functionals on operator algebras have
been studied since the pioneering work of von Neumann, Umegaki,
Lindblad, and Lieb. The best known are the von Neumann en-
tropy ( ) := trace( log ) and a generalization of the Kull-
back–Leibler distance ( ) := trace( log log ), ref-
ered to as quantum relative entropy and used to quantify distance
between states of a quantum system. The purpose of this paper is
to explore and as regularizing functionals in seeking solutions
to multivariable and multidimensional moment problems. It will
be shown that extrema can be effectively constructed via a suit-
able homotopy. The homotopy approach leads naturally to a fur-
ther generalization and a description of all the solutions to such
moment problems. This is accomplished by a renormalization of a
Riemannian metric induced by entropy functionals. As an appli-
cation, we discuss the inverse problem of describing power spectra
which are consistent with second-order statistics, which has been
the main motivation behind the present work.

Index Terms—Covariance realization, moment problem, multi-
variable, multidimensional, quantum entropy, spectral analysis.

I. INTRODUCTION

THE quantum relative entropy (Umegaki [78])

where are positive Hermitian matrices (or operators) with
trace equal to one, generalizes the Kullback–Leibler relative en-
tropy [52], just as the von Neumann entropy [64]

generalizes the classical Shannon entropy. They both inherit a
rather rich structure from their scalar counterparts and in partic-
ular, is jointly convex in its arguments as shown by Lieb
[57] in 1973, whereas is concave. The relative entropy orig-
inates in the quest to quantify the difficulty in discriminating be-
tween probability distributions and can be thought as a distance
between such. Its matricial counterpart can similarly be used
to quantify distances between positive matrices.

Entropy and relative entropy have played a central rôle in
thermodynamics in enumerating states consistent with data and,
thereby, used to identify “the most likely” ones among all pos-
sible alternatives. The measurement of a physical property in a
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classical setting is modeled via ensemble averaging (e.g., see
[30, Ch. 3])

where runs over all microstates corresponding to a scalar value
. Each microstate occurs with probability and is a

moment of the underlying probability distribution. Similarly,
quantum measurement is also modeled by averaging (as orig-
inally idealized by von Neumann, see, e.g., [77, Ch. 5], [43, p.
183])

where the ’s represent density matrices (positive Hermitian
with trace one), the ’s represent products of projection
operators, and “ ” denotes “conjugate-transpose.” Similar
expressions arise for the density operator when restricted to a
subsystem (partial trace [77, p. 185]) and also when measuring
“non-self-adjoint observables” (e.g., [81]). If the underlying
Hilbert space is infinite dimensional then the measurement
process can be modeled with a continuous analogue of the
above where the summation is replaced by an integral (e.g., see
[8]). These are instances of moment problems. More generally
we may consider

(1)

where are Hermitian positive matrices as well as its “con-
tinuous” counterpart

(2)

where represents a Hermitian-valued positive (density)
function on a support set and are
matrix-valued functions on . If the underlying distribution is
not absolutely continuous then we write

instead, where is such a positive Hermitian-valued measure.
The moment problem (1), (2) is typified by spectral anal-

ysis based on second-order statistics, especially in the context
of sensor arrays and of polarimetric radar. The echo at different
polarizations and/or at different wavelengths is being sampled
at a variety of sensor locations. It is usually the case that these
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samples are not independent and that the echo at different fre-
quencies, polarizations, etc., affects each sensor by a different
amount. Attributes of the scattering field (e.g., reflectivity at dif-
ferent wavelengths and polarization) and the relative position of
the array elements with respect to the scattering field are re-
sponsible for the variations in the vectorial echo. The vector
of attributes can be thought of as a vectorial input to the
array while the relative position and characteristics of its ele-
ments specify an transfer function matrix

...

to the sensor outputs. If the attributes are modeled
as a zero-mean vectorial stochastic process, independent over
frequencies, then

represents the vectorial output process. Similarly, if

is the complex conjugate transpose of the transfer
matrix corresponding to a second group of sensors, and if

designate the corresponding vector of outputs, then the
correlation matrix

gives rise to the matricial moment constraint on the spectral dis-
tribution of given in (2). On the other hand, (1) can be in-
terpreted when the power spectrum is discrete. A power den-
sity which matches the correlation samples aims at giving clues
about the makeup of the scattering field.

We address the moment problem in the above generality and
provide a way to answer the following:

i) does there exist a density function satisfying (1) and (2)?
ii) if yes, describe all density functions consistent with (1)

and (2).
In essence, the above questions go back to 1980, when Dick-

inson [21] raised the issue of consistency of two-dimensional
Markovian estimates. Consistency of scalar distributions was
taken up in the work of Lang and McClellan [53] and Lewis
[56]. Both references used entropy functionals and suggested
computational solutions to the first question when dealing with
scalar distributions. The present work follows in the footsteps
of these as well as of a rather extensive literature on inverse
problems [18], [19], [80], [54], [61], [17], [27], [55], [48], [9],
[46] having roots in the early days of statistical mechanics. The
key idea has been to seek extrema of entropy functionals—exis-
tence would guarantee solvability of the moment problem. How-
ever, the idea of using “weighted” entropy functionals to param-
etrize solutions originates in Byrnes, Gusev, and Lindquist [14]
in dealing with a moment problem with “degree constraints.” It

was followed up in [10], [11] for more general kernels, and in
[10], [38] where it was reformulated using the Kullback–Leibler
distance between sought solutions and positive “priors.”

Classical moment problems [1], [51] are closely related to an-
alytic interpolation ones, and as such, have been studied in great
generality, including their matrix-valued counterpart (see, e.g.,
[71]). However, analytic interpolation applies only when the in-
tegration kernels possess a very particular shift-structure similar
to that of a Fourier vector (see, e.g., [4], [23] and also [33], [34])
and is of limited use in the generality sought herein. It was the
recent interest in interpolation with a “complexity/degree con-
straint” which forced a departure from the groove of the clas-
sical theory—seeking a characterization of solutions of a cer-
tain degree. The “trigonometric moment problem with degree
constraint” was studied in [28] in both the scalar and the matri-
cial setting using degree and homotopy methods (see also [29],
[31]), motivated by Kalman [49] who raised the question of de-
termining interpolants of minimal degree. Subsequent literature
on analytic interpolation with “degree/complexity constraint”
dealt mostly with scalar problems (see, e.g., [32], [15], [25],
[16], and the references therein), and a most pertinent devel-
opment was the aforementioned use of minimizers of weighted
entropy functionals [14], [10] to construct solutions for gen-
eral kernels as well. Then Blomqvist et al. [6] studied matricial
Nevanlinna–Pick interpolation with similar tools. The frame-
work of the present work is similarly based on entropy func-
tionals and continues along the lines of [38] where the possi-
bility of using quantum relative entropies was brought up.

In view of a rather rich literature on quantum entropies, a
comment is in order as to other possible connections to the
present work. Besides the Umegaki–von Neumann entropy

studied in this paper, there is a plethora of alternatives
due to a dichotomy between matricial and scalar distribu-
tions [67], [66]. In particular, Araki’s theory [3], [58] helped
characterize a family of “quasi-entropies,” contractive under
stochastic maps. References [68], [69], [58] in particular
explore the Riemannian geometry they induce on density
matrices. It is an interesting question as to which among this
“garden of entropies,” besides the Umegaki–von Neumann
one, allows a convenient representation of solutions for general
moment problems. The approach we have taken leads us to
work mostly with an induced metric (a Jacobian related to the
Hessian of ). A suitable normalization then recovers any
solution of the moment problem as a corresponding extremal.
It is not known whether, the “weighted metrics,” e.g.,
in Section IV, are metrics induced by a quasi-entropy in the
language of Petz [68].

Finally, it is interesting to point out that, a counterpart for
discrete distributions relates to the theory of analytic centers in
semidefinite programming [7], [63]. In fact, a key construction
in this paper—a homotopy for the numerical computation of
solutions, is analogous to tracing paths of analytic centers in
interior point methods.

In Section II, we introduce five motivating examples. Sec-
tion III develops the geometry of matricial cones and the sig-
nificance of relative entropy as a barrier functional. In order to
simplify the exposition, we first deal with cones of constant ma-
trices and then with those of matrix-valued density functions.
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Except for technical differences, the two run in parallel. Finally,
Section IV discusses the parametrization of solutions to the mo-
ment problem, followed by concluding remarks (Section V) and
an Appendix with useful facts on matricial calculus.

II. MOTIVATING EXAMPLES

In this section, we present five examples that motivate our
study. For simplicity, the first two are developed in the context
of scalar distributions. The last three are intrinsically multivari-
able. In particular, the fourth example pertains to the connection
of the moment problem with analytic interpolation, and the fifth
relates to approximation by positive matrices. We return to the
first, fourth, and fifth example again later on in the paper.

A. Nonequispaced Arrays

Consider an array of sensors with three elements, linearly
spaced at distances and wavelengths from one another, and
assume that (monochromatic) planar waves, originating from
afar, impinge upon the array. This is exemplified in Fig. 1.

Assuming that the sensors are sensitive to disturbances orig-
inating over one side of the array, with sensitivity independent
of direction, the signal at the th sensor is typically represented
as a superposition

of waves arising from all spatial directions , where
is as usual the angular time–frequency (as opposed to “spa-

tial”), the distance between the th and the th sensor, the
wavenumber, and the amplitude and a random phase
of the -component. Typically, for various values of are
uncorrelated. The term in the exponent accounts for
the phase difference between reception at different sensors. For
simplicity, we assume that in appropriate units. Corre-
lating the sensor outputs we obtain

where represents power density, and
with and belonging to . Thus,

(3)

The only significance of our selection of distances between sen-
sors, that gave rise to the indexing set (3), is to underscore that
there is no algebraic dependence between the elements of the
so-called array manifold

(where “ ” denotes the transpose, is thought of as a column
vector, and ).

Given a set of values for , it is often important to de-
termine whether they are indeed the moments of a power density

, and if so to characterize all consistent power spectra. The
case of arrays with equispaced elements is very special and an-
swers to such questions relate to the nonnegativity of a Toeplitz

Fig. 1. Nonequispaced sensor array.

matrix formed out of the ’s. In the present situation nonneg-
ativity of

which, in the obvious indexing turns out to be

(4)

is only a necessary condition. The fact that it is not sufficient
(see e.g., [30, p. 786]) motivated the present study.

B. Two-Dimensional Distributions

The subject matter of multidimensional distributions received
considerable attention in the 1970s and early 1980s (e.g., see
[59]). However, despite the rich theory of analytic interpolation
and orthogonal polynomials in more than one variable, etc. (e.g.,
see [45], [73]), as pointed out by Dickinson [21], the analog of
the questions raised earlier never received a definitive answer.

For instance, consider the simplest possible planar grid

which is both regular and square. In fact, we may even assume
that . Then, consider the case where (monochromatic as
before) waves impinge upon sensors at the grid nodes, the sen-
sors are sensitive to reception on one side of their plane, the
waves are planar, originating from all possible directions in the
sky and uncorrelated over different directions, and that corre-
lations at the sensor outputs are taken. The array manifold in
this case becomes (after suitable normalization assumptions) the

array

with . This is quite standard (e.g., [47],
[79], [42]). Now, if denotes a positive scalar power den-
sity for the waves originating from (normalized) Euler angles
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then, correlation between the sensor outputs gives us a
matrix of covariance samples

The same two questions that we raised earlier are again relevant:
Given a array, how can we tell that it originates as sug-
gested above, and how can we characterize all power densities
that are consistent with the covariance samples ?

Lang and McClellan [53] considered “maximum entropy
spectra” and suggested evaluating those on a discrete grid.1

Lewis [56] considered a framework which is applicable
for answering the existence question, while [35] discussed
parametrization of solutions as well. The present contributions
allows addressing the most general situation where the sensor
array elements receive vectorial echoes and hence, as well
as are matrices.

C. Quantum Measurements

We temporarily adopt the language of quantum mechanics
as in, e.g., [65], and explain how this relates to the linear al-
gebraic framework in the Introduction. We then discuss a basic
academic paradigm which exemplifies the setting of the matri-
cial moment problem.

Let denote the density matrix of a quantum system com-
posed of two subsystems and . Each subsystem can be in
two states and , respectively. These can be thought of as
the vectors

and in

Then, the states of the combined system, where
, can be represented by a vector in . For instance,

corresponds to

where in the last equation is the Kronecker tensor product.
Accordingly, is a Hermitian trace one matrix formed
out of sums of Kronecker products of density matrices
of the two subsystem. Now, if represents the density matrix
of subsystem , then this can be obtained from via taking
the partial trace with respect to subsystem (e.g., see [65, pp.
106–107]). An important example is that of the Bell state with

1Lang and McClellan [53] were the first to point out that existence cannot
be guaranteed for the usual “entropy rate” functional log(�)d� unless the
dimension of S is one, cf. Theorem 4 below.

The partial trace then gives (see [65, pp. 106–107])

where is the identity matrix. If is represented as a
matrix as above, then

where

and, similarly, . The reverse task of charac-
terizing all possible based on a known is a (discrete)
moment problem.

D. State Statistics and Analytic Interpolation With Degree
Constraint

Consider the linear discrete-time state equations

for (5)

where is
a controllable pair, and the eigenvalues of lie in the open unit
disk of the complex plane. Let be a zero-mean
stationary stochastic process with power spectrum the nonnega-
tive matrix-valued measure on . Then, under
stationarity conditions, the state covariance

can be expressed in the form of the integral (cf. [60, Ch. 6])

(6)

where

is the transfer function of system (5). Note that we use to
denote the transform of the delay operator and therefore
is analytic in the unit disc of the complex plane.

It turns out that state covariances are characterized by the
following two equivalent conditions (see [33], [34]):

(7)

and

for some (8)

Then, power spectral measures consistent with (6) are in corre-
spondence with matrix-valued functions on the unit circle

which have nonnegative real part via
the Herglotz representation

(9)
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with an arbitrary skew-Hermitian constant. The measure
can be recovered as the weak* limit of the real part of as

tends to the boundary, i.e.,

(10)

The class of nonnegative real-matrix-valued functions giving
rise to admissible power spectral measures are also character-
ized by the interpolation condition ([33])

(11)

where is a matrix function analytic in

(12)

and are selected so that is inner,
i.e., for all .

The data and in (11) specify an analytic in-
terpolation problem. Positive-real solutions to (11) can be given
via (9) and solutions to the moment problem (6). The character-
ization of solutions to (6) given in Theorem 6 below, allows a
nonclassical characterization of solutions to (11) and in partic-
ular a class of solutions of McMillan degree less than or equal
to the dimension of (5) (see Section IV-B).

E. Conforming Sample State-Statistics To Underlying
Dynamics

Consider the setting of Section II-D and note that the dy-
namics of the filter (5) impose a structural constraint on the state
covariance matrix . This is expressed in the form of the two
equivalent conditions (7) and (8). For instance, in the case where

is scalar and

representing a “delay line,” the state covariance in (6) has a
Toeplitz structure.

When the state covariance is estimated from a short observa-
tion record , the sample covariance

almost certainly will fail to be consistent with (7) and (8). At-
tention to this issue has been raised before and various options
exist for the case where is a Toeplitz matrix (see, e.g., the
algorithm due to Burg in [41]). Yet, in general, it is natural to
begin with the positive-definite sample covariance and then
seek a value for which is positive definite, consistent with (7)
and (8), and closest to in a suitable sense.

For general matrix norms, respective optimization may be
awkward due to the presence of the positivity constraint on .
An alternative is to use a von Neumann-like relative entropy as
a distance measure between and (cf. [36], [37]). On the
other hand, consistency with (8) can be expressed as moment
constraints. This will be taken up again in Section IV-C after
we develop solutions to general moment problems.

III. MATRICIAL DISTRIBUTIONS AND THEIR MOMENTS

The moment conditions (1) and (2) are linear constraints on
densities and , respectively. Den-
sity functions, whether discrete or continuous, are nonnegative,
or nonnegative definite in the matricial case, for each value of
their indexing set. Thus, they have the structure of a cone. En-

tropy functionals, on the other hand, represent natural barriers
on such positive cones and can be used to identify, and even
parametrize, density functions which are consistent with given
moment conditions. We begin by explaining the geometry of the
moment problem for constant density matrices and the relevance
of entropy functionals in obtaining solutions as their respective
extrema. Both the geometry of cones of matricial densities func-
tions as well as the rôle of entropy functionals is quite similar
and is taken up in Section III-B.

A. Relative Entropy and the Geometry of Matricial Cones

We begin by focusing on constraints

where is not indexed. The general case is quite similar.
We use the notation

and

and

to denote the space of Hermitian matrices and the cones of non-
negative and positive-definite ones, respectively. The space
is endowed with a natural inner product

as a linear space over . Clearly, both, and are convex
cones. Since nonnegativity of for all implies
that , it follows that is self-dual.2 It can also be seen
that is the interior of .

The linear operator

where denotes the range of , maps onto
the cone of admissible moments . Here, and
throughout, are matrices of dimension
and , respectively. A further assumption that is often
needed is that the null spaces of and have no common point
other than the origin, i.e.,

(13)

The interior of is and, given , the mo-
ment problem requires testing whether and if so, char-
acterizing all such that .

Geometry in the range space is based on

for (14)

Then the adjoint transformation of is

where is the “Hermitian part.” The
dual cone of

is naturally related to the cone . In fact, using
, it follows easily that

2In general, the dual cone is the set of elements forming an “acute
angle” with all elements of the original cone, i.e., fM : hM;M i � 0;

8M 2 g (see [51]).
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The interior of the dual cone

corresponds to as is easily seen to satisfy

Finally, (13) can be seen to be equivalent to .
1) Minimizers of : We are interested in minimizers

of (the negative entropy)

on . Here and throughout, “ ”
denotes the identity matrix of size determined from the context.
When such a minimizer exists at an interior point of , sta-
tionarity conditions for the entropy functional dictate an explicit
form for the minimizer (which, is unique due to the convexity
of ).

The Lagrangian of the problem is

Using the expression for the derivative of the logarithm given in
Proposition 8 of the Appendix, the (Gateaux) derivative of in
the direction becomes

In the preceding derivation, the “trace” is what allows replacing
the “noncommutative division operator” (cf. (48)) with
multiplication by . The stationarity condition

then gives

(15)

Thus, a necessary condition is that there exist such
that is strictly positive, i.e., that is nonempty. It
turns out that if then this condition is also sufficient.

Theorem 1: Assume that . Then the entropy
functional has a minimum in , which is also
unique, if and only if is nonempty.

Proof: Necessity is obvious and was argued above.
Uniqueness follows from the matrix convexity of
(which follows, e.g., from a positive Hessian (47) given in the
Appendix). Sufficiency requires that there exists
such that . Then sat-
isfies both the stationarity conditions and the contstraints. We
show this via a continuity argument which we will adopt again
later on to more general cases.

Consider the mapping

Its Jacobian

is Hermitian since

It is also invertible. To see this note that implies
that , and since , it implies that

. Hence, the map is a local diffeomorphism and can
be used to relate locally a smooth path in the space of ’s to
one in the space of ’s (of course, both spaces being the same
space ).

Choose a , let

and let . Consider the interval path
, for . Since , so is the whole

path . We claim that for all there exists
such that . It is clear that this

holds locally and that satisfies

(16)

since . The starting point is and (16) can be
integrated over a maximal interval for which .
Throughout

If , this proves our claim. If , then either
as , or the ’s have a limit point on the boundary of

, i.e., such that is singular. Below we argue that
neither is possible, which then shows that and completes
the proof.

We first show that remains bounded. Assume to the con-
trary, i.e., assume that grows unbounded as , and
let (where as usual). Since

, it holds that with , and
is bounded away from zero for elements of unit
norm. However, because

it follows that has zero as a limit
point when ; hence, so does . But this is a
contradiction, hence remains bounded.

We finally show that and along with its inverse
remain bounded. Consider the quadratic form

(17)

for . Since (and, hence, ) remains bounded,
the quadratic form is bounded away from zero when .
Hence, is uniformly bounded on . On the other
hand, because of (13), the minimal angle between any ray in
the cone and is bounded away from . Hence,

, for some . But remains
bounded. We conclude that remains bounded and that

remains bounded as well. This completes the proof.
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2) Minimizers of : We now focus on minimizers of

in , subject to . The Lagrangian this time is

Once again, using the expression for the differential of the log-
arithm given in Proposition 8 of the Appendix, the (Gateaux)
derivative of in the direction becomes

The last step follows from

The stationarity condition then gives that

(18)

with (and not necessarily in as before). It turns
out that if a minimizer can always be found. It
should be noted that (13) is no longer a necessary condition.

Theorem 2: If , then the entropy functional
has a minimum in which is unique and of the

form (18).
Proof: We use a similar continuity argument as before.

Consider the mapping

(19)

Its Jacobian

(20)

with as in (46), is Hermitian and negative definite. This is
because

while

with . Then is clearly
negative unless . Thus, the map is a local diffeomor-
phism and can be used to relate locally a smooth path in the
space of ’s to one in the space of ’s.

Begin with in , and
for . Since then

for all . We claim that

(21)

can be integrated over with staying bounded. Then, by
construction, satisfies both

(22)

as well as the stationarity conditions for each . Hence,

is a minimizer for as claimed in the proposition.
Clearly, (21) can be integrated over . If , we are

done. Thus, we only need to show that and

lead to a contradition. To this end, we use two facts, first that
(22) holds on and then, that for all ,
since .

Define and let be a limit point of a conver-
gent subsequence with (which exists since the ’s
are bounded). We claim that and singular. To see
this first note that, if

then as well, for sufficiently
large . But if this is so, then

(23)

grows without bound instead of tending to . Therefore,

Now, if is nonsingular then for all sufficiently large
is nonsingular as well. But then, (23) tends to zero as

. Hence, .
Now let be an isometry whose columns span

the range of and consider

Since

while , we conclude that as .
Since , it follows that which contradicts
the hypothesis that .
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B. Relative Entropy and Matricial Distributions

The geometry of convex cones and of the moment problem
when is a matricial density function on a compact set , as in
(1) and (2), is quite similar to the case where is only a positive
matrix as in Section III-A. Appropriate generalizations of the
relative entropy functionals allow computable expressions for
the corresponding extrema when is a closed interval of the real
line, or even a multidimensional closed interval in .
We develop this theory focusing on (2).

We consider Hermitian matrix-valued measurable
functions on as a linear space over with an inner product

We use the notation to denote the Hilbert space of square
integrable elements, and the notation and to denote the
cones of elements which are nonnegative and positive definite,
respectively, for all . The linear operator

(24)

maps into a subspace of denoted by as before
and viewed as a linear space over . Both, moments and their
duals reside in and the geometry is always based on (14).
For simplicity of the exposition, we assume that the integration
kernels are continuously differentiable on . The
closure of the range of is denoted by , while

. The adjoint transformation is now

It is not difficult to show that the expressions for the dual cone
and its interior

and

remain valid (except for the obvious change where replaces
our earlier ). The analog of (13) will be needed (in Theorem 4)
which, can also be expressed as

(25)

Finally, we define as before

as we seek to determine whether or not , or equiva-
lently, whether .

For future reference, we bring in a characterization of ele-
ments analogous to the scalar real case given in [51, p.
14]. Given , define the real-valued functional

(26)

Such a bounded functional is said to be nonnegative (resp., posi-
tive)—denoted by (resp., ), if and only if the in-
fimum of over of unit norm is positive (resp.,
nonnegative).

Proposition 1: The following hold:

Proof: We now only prove necessity, which is needed in
the Proof of Theorem 4. The proof of sufficiency will be given
at the end Section III-B.1.

If , there exists a particular such that
. It readily follows that . If , there

exist an approximating sequence where
and . If then and

hence,

We now turn to relative entropy functionals for matricial dis-
tributions. Given

(27)

Once again, minimizers of relative entropy subject to the mo-
ment constraints (2) take a particularly simple form amenable
to a numerical solution via continuation methods. We follow the
same plan as in Section III-A by focusing successively on each
of the two alternative choices, and then . A sig-
nificant departure from the case of constant densities shows up
when considering the dimension of the support set in the con-
text of .

1) Minimizers of : In
complete analogy with constant case the derivative of the
Lagrangian

in the direction is

where, once again, the presence of the trace allows replacing the
“super-operator” by multiplication by , pointwise
over . The fundamental lemma in calculus of variations (see,
e.g., [5]) now gives the stationarity condition

(28)

In order for , it is necessary that is strictly posi-
tive on . Thus, we consider the “rational” family of potential
minimizers for

with

where we seek a solution to the moment constraints (2). It turns
out that if a solution exists then a particular one exists in
and that it can be obtained by computing the fixed point of an
exponentially converging matrix differential equation. This dif-
ferential equation is an appropriate generalization of (16). We
summarize all these conclusions as follows.

Theorem 4: If , condition (25) holds, and
, then has a minimum in which is unique
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and belongs to . Furthermore, for any , the
solution of the matrix differential equation

(29)

where

(30)

belongs to for all , it converges to a point
as corresponding to this unique minimizer

for satisfying . The differential
(29) is exponentially convergent as the square distance

satisfies

Conversely, if and the dimension of is one, then
the differential equation (29) diverges.

Equations (29) is equivalent to

(31)

modulo scaling of the integration variable (see below). The latter
can be integrated over , and then , yet (29)
appears preferable for numerical reasons.

We wish to point out that the assumption on the dimension
of can be slightly relaxed to being at most two provided is
a torus and doubly periodic accordingly, (cf. [53,
Example 2 on p. 882], [35]). Also, the first part of the theorem,
when specialized to the case of moment problems that relate to
analytic interpolation ones, as in Section II-D, it generalizes the
results in [6] who use a similar entropy minimization formalism
(cf. Section IV-B and the concluding remarks).

Proof of Theorem 4: Once again we consider the mapping

The Jacobian is Hermitian and invertible when
. The proof is identical to the one given in Sec-

tion III-A.1. Choose , set , and
consider the one-parameter homotopy of maps

(32)

for . The idea is to follow a path of solutions
, ensure that this is contained in , and set

which then satisfies the sought conditions (
and ).

Clearly, and . If
then so is for . We claim that for all there
exists such that

(33)

as before. The arguments are similar to those given in the Proof
of Theorem 1 and are based on the fact that is a local diffeo-
morphism. Values which obey

(34)

satisfy (33) as long as the path stays in . We need to rule out
crossing the boundary of or tending to at a .

Either possibility contradicts in a way
analogous to the earlier arguments in the Proof of Theorem 1.

We consider a maximal interval over which
and note that

on . If , then cannot be bounded away from
zero since . Hence, and .

If lies on the boundary of , then has a root
in . It is here that the dimension of becomes important. As
long as the dimension of is one, is not integrable
as a function of and cannot be finite.
Thus again, .

We finally express (34) in a “feedback form.” We first replace
with . In this case, and varies

in as varies in . If we denote and
, then

(35)

The same substitution gives , and that

satisfies

Uniqueness of the representation with
follows from the fact that such a is a minimizer of the strictly
convex functional subject to the moment constraints.
An alternative but equivalent argument can be based on the fact
that is a -mapping between open convex subsets of a Eu-
clidean space, with a positive definite Jacobian everywhere.

In the other direction, if , then the path either
crosses or at least, in case , tends to the boundary of .
In either case, grows unbounded and the differential equation
diverges.

We now complete the Proof of Proposition 3.

Proof [“Sufficiency” in Proposition 3]: In the Proof of
Theorem 4, in essence, we used the positivity of to obtain a
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representation with . Thus, the same line of
argument gives that if then .

If but not necessarily , then chose
and note that for . Obviously,

and is at least in .3

2) Minimizers of : Once
again, the derivative of the Lagrangian

in the direction is

The stationarity condition leads to the expression

(36)

for the minimizer, except that now is a function of . We
consider the “exponential” family

with

of potential minimizers for , where we seek a solu-
tion to (2). The development runs in parallel to the case where

with one important difference. The “Lagrange mul-
tipliers” no longer need to be restricted to and exis-
tence of solutions when can be guaranteed even when

. Moreover, (25) is no longer necessary and exis-
tence of a solution to the moment problem in is imper-
vious to the dimension of the dual cone .

Theorem 5: If then the entropy functional
has a minimum in which is unique and belongs

to . Furthermore, for any , the solution of

(37)

where

(38)

remains bounded for and converges to as
corresponding to the unique minimizer

for subject to . The conver-
gence is exponential as
satisfies

Conversely, if , then the differential (37) diverges.
Proof: The arguments are for the most part identical to

those used in proving Theorem 2, i.e., we now consider

3A uniform bound on the integral of densities corresponding to R + R

can be shown. This can be used to establish a finite nonnegative measure d�
corresponding to R.

observe that the Jacobian is negative definite for any value of ,
and use it to track a linear path
from to the given in the -coordinates.
This is done by integrating (21) over starting from arbi-
trarily chosen starting point . By construction, the solution of
(21) corresponds to which satisfies

. It is clear that if , then the differential
equation diverges for (since, otherwise, and

would hold on , contradicting ).
We only need to show that if , then remains
bounded for . This yields which satisfies

. Then (37) can be obtained via a change of
variables as in Theorem 4. The same applies to deriving the dif-
ferential equation for the “error” .

In order to show that, in the event remains
bounded on we extend the argument used to prove The-
orem 2 to the present case where is a matrix-valued func-
tion on . The key is to observe that, when (21) is integrated
over a maximal interval , any convergent subsequence of

must have a limit point for
which but not in . Moreover, must
be singular on (a subset of possibly zero measure).
To see this note the following. If , then
is bounded away from zero and positive for large enough,
whereas if then there is a subset of of nonzero
measure where is negative. Either way

cannot tend to as it should. In the first instance, it goes to zero
and in the second it becomes unbounded. Thus, but
singular for certain values of . Below we show that this implies

, which then proves that and that (37) can be
integrated on .

To show that it suffices to show that is not
strictly positive. To this end, we evaluate

For each value of tends to zero outside
the null space of . Since is compact, the integrand goes
to zero uniformly in as . Therefore, as
well, and .

C. Nonequispaced Arrays (Example II-A Continued)

We continue with Example II-A. We begin with a “true”
density shown in Fig. 2 and generate covariance samples

. This “true” density does not need to be in any particular
form—computation of is done via numerical integration.

Next, we integrate (29) and (37) taking , and
display in Fig. 2 the resulting and , for
comparison. Both are constructed using the fixed point of the
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Fig. 2. Computation of spectra for a non-equispaced array.

corresponding differential equations. The rate of convergence
is the same, while the distance of the starting choice (for the
same ) may be different—as is the case here (with cor-
responding to the -axis to the left and the labeling to the
right in the subplot ).

IV. THE COMPLETE SET OF POSITIVE SOLUTIONS

Reference [38] suggested that all positive solutions to the mo-
ment problem may be obtained as minimizers of a suitable en-
tropy functional, e.g., as being

(39)

with thought of as a parameter. This was carried out success-
fully in [38], [10], [11], and [35] for the case where density func-
tions are scalar-valued, for different levels of generality. Nat-
urally, certain complications arise in the matricial setting. We
discuss this next in the context of constant as in Section
III-A. The generalization to the nonconstant case is straightfor-
ward and a positive result is given for the general case.

Considering the Lagrangian and the stationarity conditions
for (39) we arive at

leading to

Although the “parameter” can be readily expressed as
, the density which we are interested in, cannot

be expressed in any effective way as a function of and the
dual variable . Thus, a convenient functional form for the
minimizer of (39) is unkown.

The option of minimizing subject to , how-
ever, goes through. Analysis of the corresponding Lagrangian
readily leads to

A computational theory, following the lines of Sections III-A.2
and III-B.2 easily carries through.

An attractive third alternative originates in the observation
that the geometry of the problem, throughout, was inherited by
the definiteness of the Jacobian maps. This suggests to forgo an
explicit form for the entropy functional and start instead with a
computable Jacobian. To this end we consider

and

The respective Jacobians are

and

They are both sign definite as before and, almost verbatim, we
can replicate some of the conclusions of Theorems 4 and 5.
These are combined into the following statement.

Theorem 6: Let and . If ,
condition (25) holds, and , then the solution to

(40)

remains in for and as converges to a unique
value such that . On the other hand, for
any , the solution to

(41)

remains bounded for and as converges to a unique
value such that . In case ,
the differential equation (41) diverges. In case and

, the differential equation (41) diverges as well.

The importance of recasting the relevant parts of Theorems 4
and 5 as above, by incorporating arbitrary ’s in , al-
lows obtaining any density function which is consistent with
the data by such a procedure. To see this note that, if
is consistent with the data, then working backwards we can
select accordingly so that equals or
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Fig. 3. Computation of spectra for a non-equispaced aarray using a “prior.”

for any (in and , respec-
tively). Thus, Theorem 6 gives descriptions of all positive
densities that are consistent with the data —simply choose
the “correct” . Existence of solution per se does not depend
on the choice of .

A potentially important application is when prior informa-
tion may dictate a choice of . In this case, using Theorem 6 we
may obtain an admissible density function which is “closer to
our expectations.” We amplify this remark below by reworking
Example II-A with a suitable weight. We then conclude the sec-
tion after we revisit and develop Examples II-D and II-E.

A. Nonequispaced Arrays (Example II-A Continued)

Fig. 3 compares the “true” density function which
was used to generate the moments, and a density

which is computed according to Theorem 6.
The original density has discontinuous peak at about

. Then has been selected so as to be in the
neighborhood of —actually centered about .
(The accuracy of the “match” does not seem critical.) The
density is seen to be a better match as compared with the
“unweighted” case of Fig. 2. Subplot (2,1) shows the value
of as before, and highlights the fact that, again,

is consistent with the moments. Since , if we
choose (using 100% hindsight), we obviously obtain
a perfect match as explained above.

B. State Statistics and Analytic Interpolation With Degree
Constraint (Example II-D Continued)

In Section IV, the map can be replaced by

where is a factorization of with not necessarily
Hermitian, with the obvious modifications in the expression for
the corresponding Jacobian. The statement of the theorem holds
with no changes. The same applies to which can also be cast
with respect to an arbitrary factorization of —but this will not

concern us here. Instead, we consider the setting of Section II-D
where

If we take so that is also
analytic in (which corresponds to chosen so that
is a Hurwitz matrix), then the resulting density function

with . This is a rational spectral
density of degree at most twice the dimension of (5), and hence,
it gives rise to a positive-real interpolant as in (9) of McMillan
degree at most equal to the dimension of (5).

C. Conforming State Statistics to Underlying Dynamics
(Example II-E Continued)

There are several alternative possibilities for the choice of
logarithmic entropy distance, e.g., . Yet, as discussed in
Section IV, there seems to be no known closed-form expression
for the minimizer of . Hence, in analogy with the third
alternative given in that section, we seek a value for the state
covariance which minimizes instead.

Conditions (8) locate in the range of

where . But if
denotes a set of Hermitian matrices forming a basis for the or-
thogonal complement of the range of , then is equally well
characterized by the moment-like constraints

for (42)

Finally, it is both natural and necessary to impose one additional
constraint that restricts the size of , e.g.,

(43)

where is the size of . Then the minimizer of
subject to (42) and (43) takes the form

(44)

where

is as usual the adjoint of that takes

The theory in Section III can be applied to trace a path
in the space of Lagrange multipliers from an initial point

to a final point for which the corresponding
in (44) satisfies (42) and (43).
For a simple numerical example, consider the case where is

sought to be Toeplitz whereas the estimated sample covariance
is not, and is given by
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Then, the solution described above turns out to be

The methodology works in complete generality for Toeplitz,
block-Toeplitz, and structured covariance matrices, and so does
an analogous approach based on .

V. CONCLUDING REMARKS

We presented an approach for constructing matrix-valued
density functions which are consistent with given moments.
Section IV describes, in the spirit of the mathematical theory
on the moment problem, all positive-definite density functions
which are consistent with the data. The nonparametric de-
scription given in Section IV (nonparametric since it amounts
to an arbitrary choice of a weight-density ) should prove
useful in case we wish to incorporate prior information (e.g.,
Section IV-A, and cf. [38]).

The basic problem of characterizing admissibilitiy of a matri-
cial moment has been cast in terms of the positivity of a suit-
able functional in complete analogy with the classical case
[51]. However, testing for positivity of such a functional is not a
trivial matter. In the classical theory, the “shift” structure of the
space of integration kernels ([51], [75], [1], [2]) allows a simple
description of all positive elements in their span, via “sums of
squares.” This is not the case here. Instead, we determine admis-
sibility of from the convergence of the differential equation
given, e.g., in Theorems 4 and 5. Yet, a more direct analog of
the Pick operator and a corresponding test that would allow a
“certificate of positivity of ,” would be highly desirable.

The framework of the present work, when specialized to ana-
lytic interpolation as in Sections II-D and IV-B, appears suitable
for studying solutions to the most general (tangential and bi-tan-
gential, see [4], [23]) Carathéodory–Nevanlinna–Pick problems
with degree constraint. The interpolation directions are specified
in general by null directions of an arbitrary inner matrix func-
tion as in (11) and (12), and one is interested in rational so-
lutions with McMillan degree bounded by that of . Earlier
work ([28], [6]) dealt only with cases were is a scalar-inner
times the identity. While the main focus of the present work re-
mains the general moment problem, consequences of the theory
as in Section IV-B should prove useful in multivariable feed-
back design with degree constraints (cf. [39]).

APPENDIX I
MATRIX CALCULUS

We assemble a number of basic mathematical formulas.
These are expressions for the differential of the matrix expo-
nential and the matrix logarithm that have been used in the
physics literature and in quantum information theory.

A. The Matrix Exponential

We begin with the differential of the matrix exponential (see
[26], [62]). Following [44, p. 164], integrate both sides of

between and to obtain

Then

where

(45)

and the general term is

We are only interested in the first two terms of this convergent
series.

Evaluating at and replacing by , we obtain

Hence, the differential in the direction (often refered to as
Gateaux, or polar, or Fréchet) is given by the linear map

This map represents a “scrambled” multiplication of by .
To see this assume that and commute. Then the right-hand
side becomes .

The -term in (45) gives the quadratic term in in the ex-
pansion of as

In general, for Hermitian matrices and , and ,
define the “noncommutative” or “scrambled” multiplication of

by via the operator

(46)

This gives a compact expression for the differential of , sum-
marized below.

Proposition 7: The differential of is .
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B. The Matrix Logarithm

We now turn to the matrix logarithm. Integrate both sides of

between and to obtain that

assuming that and that . Rewrite
this expression in terms of and and change the integration
variable to , to obtain

If , then

which, for Hermitian, , and , leads to

(47)

By expanding in terms of eigenvectors of it can be verified
that

(48)

Indeed, if is then the th entry of

is simply

where is the th entry of (in this same basis where
is diagonal). Then

whereas

is the inverse of the same expression. This result is attributed to
Lieb (see [74, p. 4]) and summarized below.

Proposition 8: The differential of is .
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