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1 Introduction and summary of results

Recently there has been a great deal of effort in elucidating patterns of entanglement for

theories that have gravity duals. The simplest quantity that can characterize such patterns

is the von Neumann entropy of subregions, sometimes called the “entanglement entropy”.

This quantity is divergent in local quantum field theories, but the divergences are well

understood and one can extract finite quantities. Moreover, one can construct strictly

finite quantities that are well-defined and have no ambiguities. A particularly interesting

quantity is the so called “relative entropy” [1, 2]. This is a measure of distinguishability

between two states, a reference “vacuum state” σ and an arbitrary state ρ

S(ρ|σ) = Tr[ρ log ρ− ρ log σ] (1.1)
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If we define a modular Hamiltonian K = − log σ, then this can be viewed as the free

energy difference between the state ρ and the “vacuum” σ at temperature β = 1, S(ρ|σ) =
∆K −∆S.

Relative entropy has nice positivity and monotonicity properties. It has also played an

important role in formulating a precise version of the Bekenstein bound [3] and arguments

for the second law of black hole thermodynamics [4, 5].

In some cases the modular hamiltonian has a simple local expression. The simplest

case is the one associated to Rindler space, where the modular Hamiltonian is simply given

by the boost generator.

In this article we consider quantum field theories that have a gravity dual. We consider

an arbitrary subregion on the boundary theory R, and a reference state σ, described by

a smooth gravity solution. σ can be the vacuum state, but is also allowed to be any

state described by the bulk gravity theory. We then claim that the modular Hamiltonian

corresponding to this state has a simple bulk expression. It is given by

Kbdy =
Areaext
4GN

+Kbulk + · · ·+ o(GN ) (1.2)

The first term is the area of the Ryu Takayangi surface S (see figure 1), viewed as an

operator in the semiclassically quantized bulk theory, it includes the change in the extremal

surface as we consider different states . This term was previously discussed in [6]. The

o(G0
N ) term Kbulk is the modular Hamiltonian of the bulk region enclosed by the Ryu-

Takayanagi surface, Rb, when we view the bulk as an ordinary quantum field theory, with

suitable care exercised to treat the quadratic action for the gravitons. Finally, the dots

represent local operators on S, which we will later specify. We see that the boundary

modular Hamiltonian has a simple expression in the bulk. In particular, to leading order

in the 1/GN expansion it is just the area term, which is a very simple local expression in

the bulk. Furthermore, this simple expression is precisely what appears in the entropy.

This modular Hamiltonian makes sense when we compute its action on bulk field theory

states ρ which are related to σ by bulk perturbation theory. Roughly speaking, we consider

a ρ which is obtained from σ by adding or subtracting particles without generating a large

backreaction.

Due to the form of the modular Hamiltonian (1.2), we obtain a simple result for the

relative entropy

Sbdy(ρ|σ) = Sbulk(ρ|σ) (1.3)

where the left hand side is the expression for the relative entropy on the boundary. In

the right hand side we have the relative entropy of the bulk quantum field theory, with ρ

and σ in the right hand side, being the bulk states associated to the boundary states ρ, σ

appearing in the left hand side. Note that the area term cancels.

Another consequence of (1.2) is that the action of Kbdy coincides with the action of

Kbulk in the interior of the entanglement wedge,1

[Kbdy, φ] = [Kbulk, φ] (1.4)

1The entanglement wedge is the domain of dependence of the region Rb.
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Figure 1. The red segment indicates a spatial region, R, of the boundary theory. The leading

contribution to the entanglement entropy is computed by the area of an extremal surface S that ends

at the boundary of region R. This surface divides the bulk into two, region Rb and its complement.

Region Rb lives in the bulk and has one more dimension than region R. The leading correction to

the boundary entanglement entropy is given by the bulk entanglement entropy between region Rb

and the rest of the bulk.

for φ a local operator in Rb. This follows from causality in bulk perturbation theory: terms

in Kbdy localized on S do not contribute to its action in the interior of the entanglement

wedge, S being space-like to the interior. Note Kbulk is the bulk modular Hamiltonian as-

sociated to a very specific subregion, that bounded by the extremal surface S. Implications

of (1.4) for entanglement wedge reconstruction are described in section 5.2.

The bulk dual of relative entropy for subregions with a Killing symmetry was considered

before in [7–12]. In particular, in [12], the authors related it to the classical canonical

energy. In fact, we argue below that the bulk modular hamiltonian is equal to the canonical

energy in this case. This result extends that discussion to the quantum case. Note (1.2)

and (1.3) are valid for arbitrary regions, with or without a Killing symmetry. In addition,

we are not restricting σ to be the vacuum state. Recently a different extension of [12] has

been explored in [13], which extends it to situations where one has a very large deformation

relative to the vacuum state. That discussion does not obviously overlap with ours.

This paper is organized as follows. In section two, we recall definitions and properties

of entanglement entropy, the modular Hamiltonian, and relative entropy. In section three,

we present an argument for the gravity dual of the modular hamiltonian and the bulk

expression for relative entropy. In section four, we discuss the case with a U(1) symmetry,

relating to previous work. In section five, we discuss the flow generated by the bound-

ary modular hamiltonian in the bulk. We close in section six with some discussion and

open questions.

2 Entanglement entropy, the modular Hamiltonian, and relative entropy

We consider a system that is specified by a density matrix ρ. This can arise in quantum

field theory by taking a global state and reducing it to a subregion R. We can compute the

von Neumann entropy S = −Tr[ρ log ρ]. Due to UV divergences this is infinite in quantum

field theory. However, these divergences are typically independent of the particular state

we consider, and when they depend on the state, they do so via the expectation value of

an operator. See [14, 15].
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2.1 Modular Hamiltonian

It is often useful to define the modular hamiltonian Kρ ≡ − log ρ. From its definition, it

is not particularly clear why this is useful — it is in general a very non-local complicated

operator. However, for certain symmetric situations it is nice and simple.

The simplest case is a thermal state where K = H/T , with H the Hamiltonian of

the system. Another case is when the subregion is the Rindler wedge and the state is the

vacuum of Minkowski space, when K is the boost generator. This is a simple integral of

a local operator, the stress tensor. For a spherical region in a conformal field theory, we

have a similarly simple expression, which is obtained from the previous case by a conformal

transformation [16]. In free field theory one can also obtain a relatively simple expression

that is bilocal in the fields [17] for a general subregion of the vacuum state.

In this paper we consider another case in which simplification occurs. We consider a

quantum system with a gravity dual and a state that can be described by a gravity solution.

We will argue that the modular Hamitonian is given by the area of the Ryu-Takayanagi

minimal surface plus the bulk modular Hamiltonian of the bulk region enclosed by the

Ryu-Takayanagi surface.

2.2 Relative entropy

Modular Hamiltonians also appear in the relative entropy

Srel(ρ|σ) = trρ(log ρ− log σ) = ∆〈Kσ〉 −∆S (2.1)

where Kσ = − log σ is the modular Hamiltonian associated to the state σ. If σ was

a thermal state, the relative entropy would be the free energy difference relative to the

thermal state. As such it should always be positive.

Relative entropies have a number of interesting properties such as positivity and mono-

tonicity [1]. Moreover, while the entanglement entropy is not well defined for QFT’s,

relative entropies have a precise mathematical definition [2].

If ρ = σ + δρ, then, because of positivity, the relative entropy is zero to first order in

δρ. This is called the first law of entanglement:

δS = δ〈Kσ〉 (2.2)

The first law can be used to determine the modular Hamiltonian. By considering an

arbitrary first order deformation δρ of the density matrix, we can determine all matrix

elements of the modular Hamiltonian. Then we can use this modular Hamiltonian on

states which are not small deformations of the original state.

When we consider a gauge theory, the definition of entanglement entropy is ambiguous.

If we use the lattice definition, there are different operator algebras that can be naturally

associated with a region R [14]. Different choices give different entropies. These algebras

differ in the elements that are kept when splitting space into two, so that ambiguities are

localized on the boundary of the region, ∂R. One natural way of defining the entanglement

entropy is by fixing a set of boundary conditions and summing over all possibilities, since

there is no physical boundary. This was carried out for gauge fields in [18, 19, 51] and gives
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the same result as the euclidean prescription of [20]. However, the details involved in the

definition of the subalgebra are localized on the boundary. Because of the monotonicity of

relative entropy, these do not contribute to the relative entropy (see section 6 of [14] for

more details).

In the case of gravitons we expect that similar results should hold. We expect that we

similarly need to fix some boundary conditions and then sum over these choices.

For example, we could choose to fix the metric fluctuations on the Ryu-Takayanagi

surface, viewing it as a classical variable, and then integrate over it. As argued in [14], we

expect that the detailed choice should not matter when we compute the relative entropy.

See appendix A for more details.

As we mentioned above, it often occurs that two different possible definitions of the

entropy give results that differ by the expectation value of a local operator, S(ρ) =tr(ρO)+

S̃(ρ). A trivial example is the divergent area term which is just a number. In these cases

the two possible modular Hamiltonians are related by

S(ρ) = tr (ρO) + S̃(ρ) −→ K = O + K̃ (2.3)

This implies that relative entropies are unambiguous, S(ρ|σ) = S̃(ρ|σ). For the equality of

relative entropies, it is not necessary for O to be a state independent operator. It is only

necessary that O is the same operator for the states ρ and σ.2

3 Gravity dual of the modular Hamiltonian

A leading order holographic prescription for computing entanglement entropy was proposed

in [21, 22] and it was extended to the next order in GN in [23] (see also [24]). The

entanglement entropy of a region R is the area of the extremal codimension-two surface S
that asymptotes to the boundary of the region ∂R, plus the bulk von Neumann entropy of

the region enclosed by S, denoted by Rb. See figure 1.

Sbdy(R) =
Aext(S)
4GN

+ Sbulk(Rb) + SWald−like (3.1)

SWald−like indicates terms which can be written as expectation values of local operators on

S. They arise when we compute quantum corrections [23], we discuss examples below.

We can extract a modular Hamiltonian from this expression. We consider states that

can be described by quantum field theory in the bulk. We consider a reference state σ,

which could be the vacuum or any other state that has a semiclassical bulk description. We

consider other states ρ which likewise can be viewed as semiclassical states built around the

bulk state for σ. To be concrete we consider the situation where the classical or quantum

fields of ρ are a small perturbation on σ so that the area is only changed by a small amount.

Now the basic and simple observation is that both the area term and the SWald−like are

2In other words, if we consider a family of states, with ρ and σ in that family, then O should be a state

independent operator within that family.
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expectation values of operators in the bulk effective theory. Therefore, for states that have

a bulk effective theory, we can use (2.2), (2.3) to conclude that

Kbdy =
Âext

4GN
+ ŜWald−like +Kbulk (3.2)

By extremal area operator, we mean the operator whose expectation value in a given state

gives us the extremal area of that state. This operator includes the contribution from the

gravitons, as we will explain in detail below. The area term was first discussed in [6]. We

view the area of the extremal surface as an operator in the bulk effective theory. This

contains both the classical area as well as any changes in the area that result from the

backreaction of quantum effects. Since we are specifying the surface using the extremality

condition, this area is a gauge invariant observable in the gravity theory.3 Note that the

area changes as we change the state, but we can choose a gauge where the position of the

extremal surface is fixed. Finally ŜWald−like are the operators whose expectation values

give us SWald−like.

Interestingly, all terms that can be written as local operators drop out when we consider

the relative entropy. The relative entropy has a very simple expression

Sbdy(ρ|σ) = Sbulk(ρ|σ) (3.3)

Note that the term going like 1/GN cancels out and we are only left with terms of order

G0
N . There could be further corrections proportional to GN which we do not discuss in

this article. It is tempting to speculate that perhaps (3.3) might be true to all orders in

the GN expansion (i.e. to all orders within bulk perturbation theory).

Of course, using the equation for the entropy (3.1) and (3.2) we can check that the

first law (2.2) is obeyed. In the next section we discuss this in more detail for a spherical

subregion in the vacuum.

4 Regions with a local boundary modular Hamiltonian

For thermal states, Rindler space, or spherical regions of conformal field theories we have

an explicit expression for the boundary modular Hamiltonian. In all these cases there is

a continuation to Euclidean space with a compact euclidean time and a U(1) translation

symmetry along Euclidean time. We also have a corresponding symmetry in Lorentzian

signature generated by a Killing or (conformal Killing) vector ξ. The modular Hamiltonian

is then given in terms of the stress tensor as Kbdy = ER ≡
∫

∗(ξ.Tbdy), where the integral

is over a boundary space-like slice. When the theory has a gravity dual, the bulk state σ

is also invariant under a bulk Killing vector ξ. In this subsection we will discuss (3.2) for

states constructed around σ.

For this discussion it is useful to recall Wald’s treatment of the first law [25–27]

δER =
Alin(δg)

4GN
+

∫

Σ

∗(ξ.Eg(δg)) (4.1)

3If we merely define a surface by its coordinate location in the background solution, then a pure gauge

fluctuation of the metric can change the area. If the original surface is not extremal this already happens

to first order.
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where Eg(δg) is simply the linearized Einstein tensor with the proper cosmological constant.

It is just the variation of the gravitational part of the action and does not include the matter

contribution. Here Alin is the first order variation in the area due to a metric fluctuation

δg. And Σ is any Cauchy slice in the entanglement wedge Rb. Equation (4.1) is a tautology,

it arises by integrating by parts the linearized Einstein tensor. It is linear in δg and we can

write it as an operator equation by sending δg → δĝ, where δĝ is the operator describing

small fluctuations in the metric in the semiclassically quantized theory.

4.1 Linear order in the metric

For clarity we will first ignore dynamical gravitons, and include them later (we would have

nothing extra to include if we were in three bulk dimensions). We consider matter fields

with an o(G0
N ) stress tensor in the bulk, assuming the matter stress tensor was zero on

the σ background.4 Such matter fields produce a small change in the metric that can be

obtained by linearizing the Einstein equations around the vacuum. These equations say

Eg(δg)µν = Tmat
µν , where Tmat

µν is the stress tensor of matter. Inserting this in (4.1) we find

that [25–27]

δER =
Alin(δg)

4GN
+

∫

Σ

∗(ξ.T ) = Alin(δg)

4GN
+Kbulk (4.2)

where we used that the bulk modular Hamiltonian also has a simple local expression in

terms of the stress tensor due to the presence of a Killing vector with the right properties

at the entangling surface S. Notice that we can disregard additive constants in both the

area and E , which are the values for the state σ. We only care about deviations from these

values. This is basically the inverse of the argument in [28]. This shows how (3.2) works in

this symmetric case. The term ŜWald−like in (3.2) arises in some cases as we discuss below.

Let us now discuss the ŜWald−like term. There can be different sources for this term.

A simple source is the following. The bulk entanglement entropy has a series of diver-

gences which include an area term, but also terms with higher powers of the curvature.

Depending on how we extract the divergences we can get certain terms with finite coef-

ficients. Such terms are included in SWald−like. A different case is that of a scalar field

with a coupling αφ2(R − R0) where R is the Ricci scalar in the bulk, and R0 the Ricci

scalar on the unperturbed background, the one associated to the state σ. Then there exists

an additional term in the entropy of the form ŜWald−like = 2πα
∫

S
φ2. If we compute the

entropy as the continuum limit of the one on the lattice, then it will be independent of

α. Under these conditions the bulk modular Hamiltonian is also independent of α and is

given by the canonical stress tensor, involving only first derivatives of the field. However,

the combination of Kbulk + ŜWald−like =
∫

Σ
∗(ξ.T grav(φ)), where T grav

µν (φ) is the standard

stress tensor that would appear in the right hand side of Einstein’s equations. T grav
µν (φ)

does depend on α. The α dependent contribution is a total derivative which evaluates to

2παφ2 at the extremal surface. A related discussion in the field theory context appeared

in [15, 29].

4This discussion can be simply extended when there is a non-zero but U(1)-symmetric background

matter stress tensor, such as in a charged black hole. In that case we need to subtract the background

stress tensor to obtain the bulk modular Hamiltonian.
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4.2 The graviton contribution

We expect that we can view the propagating gravitons as one more field that lives on the

original background, given by the metric gσ. In fact, we can expand Einstein’s equations

in terms of g = gσ + δg2 + h. Here h, which is of order
√
GN , represents the dynamical

graviton field and obeys linearized field equations. δg2 takes into account the effects of

back-reaction and obeys the equation

E(δg2)µν = T grav
µν (h) + Tmatter

µν (4.3)

where T grav
µν (h) comes simply from expanding the Einstein tensor (plus the cosmological

constant) to second order and moving the quadratic term in h to the right hand side.

h obeys the homogeneous linearized equation of motion, so the term linear in h in the

equation above vanishes. We can now use equations (44-46) in [30], which imply that

Kbdy,1+2 = E1+2 =
Âlin(h+ δg2) + Âquad(h)

4GN
+ Ecan (4.4)

where Kbdy,1+2 is the boundary modular Hamitonian (or energy conjugate to τ trans-

lations) expanded to quadratic order in fluctuations. Similarly, the area is expanded

to linear and quadratic order. Finally, Ecan is the bulk canonical energy5 defined by

Ecan =
∫

ω(h,Lξh)+matter contribution, where ω is the symplectic form defined in [30].

From this expression we conclude that the modular Hamiltonian is the canonical energy

Kbulk = Ecan (4.5)

We can make contact with the previous expression (4.2) as follows. If we include

the gravitons by replacing Tmat
µν → Tmat

µν + T grav
µν (h) in (4.2), then we notice that we get

Alin(δg2), without the term Aquad(h). However, one can argue that (see eq. (84) of [30])

∫

Σ

∗(ξ.T grav(h)) = Ecan(h) +
Aquad(h)

4GN
(4.6)

thus recovering (4.4).

In appendix A we discuss in more detail the boundary conditions that are necessary

for quantizing the graviton field.

4.3 Quadratic order for coherent states

The problem of the gravity dual of relative entropy was considered in [12] in the classical

regime for quadratic fluctuations around a background with a local modular Hamiltonian.

They argued that the gravity dual is equal to the canonical energy. Here we rederive their

result from (3.3).

We simply view a classical background as a coherent state in the quantum theory.

eiλ
∫
Πφ̂+φΠ̂|ψσ〉, where |ψσ〉 is the state associated to σ.6 We see that in free field theory

5This differs from the integral of the gravitational stress tensor by boundary terms.
6Here λ could be O(1/

√
GN ) as long as the backreaction is small.
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we can view coherent states as arising from the action of a product of unitary operators,

one acting inside the region and one ouside. For this reason finite coherent excitations

do not change the bulk von Neumann entropy of subregions, or ∆Sbulk = 0. Thus, the

contribution to the bulk relative entropy comes purely from the bulk Hamiltonian, which

we have argued is equal to canonical energy (4.5) . Therefore, in this situation we recover

the result in [12]

Sbdy(ρ|σ) = Sbulk(ρ|σ) = ∆Kbulk −∆Sbulk = ∆Kbulk = Ecanonical (4.7)

5 Modular flow

The modular hamiltonian generates an automorphism on the operator algebra, the mod-

ular flow. Consider the unitary transformation U(s) = eiKs. Even if the modular hamil-

tonian is not technically an operator in the algebra, the modular flow of an operator,

O(s) ≡ U(s)OU(−s), stays within the algebra. For a generic region, the modular flow

might be complicated, see [31] for some discussion about modular flows for fermions in

1+1 dimensions. However, in our holographic context it can help us understand subregion-

subregion duality. In particular, it can help answer the question of whether the boundary

region R describes the entanglement wedge or only the causal wedge [32–35]. The entan-

glement wedge is the causal domain of the spatial region bounded by the interior of S.
From (1.2), we have that

[Kbdy, φ] = [Kbulk, φ] (5.1)

where φ is any operator with support only in the interior of the entanglement wedge, and

where on the right-hand side we have suppressed terms subleading in GN . On the left-

hand side terms in Kbdy localized on S have dropped out, similarly as in (3.3). Thus the

boundary modular flow is equal to the bulk modular flow of the entanglement wedge, the

causal wedge does not play any role.

5.1 Smoothness of the full modular Hamiltonian in the bulk

If the global state is pure, one may also consider the flow generated by the total modular

operator, Kbdy,Total = Kbdy,R − KbdyR̄, which should be a smooth operator without any

ambiguities. It annihilates the global state. From our full formula for the bulk dual of the

modular Hamiltonian we see that Kbdy,Total = Kbulk,Total + o(GN ).

For problems that have a U(1) symmetry, such as thermal states and Rindler or spheri-

cal subregions of CFTs, we know the full boundary modular Hamiltonian E . We can define

a time coordinate τ which is translated by the action of E in the boundary theory. In these

situations the bulk state also has an associated symmetry generated by the Killing vector

ξ. We can choose coordinates so that we extend τ in the bulk and ξ simply translates

τ in the bulk. Then the bulk modular Hamiltonian is the bulk operator that performs a

translation of the bulk fields along the bulk τ direction.

Let us now consider an eternal black hole and the thermofield double state [36]. This

state is invariant under the action of HR − HL. Let us now consider the action of only

– 9 –
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t

(a) (b)

Figure 2. In this figure we are considering the thermofield double state. (a) Acting with the bulk

modular Hamiltonian e−itKbulk,R we get a new state on the horizontal line that has a singularity

at the horizon. (b) The area term introduces a kink, or a relative boost between the left and right

sides. Then the state produced by the full right side Hamiltonian is non-singular, and locally equal

to the vacuum state.

the right side boundary Hamiltonian HR.
7 It was argued in [37] that this corresponds

to the same gravity solution but where the origin of the time direction on the right side

is changed. This implies that the Wheeler de Witt patch associated to tL = tR = 0

looks as in figure 2(b), after the action of e−itHR On the other hand, if we consider the

bulk quantum field theory and we act with only the right side bulk modular Hamiltonian

Kbulk,R we would produce a state that is singular at the horizon. By the way, it is precisely

for this reason that algebraic quantum field theorists like to consider the total modular

Hamiltonian instead. It turns out that the change in the bulk state is the same as the one

would obtain if we were quantizing the bulk field theory along a slice which had a kink as

shown in figure 2(b). Interestingly the area term in the full modular Hamiltonian (3.2) has

the effect of producing such a kink. In other words, the area term produces a shift in the

τ coordinate, or a relative boost between the left and right sides [38]. The action of only

the area term or only KBulk,R would lead to a state that is singular at the horizon, but

the combined action of the two produces a smooth state, which is simply the same bulk

geometry but with a relative shift in the identification of the boundary time coordinates.8

Let us go back to a general non-U(1) invariant case. Since the bulk modular Hamilto-

nian reduces to the one in the U(1)-symmetric case very near the bulk entangling surface

S, we expect that the action of the full boundary modular Hamiltonian, including the

area term, will not be locally singular in the bulk — though it can be singular from the

boundary point of view due to boundary UV divergences.

5.2 Implications for entanglement wedge reconstruction

One is often interested in defining local bulk operators as smeared operators in the bound-

ary. This operator should be defined order by order in GN over a fixed background and

should be local to the extent allowed by gauge constraints. If we consider a t = 0 slice in

7Here left and right denote the two copies in the thermofield double state.
8We thank D. Marolf for discussions about this point.
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the vacuum state, then we can think of a local bulk operator φ(X) as a smeared integral

of boundary operators [39]

φ(X) =

∫

bdy

dxd−1dtG(X|x, t)O(x, t) + o(GN ) (5.2)

One would like to understand to what extent this φ operator can be localized to a subregion

in the boundary.

Given a region in the boundary R, we have been associating a corresponding region

in the bulk, the so-called entanglement wedge which is the domain of dependence of Rb,

D[Rb]. There is another bulk region one can associate to R, the causal wedge (with space-

like slice RC) which is the set of all bulk points in causal contact with D[R], [40]. RC is

generically smaller than Rb [35, 41].

In situations with a U(1) symmetry, such as a thermal state or a Rindler or spherical

subregion of a CFT, we have time-translation symmetry and a local modular Hamiltonian

that generates translations in the time τ . We can express bulk local operators in the en-

tanglement wedge (which coincides with the causal wedge) in terms of boundary operators

localized in D[R] [39, 42]9

φ(X) =

∫

R

dyd−1

∫

dτ G′(X|y, τ)O(y, τ) + o(GN ) , X ∈ Rb (5.3)

A natural proposal for describing operators in that case is that we can replace τ in (5.3)

by the modular parameter s. In other words, we consider modular flows of local operators

on the boundary, defined as OR(x, s) ≡ U(s)OR(x, 0)U
−1(s)

A simple case in which Rb is larger than RC is the case of two intervals in a 1+1 CFT

such that their total size is larger than half the size of the whole system, see figure 3. Here,

it is less clear how to think about the operators in the entanglement wedge. We would

like to use the previous fact that the modular flow is bulk modular flow to try to get some

insight into this issue.

The modular flow in the entanglement wedge will be non-local, but highly constrained:

the bulk modular hamiltonian is bilocal in the fields [17]. If we have an operator near the

boundary of the causal wedge and modular evolve it, it will quickly develop a non zero

commutator with a nearby operator which does not lie in the causal wedge. Alternatively,

an operator close to the boundary of the entanglement wedge will have an approximately

local modular flow. It will follow the light rays emanating from the extremal surface and

it can be on causal contact with the operators in the causal wedge. See figure 3.

So we see that to reconstruct the operator in the interior of the entanglement wedge,

one necessarily needs to understand better the modular flow. It seems natural to conjecture

that one can generalize (5.3) to two intervals (or general regions) by considering the mod-

ular parameter instead of Rindler time, ie the simplest generalization of the AdS/Rindler

formula which accounts for the non-locality of the modular hamiltonian would be

φ(X) =

∫

R

dx

∫

dsG′′(X|x, s)O(x, s) , X ∈ Rb (5.4)

9It is sometimes necessary to go to Fourier space to make this formula precise [42, 43].
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Figure 3. In both figures the region R is the union of the two red intervals and the Ryu-Takayanagi

surface is the dotted black line, while the boundary of RC is the blue dashed line (color online). In

a), the shaded region denotes the defining spatial slice Rb of the entanglement wedge. In b), the

shaded region is the defining spatial slice RC of the causal wedge. The modular flow of an operator

close to the Ryu-Takayanagi surface will be approximately local, so that φ1(s) will be almost local

and, after some s, it will be in causal contact with φC1. This flow takes the operator out of this

slice to its past or to its future. Alternatively, if we consider an operator near the boundary of the

causal wedge φC2, it is clear that, under modular flow, [φC2(s), φ2] 6= 0.

Here G′′ is a function that should be worked out. It will depend on the bilocal kernel that

describes the modular Hamiltonian for free fields [17].

So we see that to reconstruct the operator in the interior of the entanglement wedge,

it is necessary to understand better modular flows in the quantum field theory of the bulk.

To make these comments more precise, a more detailed analysis would be required, which

should include a discussion about gravitational dressing and the constraints. We leave this

to future work.

Here we have discussed how the operators in the entanglement wedge can be though

of from the boundary perspective. However, note that from (3.2) (and consequently the

formula for the relative entropy), it is clear that one should think of the entanglement

wedge as the only meaningful candidate for the “dual of R”, see also [32]. If we add some

particles to the vacuum in the entanglement wedge Rb (which do not need to be entangled

with R̄b), the bulk relative entropy will change. According to (1.3), the boundary relative

entropy also changes and, therefore, state is distinguishable from the vacuum, even if we

have only access to R.

6 Comments and discussion

6.1 The relative entropy for coherent states

If we consider coherent states, since their bulk entanglement entropy is not changed, the

relative entropy will just come from the difference in the bulk modular hamiltonian. Since

our formulation is completely general, one could in principle compute it for any reference

region or state and small perturbations over it.
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A particularly simple case would be the relative entropy for an arbitrary subregion

between the vacuum and a coherent state of matter. To second order in the perturbation,

one only needs to work out how the modular hamiltonian for the free fields [17] looks like

for that subregion of AdS, and then evaluate it in the coherent state background.

6.2 Positivity of relative entropy and energy constraints

Our formula (3.3) implies that the energy constraints obtained from the positivity of the

relative entropy can be understood as arising from the fact that the relative entropy has

to be positive in the bulk.

6.3 Higher derivative gravity

Even though we focused on Einstein gravity, our discussion is likely to apply to other theo-

ries of gravity. The modular hamiltonian will likely be that of an operator localized on the

entangling surface plus the bulk modular Hamiltonian in the corresponding entanglement

wedge. Thus the relative entropy will be that of the bulk. There could be subtleties that

we have not thought about.

6.4 Beyond extremal surfaces

A. Wall proved the second law by using the monotonicity of relative entropy [4, 5]. If we

consider two Cauchy slices Σ0,Σt>0 outside a black hole, then Srel,t < Srel,0 is enough to

prove the generalized second law. Interestingly, section 3 of [30] shows the “decrease of

canonical energy”: Ecan(t) < Ecan(0). The setup (Cauchy slices) that they both consider

is the same. Due to the connection between relative entropy and canonical energy, [12], we

expect a relation between these two statements. This does not obviously follow from what

we said due to the following reason.

Here we limited our discussion to the entanglement wedge. In other words, we are

always considering the surface S to be extremal. We expect that the discussion should

generalize to situations where the surface S is along a causal horizon. The question is:

what is the precise boundary dual of the region exterior to such a horizon? Even though

we can think about the bulk computation, we are not sure what boundary computation

it corresponds to. A proposal was made in [44], and perhaps one can understand it in

that context.

Being able to define relative entropies for regions which are not bounded by minimal

surfaces is also crucial to the interesting proposal in [45] to derive Einstein’s equations

from (a suitable extension to non-extremal surfaces of) the Ryu-Takayanagi formula for

entanglement.

6.5 Distillable entanglement

In the recent papers [46, 47] it was argued that for gauge fields, only the purely quantum

part of the entanglement entropy corresponds to distillable entanglement. The “classical”

piece that cannot be used as a resource corresponds to the shannon entropy of the center

variables of [14]. Our terms local in S are the gravitational analog of this classical piece
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and one might expect that a bulk observer with access only to the low-energy effective field

theory can only extract bell pairs from the bulk entanglement. This seems relevant for the

AMPS paradox [48–50].
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A Subregions of gauge theories

A.1 U(1) gauge theory

The problem of defining the operator algebra of a subregion of a gauge theory was con-

sidered in [14]. It was shown that for a lattice gauge theory there are several possible

definitions of the subalgebra. It was further found that the subalgebra can have a center,

namely some operators that commute with all the other elements of the subalgebra. In

this case we can view the center as classical variables. Calling the classical variables xi,

then for each value of xi we have a classical probability pi and a density matrix ρi for each

irreducible block. The relative entropy between two states is then

S(ρ|σ) = H(p|q) +
∑

i

piS(ρi|σi) (A.1)

where pi, qi are the probabilities of variables xi in the state ρ and σ respectively. H is the

classical (Shanon) relative entropies of two probability distributions, H =
∑

i pi log(pi/qi).

In the continuum we expect that the relative entropy is finite and independent of the

microscopic details regarding the precise definition of the algebra [2].

These microscopic details have a continuum counterpart. When we consider a region

R we would like to be able to define a consistent quantum theory within the subregion.

In particular, imagine that we consider all classical solutions restricted to the subregion.

Then we define a presymplectic product between two such solutions, which we will use to

quantize the gauge orbits. This presymplectic product should be gauge invariant so that

it does not depend on the particular representative. Let us consider a free Maxwell field.

The presymplectic product is given by integrating

Ω(A1, A2) =

∫

Σ

ω(A1, A2) =

∫

Σ

(A1 ∧ ∗F 2 −A2 ∧ ∗F 1) (A.2)

where A1 = A1
µdx

µ is a gauge field configuration. Here we imagine that both A1 and A2

are solutions to the equations of motion. Σ is any spacelike surface.
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Demanding gauge invariance amounts to the statement

0 = Ω(A, dǫ) =

∫

∂Σ

ǫ ∧ F (A.3)

where ∂Σ is the boundary of the spacelike surface. We have used the equations of motion

for F and integrated by parts. In order to make this vanish we need some boundary

conditions. In particular, let us concentrate on the boundary conditions required at the

boundary of Σ corresponding to the boundary of a region S = ∂Σ. One possible boundary

condition is to set Ai = Acl
i for components along the surface, where Acl

i is a classical gauge

field on the surface. In this case, it is natural to set ǫ = 0 on the surface. We can quantize

the problem for each fixed Acl
i and then integrate over all Acl

i . These values of Acl
i are the

“center” variables xi in the above discussion. This is called the “magnetic” center, since

the gauge field Acl
i defines a magnetic field F = dAcl on the surface.

There are other possibilities, such as fixing the electric field, or “electric center”, where

the perpendicular electric field is fixed.

These would correspond to specific choices on the lattice. Since we expect that relative

entropy is a finite and smooth function of the shape of the region, [14] has shown that the

detailed boundary condition does not matter, as long as we choose something that makes

physical sense. Recently, [18, 19] carried out explicitly the field theory calculation, being

careful with the center variables.

A.2 Gravity

Here we consider the problem of defining a subregion in a theory of Einstein gravity. We

consider only the problem at the quadratic level where we need to consider free gravitons

moving around a fixed background (which obeys Einstein’s equations). These gravitons can

be viewed as a particular example of a gauge theory. We can also compute the symplectic

form, as given in [27], and then impose that the symplectic inner product between a pure

gauge mode and another solution to the linearized equations vanishes. Here the gauge

transformations are reparametrizations, generated by a vector field ζ. Note that ζ is not a

killing vector, it is a general vector field and it should not be confused with ξ discussed in

section 4. Writing the metric as g+ δg, where g is the background metric and δg is a small

fluctuation. Then the gauge transformation acts as δg → δg + Lζg, where Lζ is the Lie

derivative. Then, as shown in [30], there is a simple expression for the sympectic product

with a such a pure gauge mode

∫

Σ

ω(δg,Lζg) =

∫

∂Σ

δQζ − ζ.Θ(g, δg) (A.4)

with Qζ and Θ(g, δg) given in eqns (32) and (17) of [30].

We would like to choose boundary conditions on the surface which make the right hand

side zero. We choose boundary conditions similar to the “magnetic” ones above. Namely,

we fix the metric along the entangling surface S to δgij = γij . We treat γij as classical and

then integrate over it. This is enough to make all terms in (A.4) vanish. Let us be more

explicit. By a change of coordinates we can always set the metric to have the following
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form near the entangling surface. For simplicity we write it in Euclidean space, but the

same is true in Lorentzian signature

ds2 = dρ2 + [ρ2 + o(ρ4)](dτ + aidy
i)2 + hijdy

idyj (A.5)

here ai and hij can be functions of τ and ρ, with a regular expansion around ρ = 0. In

these coordinates the extremal surface S is always at ρ = 0, both for the original metric

and the perturbed metric. Extremality implies that the trace of the extrinsic curvature is

zero, or KA = hij∂XAhij = 0, where XA = (X1, X2) = (ρ cos τ, ρ sin τ). This is true for

the background and the fluctuations

KA = 0, δKA = 0 (A.6)

which ensures that even on the perturbed solution we are considering the minimal surface.

These conditions ensure that the splitting between the two regions is defined in a gauge

invariant way.

We demand that all fluctuations are given in the gauge (A.5). Thus, near ρ = 0, δg

leads to δai and δhij . We now further set a boundary condition that δhij = γij where γij is

a classical function which we will later integrate over. For defining the quantum problem

we will view it as being classical. We will quantize the fields in the subregion for fixed

values of γij and then integrate over the classical values of γij .

With these boundary conditions we see that all terms in (A.4) vanish. In fact, (A.4),

has three terms10
∫

Σ

ω(δh,Lξg) =

∫

∂Σ

δδhQ(ζ)− iζΘ(g, δh)

=

∫

∂Σ

[

δaiζ
i + ζτδhii +

(

− hij∂Aδhij +
1

2
δhij∂Ahij

)

ζBǫ
AB

]

(A.7)

Since the fluctuation of the metric is zero at the entangling surface, δhij = 0, we see

that many terms vanish. In addition, since we are setting δhij = 0, it is also natural to

restrict the vector fields so that ζi = 0 on the surface. This ensures that the first term

in (A.7) vanishes. Note that the middle term is related to the fact that the area generates

a shift in the coordinate τ . After all the area is the Noether charge associated to such

shifts [26, 27].

The extremality condition makes sure that we are choosing a (generically) unique

surface for each geometry. We then treat the induced geometry on the surface as a classical

variable, quantize the metric in the subregion, and then sum over this classical variable.

In this region, we seem to have a gauge invariant symplectic product.

We have not explicitly computed the entanglement entropy for gravitons with these

choices, but we expect that it should lead to a well defined problem and that relative

entropies will be finite.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

10We did not keep track of the numerical coefficients in front of each of the three terms.
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