VON NEUMANN ALGEBRA INDEX AND MAXIMAL RELATIVE ENTROPY

LI GAO, MARIUS JUNGE, AND NICHOLAS LARACUENTE

Abstract

We revisit the connection between von Neumann algebra index and relative entropy. We observe that the Pimsner-Popa index in 221 connects to maximal sandwiched p-Rényi relative entropy for all $1 / 2 \leq p \leq \infty$, including the Umegaki's relative entropy at $p=1$. Based on that, we introduce a new notation of maximal relative entropy for a inclusion of finite von Neumann algebras. These maximal relative entropy generalizes subfactors index and has application in estimating decoherence time of quantum Markov semigroup.

1. Introduction

The index $[\mathcal{M}: \mathcal{N}]$ for a II_{1} subfactor $\mathcal{N} \subset \mathcal{M}$ was first constructed by Jones $\left\lvert\, \frac{\text { Jones }}{[14]}\right.$ as the coupling constant of the representation of \mathcal{N} on $L_{2}(\mathcal{M})$. Motivated from classical egordic theory, Connes and Störmer $\frac{\text { CST75 }}{[7]}$ introduced the relative entropy $H(\mathcal{M} \mid \mathcal{N})$ for an inclusion of finite (dimensional) $\mathcal{N} \subset \mathcal{M}$. The connection between these two quantities was first studied by Pimsner and Popa $[212]$ and they proved the general relation

$$
\begin{equation*}
\log [\mathcal{M}: \mathcal{N}] \geq H(\mathcal{M} \mid \mathcal{N}) \tag{1}
\end{equation*}
$$

relation
A key concept in their discussion is the following index for an inclusion $\mathcal{N} \subset \mathcal{M}$ of finite von Neumann algebras,

$$
\begin{equation*}
\lambda(\mathcal{M}: \mathcal{N})=\max \left\{\lambda \mid \lambda \rho \leq E(\rho), \text { for all } \rho \in \mathcal{M}_{+}\right\} \tag{2}
\end{equation*}
$$

where $E: \mathcal{M} \rightarrow \mathcal{N}$ is the trace preserving conditional expectation onto \mathcal{N}. It was proved in $\left[\begin{array}{l}\text { pipo } \\ 22]\end{array}\right.$ that $[\mathcal{M}: \mathcal{N}]=\lambda(\mathcal{M}: \mathcal{N})^{-1}$ for I_{1} subfactors and $\log \lambda(\mathcal{M}: \mathcal{N})^{-1} \geq H(\mathcal{M} \mid \mathcal{N})$ in general, from which (24) follows. In this paper, we revisit these concepts and connect them to sandwiched Rényi relative entropies D_{p} recently introduced in quantum information theory (see Section 2 for definitions). The starting point is the observation that the quantity $\lambda(\mathcal{M}: \mathcal{N})$ is closely related to the sandwiched Rényi relative entropy D_{p} at $p=\infty$. Based on that, we obtain the following connection between index and p-Rényi relative entropy for all $1 / 2 \leq p \leq \infty$, including Umegaki's relative entropy at $p=1$.

[^0]A Theorem 1.1. Let $\mathcal{N} \subset \mathcal{M}$ be an inclusion of $I I_{1}$ factor or hyperfinite von Neumann algebras. For $1 / 2 \leq p \leq \infty$,

$$
\begin{equation*}
-\log \lambda(\mathcal{M}: \mathcal{N})=\sup _{\rho \in S(\mathcal{M})} D_{p}(\rho \| \mathcal{E}(\rho))=\sup _{\rho \in S(\mathcal{M})} \inf _{\sigma \in S(\mathcal{N})} D_{p}(\rho \| \sigma) \tag{3}
\end{equation*}
$$

where the supremum takes all density operators ρ in \mathcal{M} and the infimum takes all density operators σ in \mathcal{N}.

For a density operator $\rho \in \mathcal{M}$, we define $D_{p}(\rho \| \mathcal{N})=\inf _{\sigma} D(\rho \| \sigma)$ where the infimum takes all density $\sigma \in \mathcal{N}$. This notation measures the distance of the state ρ to the states of subalgebra \mathcal{N}. It unifies several information measure studied in quantum information theory, such as (Rényi) conditional entropy mul1er13 20$]$, relative entropy of decoherence ${ }^{\text {Yang }} 31$ and relative entropy asymmetry $\frac{\text { Iman }}{19]}$. Theorem $\frac{A}{1} .1$ says that the von Neumann algebra index can be viewed as the maximal relative entropy to the subalgebra. Motivated from that, we introduce new notations of relative entropy for an inclusion $\mathcal{M} \subset \mathcal{N}$

$$
D_{p}(\mathcal{M} \| \mathcal{N}):=\sup _{\rho \in \mathcal{M}} D_{p}(\rho \| \mathcal{N}), D_{p, c b}(\mathcal{M} \| \mathcal{N}):=\sup _{n} D_{p, c b}\left(M_{n}(\mathcal{M}) \| M_{n}(\mathcal{N})\right)
$$

Such relative entropies differ with Connes-Störmer $H(\mathcal{M} \mid \mathcal{N})$ but are more related to the index $\lambda(M: N)$ and $[\mathcal{M}: \mathcal{N}]$. In particular, for $p=1, \infty, D_{1, c b}$ and $D_{\infty, c b}$ satisfies additivity under tensor product.

One application of $D_{p, c b}$ is to estimate the decoherence time of quantum Markov semigroup. A quantum Markov semigroup $\left(T_{t}\right)_{t}: \mathcal{M} \rightarrow \mathcal{M}$ is an ultra-weak continuous family of normal unital completely positive maps. When $\mathcal{M}=B(H)_{\dot{\text { GIL }} \text { quantum Markov }}^{\text {qua }}$ semigroups are also called GLKS equation in physics literature (see [6]). It models the evolution of open quantum system that potentially interacts with environment.
B Theorem 1.2. Let $T_{t}=e^{-A t}: \mathcal{M} \rightarrow \mathcal{M}$ be a symmetric quantum Markov semigroup and \mathcal{N} be incoherent subalgebra of T_{t}. Suppose $D_{2, c b}(\mathcal{M} \| \mathcal{N})<\infty$ and T_{t} has λ-spectral gap that $\lambda\|x-E(x)\|_{2}^{2} \leq \operatorname{tr}\left(x^{*} A x\right)$. Then for any density $\rho \in M_{n}(\mathcal{M})$, we have $\left\|i d \otimes T_{t}(\rho)-i d \otimes E(\rho)\right\|_{1} \leq \epsilon$ if

$$
t \geq \frac{1}{\lambda}\left(2 \log \frac{2}{\epsilon}+D_{2, c b}(\mathcal{M} \| \mathcal{N}) / 2\right)
$$

The incoherent subalgebra is common multiplicative domain of T_{t} for all $t \geq 0$. A semigroup T_{t} is non-primitive if \mathcal{N} is nontrivial. A non-primitive semigroup describes the a general decoherence process that a quantum state ρ lose its coherence and converges to the incoherent state $E(\rho)$, where \mathcal{E} is the conditional expectation onto \mathcal{N}. Theorem ${ }^{B} .2$ gives an estimate of the decoherence time independent of the dimension of auxiliary system M_{n}. In particular, when \mathcal{N} is a commutative algebra (classical system), $i d \otimes E(\rho)$ is always a separable state. Then the above estimates also bounds the entanglement remained in $T_{t}(\rho)$, which gives the entanglement-breaking time of the semigroup.

The rest of paper is organized as follows. In Section 2, we review definition and basic properties about sandwiched Rényi relative. The connection between $D_{p}(\rho \| \mathcal{N})$ and amalgamated L_{p}-spaces is also mentioned. Section 3 proves Theorem $\mathbb{I} .1$ and discuss some further properties about maximal relative entropy $D_{p}(\mathcal{M} \| \mathcal{N})$ and $D_{p, c b}(\mathcal{M} \| \mathcal{N})$. Section ${ }_{B}^{4}$ is devoted to application of $D_{p, c b}(\mathcal{M} \| \mathcal{N})$ in the decoherence time and proves Theorem T. 2

2. Relative entropy

2.1. Sandwiched Rényi relative entropy. Let \mathcal{M} be a finite von Neumann algebra equipped with normal faithful trace state tr. For $1 \leq p<\infty$, the space $L_{p}(\mathcal{M})$ is defined as the norm completion with respect to L_{p}-norm $\|x\|_{p}=\operatorname{tr}\left(|x|^{p}\right)^{\frac{1}{p}}$. In particular, $L_{\infty}(\mathcal{M}):=\mathcal{M}$ and the predual space $\mathcal{M}_{*} \cong L_{1}(\mathcal{M})$ via the duality

$$
a \in L_{1}(\mathcal{M}) \longleftrightarrow \phi_{a} \in \mathcal{M}_{*}, \phi_{a}(x)=\operatorname{tr}(a x)
$$

We say an element $\rho \in L_{1}(\mathcal{M})$ a density operator if $\rho \geq 0$ and $\operatorname{tr}(\rho)=1$. We denote $S(\mathcal{M})$ for all density operator of \mathcal{M}, which correspond to the normal states of \mathcal{M}. Let $p \in\left[\frac{1}{2}, 1\right) \cup(1, \infty]$ and $\frac{1}{p^{\prime}}+\frac{1}{p}=1$. For two density ρ and σ, the sandwiched Rényi relative entropy is defined as

$$
D_{p}(\rho \| \sigma)= \begin{cases}p^{\prime} \log \left\|\sigma^{-\frac{1}{2 p^{\prime}}} \rho \sigma^{-\frac{1}{2 p^{\prime}}}\right\|_{p}, & \text { if } \rho \ll \sigma \\ +\infty, & \text { otherwise }\end{cases}
$$

Here $\rho \ll \sigma$ means that the support projection satisfies $\operatorname{supp}(\rho) \leq \operatorname{supp}(\sigma)$. The negative power $\sigma^{-\frac{1}{2 p^{\prime}}}$ can be interpreted as generalized inverse on the support and in most discussion
 algebras and recently generalized to general von Neumann algebra via different methods
berta18, Jenvcova18 $[4, ?, ?, 10]$. When $p \rightarrow 1, D_{p}$ recovers the relative entropy

$$
\begin{equation*}
D(\rho \| \sigma)=\operatorname{tr}(\rho \log \rho-\rho \log \sigma) \tag{4}
\end{equation*}
$$

which was first introduced by Umegaki \ddagger Umegaki62 and fater extended to general von Neumann algebra by Araki $\frac{\text { Araki }}{[1]}$. Umegaki's definition is the noncommutative generalization of KullbackLeibler divergence in probablity theory. It is an fundamental quantity that have been intensive studied and widely used in quantum information theory (see $\frac{\text { yedrato2 }}{27]}$ for a survey). As relative entropy usually has operational meaning in the asymptotic i.i.d setting (e.g. [2yp , the sandwiched Rényi relative entropy $D_{\text {wilde14 }}$ has been found useful in proving strong converse theorem and one shot rate $[29,11,17]$. For aill $\frac{1}{2} \leq p \leq \infty, D_{p}(\rho \| \sigma)$ is a measure of difference between ρ and σ. In particular the case $p=\infty$,

$$
D_{\infty}(\rho \| \sigma)=\log \left\|\sigma^{-\frac{1}{2}} \rho \sigma^{-\frac{1}{2}}\right\|_{\infty}=\log \inf \{\lambda \mid \rho \leq \lambda \sigma\}
$$

is also called $D_{\max }$ and $D_{\frac{1}{2}}$ is essentially the fidelity. We summerise here some important properties of D_{p}. Let ρ, σ be two densities operator
i) $D_{p}(\rho \| \sigma) \geq 0$. Moreover, $D_{p}(\rho \| \sigma)=0$ if and only if $\rho=\sigma$
ii) $D_{p}(\rho \| \sigma)$ is non-decreasing over $p \in\left[\frac{1}{2}, \infty\right]$ and $\lim _{p \rightarrow 1} D_{p}(\rho \| \sigma)=D(\rho \| \sigma)$.
iii) For a complete positive trace preserving map (CPTP) $\Phi: L_{1}(\mathcal{M}) \rightarrow L_{1}(\mathcal{M})$, $D_{p}(\rho \| \sigma) \geq D_{p}(\Phi(\rho) \| \Phi(\sigma))$. In particular, $D_{p}(\rho \| \sigma)$ is joint convex for ρ and σ.
i), ii) and iii) was proved in $\frac{\text { muller } 13 \text {, wilde14 }}{[20,29] \text { for matrix algebras. The discussion for the case of }}$ general von Nuemann algebra can be found in $\frac{\text { pertal18, jencova }}{4,12,13,10] .}$
2.2. Relative entropy with respect to a subalgebra. $\operatorname{Let} \mathcal{N} \subset \mathcal{M}$ be a subalgebra. Motivated from the asymmetry measure of group in marvian14 $[18$, we introduced the following definition of relative entropy with respect to a subalgebra: for a density $\rho \in L_{1}(\mathcal{M})$,

$$
D_{p}(\rho \| \mathcal{N})=\inf _{\sigma \in S(\mathcal{N})} D_{p}(\rho \| \sigma)
$$

where the infimum takes over all densities $\sigma \in S(\mathcal{N})$. This definition connects several concepts in the literature:
a) Let $\alpha: G \rightarrow \operatorname{Aut}(\mathcal{M})$ be an action of a group G as $*$-automorphism of \mathcal{M}. Let $\mathcal{N}=\mathcal{M}^{G}:=\left\{x \in \mathcal{M} \mid \alpha_{g}(x)=x \forall g \in G\right\}$ be the invariant subalgebra. Then $D_{p}\left(\rho \| \mathcal{M}^{G}\right)$ is a G-asymmetry measure introduced in marvi.
b) For $\mathcal{M}=B\left(H_{A}\right) \otimes B\left(H_{B}\right)$ and $\mathcal{N}=\mathbb{C} 1 \otimes B\left(H_{B}\right) \subset B\left(H_{A}\right) \otimes B\left(H_{B}\right), D_{p}(\rho \| \mathcal{N})$ gives the sandwiched Rényi relative entropy $H_{p}(A \mid B)$ in quiler13 up to a constant $D_{p}(\rho \| \mathcal{N})=H_{p}(A \mid B)_{\rho}+\log |A|$. The constant comes from that the matrix trace on $B\left(H_{A}\right) \otimes B\left(H_{B}\right)$ differs with $B\left(H_{B}\right)$ by a factor of $|A|$.
c) Let $\mathcal{N}=l_{\infty}^{n} \subset M_{n}=\mathcal{M}$ be the diagonal matrices inside the matrix algebra M_{n}. $D_{p}(\rho \| \mathcal{N})$ gives the sandwiched Rényi relative entropy of coherence.

We have the basic properties of $D_{p}(\rho \| \mathcal{N})$ parallel to $D(\rho \| \sigma)$.
basic Proposition 2.1. For $1 / 2 \leq p \leq \infty$ and density $\rho \in S(\mathcal{M})$,
i) $D_{p}(\rho \| \mathcal{N}) \geq 0$. Moreover $D_{p}(\rho \| \mathcal{N})=0$ if and only if $\rho \in S(\mathcal{N})$
ii) $D_{p}(\rho \| \mathcal{N})$ is non-decreasing over $p \in\left[\frac{1}{2}, \infty\right]$ and $\lim _{p \rightarrow 1} D_{p}(\rho \| \mathcal{N})=D(\rho \| \mathcal{N})$.
iii) Let $\Phi: L_{1}(\mathcal{M}) \rightarrow L_{1}(\mathcal{M})$ be a CPTP such that $\Phi\left(L_{1}(\mathcal{N})\right) \subset L_{1}(\mathcal{N})$. Then $D_{p}(\rho \| \mathcal{N}) \geq D_{p}(\Phi(\rho) \| \mathcal{N})$. In particular, $D_{p}(\rho \| \mathcal{N})$ is convex for ρ.
iv) For $p=1$,

$$
D(\rho \| \mathcal{N})=D(\rho \| \mathcal{E}(\rho))=H(E(\rho))-H(\rho)
$$

where $H(\rho)=-\operatorname{tr}(\rho \log \rho)$ is the von Neumann entropy.

Proof. i)-iii) follows from the corresponding properties of $D_{p}(\rho \| \sigma)$ by taking the infimum. When $p=1$, for any density $\sigma \in S_{1}(\mathcal{N})$,

$$
\begin{align*}
D(\rho \| \sigma) & =\operatorname{tr}(\rho \log \rho-\rho \log \sigma)=\operatorname{tr}(\rho \log \rho)-\tau(E(\rho) \log \sigma) \\
& =\operatorname{tr}(\rho \log \rho-E(\rho) \log E(\rho))-\operatorname{tr}(E(\rho) \log \sigma-E(\rho) \log E(\rho)) \\
& =D(\rho \| E(\rho))+D(\sigma \| E(\rho)) \tag{5}
\end{align*}
$$

Because $D(\sigma \| E(\rho)) \geq 0$ and $D(\sigma \| E(\rho))=0$ implies $\sigma=\mathcal{E}(\rho)$, so the infimum attains uniquely at $E(\rho)$. Moreover, by the condition expectation property,

$$
\left.D(\rho \| E(\rho))=\operatorname{tr}(\rho \log \rho-\rho \log E(\rho))=\operatorname{tr}\left(\rho \log \rho-E_{(} \rho\right) \log E(\rho)\right)=H(E(\rho))-H(\rho) .
$$

this verifies iv).
Form above properties, we see that $D_{p}(\rho \| \mathcal{N})$ are natural measures of the difference ρ is from a density of \mathcal{N}. Viewing $E(\rho)$ as the projection of $\rho, D_{p}(\rho \| \mathcal{E}(\rho))$ is also a measure with respect to the subalgebra \mathcal{N} and coincides with $D_{p}(\rho \| \mathcal{N})$ at $p=1$. We note that for general $p, D_{p}(\rho \| \mathcal{N}) \neq D_{p}(\rho \| \mathcal{E}(\rho))$.
Example 2.2. Let $\mathcal{N} \cong l_{\infty}^{2}$ be the diagonal matrix in $\mathcal{M}=M_{2}$. For $0 \leq a \leq 1$, consider the pure state $\rho=\left[\begin{array}{cc}a & \sqrt{a(1-a)} \\ \sqrt{a(1-a)} & 1-a\end{array}\right]$. One can calculate that for $1<p \leq \infty$ and $q=\frac{p}{2 p-1}$,

$$
\begin{aligned}
& D_{p}(\rho \| \mathcal{N})=D_{p}\left(\rho \| \sigma_{p}\right)=p^{\prime} \log \left(1+a^{q}(1-a)^{1-q}+(1-a)^{q} a^{1-q}\right), \\
& \sigma_{p}=\left[\begin{array}{cc}
\frac{a^{q}}{a^{q}+(1-a)^{q}} & 0 \\
0 & \frac{(1-a)^{q}}{a^{q}+(1-a)^{q}}
\end{array}\right] \\
& D_{p}(\rho \| E(\rho))=p^{\prime} \log \left(a^{\frac{1}{p}}+(1-a)^{\frac{1}{p}}\right), E(\rho)=\left[\begin{array}{cc}
a & 0 \\
0 & 1-a
\end{array}\right]
\end{aligned}
$$

2.3. Connection to amalgamated L_{p}-spaces. The Rényi relative entropy $D_{p}(\rho \| \mathcal{N})$
 [15]. Here we briefly recall the basic definitions and refer to the appendix and \{Pmemo for more information.

Let $1 \leq p \leq \infty$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=\frac{1}{1}$. The amalgamated L_{p}-space $L_{1}^{p}(\mathcal{N} \subset \mathcal{M})$ is the completion of \mathcal{M} with respect the the norm

$$
\begin{equation*}
\|x\|_{L_{1}^{p}(\mathcal{N} \subset \mathcal{M})}=\inf _{x=a y b}\|\alpha\|_{L_{2 p^{\prime}}(\mathcal{N})}\|y\|_{L_{p}(\mathcal{M})}\|\beta\|_{L_{2 p^{\prime}}(\mathcal{N})} \tag{6}
\end{equation*}
$$

where the infimum runs over all factorization $x=a y b$ with $a, b \in \mathcal{N}$ and $y \in \mathcal{M}$. For positive $x \geq 0$, it suffices to consider positive $a=b \geq 0$ in the infimum and

$$
\begin{equation*}
\|x\|_{L_{1}^{p}(\mathcal{N} \subset \mathcal{M})}=\inf _{\sigma \in S(\mathcal{N})}\left\|\sigma^{-\frac{1}{2 p^{\prime}}} \rho \sigma^{-\frac{1}{2 p^{\prime}}}\right\|_{p} \tag{7}
\end{equation*}
$$

where the negative power are inverse on the support. Therefore, for $1<p \leq \infty$,

$$
D_{p}(\rho \| \mathcal{N})=p^{\prime} \log \|\rho\|_{L_{1}^{p}(\mathcal{N} \subset \mathcal{M})}
$$

It follows from Hölder inequality that $\|\rho\|_{L_{1}^{p}(\mathcal{N} \subset \mathcal{M})} \geq\|\rho\|_{1}$ and $\|\rho\|_{L_{1}^{p}(\mathcal{N} \subset \mathcal{M})}=\|\rho\|_{1}$ if and only if $\rho \in L_{1}(\mathcal{N})$. This corresponds to the positivity $D_{p}(\rho \| \mathcal{N}) \geq 0$ and $D_{p}(\rho \| \mathcal{N})=0$ if and only if $\rho \in S(\mathcal{N})$. For $1 \leq p \leq q \leq \infty$ and $\frac{1}{q}+\frac{1}{2 r}=\frac{1}{p}$, we define $L_{q}^{p}(\mathcal{N} \subset \mathcal{M})$ as the completion of \mathcal{M} with respect the norm

$$
\begin{equation*}
\|x\|_{L_{q}^{p}(\mathcal{N} \subset \mathcal{M})}=\sup _{\|a\|_{L_{2 r}(\mathcal{N})}=\|\mid \vec{b}\|_{L_{2 r}(\mathcal{N})}=1}\|a x b\|_{L_{p}(\mathcal{M})} \tag{8}
\end{equation*}
$$

where the supremum runs over all a, b in the unit ball of $L_{2 r}(\mathcal{N})$. The connection of $D_{p}(\rho \| \mathcal{N})$ for $\frac{1}{2} \leq p<1$ goes with conditional L_{p}-norm via $\rho^{\frac{1}{2}}$. Let $1 \leq q=2 p \leq 2$ and $\frac{1}{q}=\frac{1}{r}+\frac{1}{2}$. We define the norm

$$
\|x\|_{L_{(r, \infty)}^{2}(\mathcal{N} \subset \mathcal{M})}=\sup _{\|a\|_{L_{r}(\mathcal{N})}=1}\|a x\|_{L_{q}(\mathcal{M})}
$$

where the supreme runs over all $a \in \mathcal{N}$ with $\|a\|_{L_{r}(\mathcal{N})}=1$. For $1 \leq q=2 p<2$

$$
D_{p}(\rho \| \mathcal{N})=-r \log \left\|\rho^{\frac{1}{2}}\right\|_{L_{(r, \infty)}^{2}(\mathcal{N} \subset \mathcal{M})}
$$

We show that the infimum in $D_{p}(\rho \| \mathcal{N})$ is always attained. The proof uses uniform convexity of L_{p}-spaces and is included in the appendix.
unique Proposition 2.3. For $1 / 2 \leq p \leq \infty$, the infimum $D_{p}(\rho \| \mathcal{N})=\inf _{\sigma \in \mathcal{S}(\mathcal{N})} D_{p}(\rho \| \sigma)$ is attained at some σ. For $1 / 2<p<\infty$, such σ is unique.

3. Maximal relative entropy

Recall the Popa-Pimsner index for a finite von Neumann algebra is defined as

$$
\lambda(\mathcal{M}: \mathcal{N})=\max \left\{\lambda \mid \lambda x \leq \mathcal{E}(x) \forall x \in M_{+}\right\}
$$

This definition can be written by D_{∞} as follows

$$
\begin{aligned}
\log \lambda(\mathcal{M}: \mathcal{N}) & =\log \sup \left\{\lambda \mid \lambda x \leq \mathcal{E}(x) \text { for all } x \in \mathcal{M}_{+}\right\} \\
& =\log \inf _{x \in \mathcal{M}_{+}} \sup \{\lambda \mid \lambda x \leq \mathcal{E}(x)\} \\
& =\inf _{x \in \mathcal{M}_{+}}(\log \inf \{\mu \mid x \leq \mu \mathcal{E}(x)\})^{-1} \\
& =\left(\sup _{x \in \mathcal{M}_{+}} \log \inf \{\mu \mid x \leq \mu \mathcal{E}(x)\}\right)^{-1} \\
& =\left(\sup _{x \in S(\mathcal{M})} D_{\infty}(x| | E(x))\right)^{-1}
\end{aligned}
$$

where the last equality follows from the fact \mathcal{M}_{+}is norm-dense in $L_{1}(\mathcal{M})_{+}$. Thus we have

$$
\begin{equation*}
-\log \lambda(\mathcal{M}: \mathcal{N})=\sup _{\rho \in S(\mathcal{M})} D_{\infty}(\rho \| E(\rho)) \tag{9}
\end{equation*}
$$

We now prove the main theorem.
index Theorem 3.1. Let $\mathcal{N} \subset \mathcal{M}$ be an inclusion of $I I_{1}$ subfactors or hyperfinite finite von Neumann algebras. Then for $1 / 2 \leq p \leq \infty$,

$$
-\log \lambda(\mathcal{M}: \mathcal{N})=\sup _{\rho \in S(\mathcal{M})} D_{p}(\rho \| \mathcal{E}(\rho))=\sup _{\rho \in S(\mathcal{M})} D_{p}(\rho \| \mathcal{N})
$$

Proof. By monotonicity,

$$
\begin{aligned}
& D_{\frac{1}{2}}(\rho \| \mathcal{N}) \leq D_{p}(\rho \| \mathcal{N}) \leq D_{\infty}(\rho \| \mathcal{N}) \leq D_{\infty}(\rho \| \mathcal{E}(\rho)) \\
& D_{\frac{1}{2}}(\rho \| \mathcal{N}) \leq D_{\frac{1}{2}}(\rho \| \mathcal{E}(\rho)) \leq D_{p}(\rho \| \mathcal{E}(\rho)) \leq D_{\infty}(\rho \| \mathcal{E}(\rho))
\end{aligned}
$$

it suffices to prove that

$$
\sup _{\rho \in S(\mathcal{M})} D_{\frac{1}{2}}(\rho \| \mathcal{N}) \geq-\log \lambda(\mathcal{M}: \mathcal{N})
$$

Not that

$$
\begin{aligned}
D_{\frac{1}{2}}(\rho \| \mathcal{N}) & =\inf _{\sigma \in S(\mathcal{N})} D_{\frac{1}{2}}(\rho \| \sigma)=\inf -2 \log \left\|\sigma^{\frac{1}{2}} \rho^{\frac{1}{2}}\right\|_{1} \\
& =-2 \log \sup \left\|\sigma^{\frac{1}{2}} \rho^{\frac{1}{2}}\right\|_{1}
\end{aligned}
$$

Let $e=\operatorname{supp}(\rho)$ be the support projection of ρ. By Hölder inequality, for any $\sigma \in S(\mathcal{N})$,

$$
\begin{aligned}
\left\|\sigma^{\frac{1}{2}} \rho^{\frac{1}{2}}\right\|_{1} & \leq\left\|\sigma^{\frac{1}{2}} e\right\|_{2}\left\|\rho^{\frac{1}{2}}\right\|_{2} \\
& =\operatorname{tr}(\sigma e)^{\frac{1}{2}}=\operatorname{tr}(\sigma \mathcal{E}(e))^{\frac{1}{2}} \leq\|E(e)\|_{\infty}^{\frac{1}{2}}
\end{aligned}
$$

Therefore, $D_{\frac{1}{2}}(\rho \| \mathcal{N}) \geq-\log \|E(e)\|_{\infty}$ and

$$
\sup _{\rho} D_{\frac{1}{2}}(\rho \| \mathcal{N}) \geq-\log \inf \{\|\mathcal{E}(e)\| \mid e \text { projection in } \mathcal{M}\}
$$

It has been proved in $\frac{\text { pipo }}{22}$, Theorem 2.2, Proposition 2.6 and Corollary 5.6] that the infimum at the right hand side equals $\lambda(\mathcal{M}: \mathcal{N})$ when \mathcal{M}, \mathcal{N} are II_{1} factors or hyperfinite. That completes the proof.

The above theorem basically used the monotonicity of D_{p} over p and the following key equality

$$
\begin{equation*}
\max \left\{\lambda \mid \lambda x \leq \mathcal{E}(x) \forall x \in M_{+}\right\}=\inf \{\|\mathcal{E}(e)\| \mid e \text { projection in } \mathcal{M}\} \tag{10}
\end{equation*}
$$

key
proved for II_{1} factors and hyperfinite von Neumann algebras. The " \leq " direction always holds form convexity. The converse inequality is open in general. In both finite dimensional
or subfactor cases, it follows from the fact that there exists a projection $e \in \mathcal{M}$ such that $\mathcal{E}(e)$ is $\lambda(\mathcal{M}: \mathcal{N})$ times a projection. Let $\rho_{0}=\operatorname{tr}(e)^{-1} e$ be the normalized density of e. As a consequence of monotonicity, $D_{p}\left(\rho_{0} \| \mathcal{N}\right)$ attains the index for all $1 / 2 \leq p \leq \infty$,

$$
\begin{equation*}
\sup _{\rho \in S(\mathcal{M})} D_{p}(\rho \| \mathcal{N})=D_{p}\left(\rho_{0} \| \mathcal{N}\right)=D_{p}\left(\rho_{0} \| E\left(\rho_{0}\right)\right) . \tag{11}
\end{equation*}
$$

Let us briefly review the value of $\lambda(\mathcal{M}: \mathcal{N})$ and the optimal density ρ from $\frac{\text { pipo }}{22]}$.
For II_{1} subfactor $\mathcal{N} \subset \mathcal{M}$, there is a projection $e \in \mathcal{M}$ such that $E(e)=[\mathcal{M}: \mathcal{N}]^{-1}$. This implies

$$
\lambda(\mathcal{M}: \mathcal{N})^{-1}=[\mathcal{M}: \mathcal{N}]
$$

For finite dimensional cases, let $\mathcal{N} \cong \oplus_{k} M_{n_{k}}, \mathcal{M} \cong \oplus_{l} M_{m_{l}}$ and assume that the unital inclusion $\iota: \mathcal{N} \hookrightarrow \mathcal{M}$ is given by

$$
\iota\left(\oplus_{k} x_{k}\right)=\oplus_{l}\left(\oplus_{k} x_{k} \otimes 1_{a_{k l}}\right) .
$$

Here 1_{n} denotes the identity matrix in M_{n} and $a_{k l}$ is called the inclusion matrix, which means that each block $M_{m_{l}}$ of \mathcal{M} contains $a_{k l}$ copy of $M_{n_{k}}$ blocks from \mathcal{N}. Let t_{l} be the trace of minimal projection in $M_{m_{l}}$ block of \mathcal{M} and s_{k} be the trace of minimal projection in $M_{n_{k}}$ block of \mathcal{N}. Then $s=\left(s_{k}\right), t=\left(t_{l}\right), n=\left(n_{k}\right), m=\left(m_{l}\right)$ as column vectors satisfy $s=A t$ and $m=A^{T} n$, where $A=\left(a_{k l}\right)$ and A^{T} is the transpose of A. Based on (i11), it is equivalent to consider the optimal element for D_{p} of any $1 / 2 \leq p \leq \infty$.

Without losing generosity, we assume the trace of \mathcal{M} is an induced matrix trace by a further inclusion $\mathcal{M} \cong \oplus_{l} M_{m_{l}} \otimes 1_{t_{l}} \subset M_{d}$. Based on Theorem 袋.1, an equivalent approach is to maximize $D(\rho \| E(\rho))=H(E(\rho))-H(\rho)$. By convexity of D, it suffices to consider a minimal projection $e=|\psi\rangle\langle\psi| \otimes 1_{t_{l}}$ in one of the block $M_{m_{l}}$. Then $\rho=|\psi\rangle\langle\psi| \otimes \frac{1_{t_{l}}}{t_{l}}$ is the normalized density and $H(\rho)=\log t_{l}$. Denote $P_{k, i}$ be the projection in $M_{m_{l}}$ corresponding to the i th copy of $M_{n_{k}}$ and write $\left|\psi_{k, i}\right\rangle=P_{k, i}|\psi\rangle$. The conditional expectation of ρ is given by

$$
E_{\mathcal{N}}(\rho)=\oplus_{k}\left(\sum_{i=1}^{a_{k l}}\left|\psi_{k, i}\right\rangle\left\langle\psi_{k, i}\right|\right) \otimes \frac{1}{s_{k}} 1_{s_{k}} .
$$

The largest possible rank of $\mathcal{E}_{\mathcal{N}}(\rho)$ is $\sum_{k} \min \left(a_{k l}, n_{k}\right) s_{k}$ because the part in the $M_{n_{k}}$ block of \mathcal{N}

$$
\sum_{i=1} P_{i, k}|\psi\rangle\langle\psi| P_{i, k}=\sum_{i=1}^{a_{k l}}\left|\psi_{k, i}\right\rangle\left\langle\psi_{k, i}\right|
$$

is of rank at most $\min \left(a_{k l}, n_{k}\right)$. Then the maximal entropy $H(\mathcal{E}(\rho))$ is attained by choosing $\left|\psi_{k, i}\right\rangle\left\langle\psi_{k, i}\right|$ mutually orthogonal and $\left\|\psi_{k, i}\right\|^{2}=\frac{s_{k}}{\sum_{k} \min \left(a_{k l}, n_{k}\right) s_{k}}$. In this case,

$$
E_{\mathcal{N}}(\rho)=\oplus_{k}\left(\sum_{i=1}^{a_{k l}}\left|\psi_{k, i}\right\rangle\left\langle\psi_{k, i}\right|\right) \otimes \frac{1}{s_{k}} 1_{s_{k}}=\frac{1}{\sum_{k} \min \left(a_{k l}, n_{k}\right) s_{k}} \oplus_{k}\left(\sum_{i=1}^{a_{k l}}\left|\tilde{\psi}_{k, i}\right\rangle\left\langle\tilde{\psi}_{k, i}\right|\right) \otimes \frac{1}{s_{k}} 1_{s_{k}}
$$

where $\left|\tilde{\psi}_{k, i}\right\rangle=\left|\psi_{k, i}\right\rangle /\left\|\psi_{k, i}\right\|_{2}$ are normalized vector. Then

$$
\begin{aligned}
D(\rho \| E(\rho)) & =H(E(\rho))-H(\rho)=\log \sum_{k} \min \left(a_{k l}, n_{k}\right) s_{k}-\log t_{l} \\
& =\log \sum_{k} \min \left(a_{k l}, n_{k}\right) s_{k} / t_{l} .
\end{aligned}
$$

This leads to the formula in ${ }_{[2 \text { pipo }}^{22,}$ Theorem 6.1]

$$
\begin{equation*}
-\log \lambda(\mathcal{M}: \mathcal{N})=\max _{\rho} D(\rho| | \mathcal{N})=\log \max _{l} \sum_{k} \min \left(a_{k l}, n_{k}\right) s_{k} / t_{l} \tag{12}
\end{equation*}
$$

Motivated from above we introduce for finite von Neumann algebras $\mathcal{N} \subset \mathcal{M}$, the maximal relative entropy $D(\mathcal{M} \| \mathcal{N})$ and its Rényi version $D_{p}(\mathcal{M} \| \mathcal{N})$

$$
\begin{aligned}
D(\mathcal{M} \| \mathcal{N}) & :=\sup _{\rho \in S(\mathcal{M})} D(\rho \| \mathcal{N}) \\
D_{p}(\mathcal{M} \| \mathcal{N}) & :=\sup _{\rho \in S(\mathcal{M})} D_{p}(\rho \| \mathcal{N})
\end{aligned}
$$

As a consequence of Theorem [index 3.1 , for $I I_{1}$ subfactors or hyperfinite $\mathcal{N} \subset \mathcal{M}, D_{p}(\mathcal{M} \| \mathcal{N})=$ $D(\mathcal{M}: \mathcal{N})$ is independent of p, while in general such equality is open. These definition are different with the Connes-Stormer relative entropy

$$
H(\mathcal{M} \mid \mathcal{N})=\sup _{\sum_{i} x_{i}=1} \sum_{i} \operatorname{tr}\left(x_{i} \log x_{i}-x_{i} \log E\left(x_{i}\right)\right)
$$

where the supreme runs over all partition of unity $\sum_{i} x_{i}=1, x_{i} \geq 0$. We now discuss the relation between $\lambda(\mathcal{M}: \mathcal{N}), D_{p}(\mathcal{M}| | \mathcal{N})$ and $H(\mathcal{M} \mid \mathcal{N})$.

Proposition 3.2. Let $\mathcal{N} \subset \mathcal{M}$ be finite von Neumann algebras.
i) $D_{p}(\mathcal{M} \| \mathcal{N})$ is monotone for $1 / 2 \leq p \leq \infty$.
ii) For $1 \leq p \leq \infty$,

$$
-\log \lambda(\mathcal{M}: \mathcal{N}) \geq D_{p}(\mathcal{M} \| \mathcal{N}) \geq H(\mathcal{M} \mid \mathcal{N})
$$

iii) If $\mathcal{N} \subset \mathcal{M}$ are $I I_{1}$ subfactors or hyperfinite, then for $\frac{1}{2} \leq p \leq \infty$,

$$
-\log \lambda(\mathcal{M}: \mathcal{N})=D_{p}(\mathcal{M} \| \mathcal{N})
$$

Proof. i) follows from the monotonicity of D_{p}. For ii), we have by (in) that

$$
-\log \lambda(\mathcal{M}: \mathcal{N})=\sup _{\rho} D_{\infty}(\rho \| \mathcal{E}(\rho)) \geq D_{\infty}(\mathcal{M} \| \mathcal{N}) \geq D_{p}(\mathcal{M} \| \mathcal{N})
$$

Let $x_{i} \in \mathcal{M}$ such that $\sum_{i=1}^{n} x_{i}=1$ and $x_{i} \geq 0$. Write $\tilde{x_{i}}=\frac{x_{i}}{\operatorname{tr}\left(x_{i}\right)}$ as the normalized density. Then

$$
H(\mathcal{M} \mid \mathcal{N})=\sup _{\left\{p_{i}\right\}, \tilde{x}_{i}} \sum_{i} p_{i} D\left(\tilde{x}_{i} \| \mathcal{E}\left(\tilde{x}_{i}\right)\right)-\sum_{i} p_{i} \log p_{i}=\sup _{\left\{p_{i}\right\}, \tilde{x}_{i}} D\left(\rho \| i d \otimes E_{\mathcal{N}}(\rho)\right)
$$

where $\rho=\sum_{i} p_{i}|i\rangle\langle i| \otimes \tilde{x}_{i}$ is a density operator in $l_{\infty}(\mathcal{M})$. It follows from convexity that for any finite $n, D\left(l_{\infty}^{n}(\mathcal{M}) \| l_{\infty}^{n}(\mathcal{N})\right)=D(\mathcal{M} \| \mathcal{N})$. Then for $1 \leq p \leq \infty$,

$$
H(\mathcal{M} \mid \mathcal{N}) \leq \sup _{n} D\left(l_{\infty}^{n}(\mathcal{M}) \| l_{\infty}^{n}(\mathcal{N})\right)=D(\mathcal{M} \| \mathcal{N}) \leq D_{p}(\mathcal{M} \| \mathcal{N}) \leq-\log \lambda(\mathcal{M}: \mathcal{N})
$$

iii) is a direct consequence of Theorem lindex

Remark 3.3. Recall that Petz's Rényi relative entropy for two density ρ and σ is defined as

$$
\tilde{D}_{p}(\rho \| \sigma)=p^{\prime} \log \operatorname{tr}\left(\rho^{p} \sigma^{1-p}\right)^{\frac{1}{p}}
$$

For $p=\frac{1}{2}, D_{\frac{1}{2}}(\rho \| \sigma) \leq \tilde{D}_{\frac{1}{2}}(\rho \| \sigma)$ and for $1<p$, it was proved in [Jencova18 $[12$, Corollary 3.3] that $\tilde{D}_{2-\frac{1}{p}}(\rho \| \sigma) \leq D(\rho \| \sigma) \leq \tilde{D}_{p}(\rho \| \sigma)$. Therefore, for $\mathcal{N} \subset \mathcal{M}$ subfactor or hyperfinite, the maximal relative entropy expression also holds for \tilde{D}_{p} with $\frac{1}{2} \leq p \leq 2$,

$$
-\log \lambda(\mathcal{M}: \mathcal{N})=\tilde{D}_{p}(\mathcal{M} \| \mathcal{N}):=\sup _{\rho \in S(\mathcal{M})} \inf _{\sigma \in S(\mathcal{N})} \tilde{D}_{p}(\rho \| \sigma)
$$

As was observed in $\frac{\text { pipo }}{221]},-\log \lambda(\mathcal{M}: \mathcal{N})$ does not always equal to $[\mathcal{M}, \mathcal{N}]$ for finite dimensional subfactors. Indeed, for $n<m$,

$$
D\left(M_{m n} \| M_{n}\right)=\log \min (n, m) m \neq \log m^{2}=\log \left[M_{m n}: M_{n}\right]
$$

Moreover, the subfactors index satisfies the multiplicative properties
i) for $\mathcal{N} \subset \mathcal{M} \subset \mathcal{L},[\mathcal{L}: \mathcal{N}]=[\mathcal{L}: \mathcal{M}][\mathcal{M}: \mathcal{N}]$
ii) for $\mathcal{N}_{1} \subset \mathcal{M}_{1}, \mathcal{N}_{2} \subset \mathcal{M}_{2},\left[\mathcal{M}_{1} \otimes \mathcal{M}_{2}: \mathcal{N}_{1} \otimes \mathcal{N}_{2}\right]=\left[\mathcal{M}_{1}: \mathcal{N}_{1}\right]\left[\mathcal{M}_{2}: \mathcal{N}_{2}\right]$

The follow proposition shows that this also differs with $D(\mathcal{M} \| \mathcal{N})$.
Proposition 3.4. Let $\mathcal{N}, \mathcal{M}, \mathcal{L}$ be finite von Neumann algebras.
i) for $\mathcal{N} \subset \mathcal{M} \subset \mathcal{L}, D(\mathcal{L} \| \mathcal{N}) \leq D(\mathcal{L} \| \mathcal{M})+D(\mathcal{M} \| \mathcal{N})$;
ii) for $\mathcal{N}_{1} \subset \mathcal{M}_{1}, \mathcal{N}_{2} \subset \mathcal{M}_{2}, D\left(\mathcal{M}_{1} \otimes \mathcal{M}_{2} \| \mathcal{N}_{1} \otimes \mathcal{N}_{2}\right) \geq D\left(\mathcal{M}_{1} \| \mathcal{N}_{1}\right)+D\left(\mathcal{M}_{2} \| \mathcal{N}_{2}\right)$.

In general both inequalities can be strict.
Proof. i) Let $E_{\mathcal{M}}$ (resp. $E_{\mathcal{N}}$) be the conditional expectation from \mathcal{L} onto \mathcal{M} (resp. \mathcal{N}). Because $E_{\mathcal{N}} \circ E_{\mathcal{M}}=E_{\mathcal{N}}$, for $\rho \in S(\mathcal{L})$,

$$
\begin{aligned}
D(\rho \| \mathcal{N}) & =H\left(E_{\mathcal{N}}(\rho)\right)-H(\rho)=H\left(E_{\mathcal{N}}(\rho)\right)-H\left(E_{\mathcal{M}}(\rho)\right)+H\left(E_{\mathcal{N}}(\rho)\right)-H(\rho) \\
& =D\left(E_{\mathcal{M}}(\rho) \| \mathcal{N}\right)+D(\rho \| \mathcal{M}) \leq D(\mathcal{M} \| \mathcal{N})+D(\mathcal{L} \| \mathcal{M})
\end{aligned}
$$

which proves i). For the strict inequality case, we have

$$
D\left(M_{4} \| M_{2}\right)=\log 4, D\left(M_{2} \| \mathbb{C}\right)=\log 2, D\left(M_{4} \| \mathbb{C}\right)=\log 4 \neq D\left(M_{4} \| M_{2}\right)+D\left(M_{2} \| \mathbb{C}\right)
$$

For ii), let $E_{i}, i=1,2$ be the conditional expectation from M_{i} to N_{i}. The inequality follows from that

$$
D\left(\rho \| \mathcal{E}_{1}(\rho)\right)+D\left(\sigma \| \mathcal{E}_{2}(\sigma)\right)=D\left(\rho \otimes \sigma \| \mathcal{E}_{1}(\rho) \otimes \mathcal{E}_{2}(\sigma)\right) \leq D\left(\mathcal{M}_{1} \otimes \mathcal{M}_{2} \| \mathcal{N}_{1} \otimes \mathcal{N}_{2}\right)
$$

This inequality is strict for the case

$$
\begin{aligned}
& D\left(M_{6} \| M_{2}\right)=\log 6, D\left(M_{6} \| M_{3}\right)=\log 4 \\
& D\left(M_{36} \| M_{6}\right)=\log 36 \neq D\left(M_{6} \| M_{2}\right)+D\left(M_{6} \| M_{3}\right)
\end{aligned}
$$

Another example is $\mathcal{N}=\left(M_{2} \otimes \mathbb{C} 1_{3}\right) \oplus\left(M_{3} \otimes \mathbb{C} 1_{2}\right) \subset M_{12}=\mathcal{M}$. Then

$$
\begin{aligned}
& D\left(M_{12} \| \mathcal{N}\right)=\log (4+6)=\log 10 \\
& D\left(M_{12} \otimes M_{12}| | \mathcal{N} \otimes \mathcal{N}\right)=\log (4 \times 9+6 \times 6+6 \times 6+4 \times 4)=\log 126
\end{aligned}
$$

The following is an example of left regular representation of finite groups.
Remark 3.5. Form the above example, we know that there exists a bipartite state $\rho \in$ $M_{12} \otimes M_{12}$ such that

$$
D\left(\rho_{1} \| \mathcal{N}\right)+D\left(\rho_{2} \| \mathcal{N}\right)<D(\rho \| \mathcal{N} \otimes \mathcal{N})
$$

where ρ_{1} and ρ_{2} are the reduced densities of ρ on each component. Hence the relative entropy with respect to subalgebra is super-additive. The super-additivity implies that ρ is an entangled state, which means ρ is not a convex combination of tensor product densities. This phenomenon for the coherent information is of particular interest in quantum information [superact

Example 3.6. Let G be a finite group and $\mathcal{L}(G)=\operatorname{span} \lambda(G) \subset B\left(l_{2}(G)\right)$ be the gourp von Neumann algebra of left regular representation λ. For a subgroup $H \subset G$, denote $\mathcal{L}(H)$ as the subalgebra generated by $\lambda(H)$. Then for inclusion $\mathcal{L}(H) \subset \mathcal{L}(G)$,

$$
D(\mathcal{L}(G) \| \mathcal{L}(H))=\log [G: H]
$$

First, by Peter-Weyl formula (cf. pump bjat $\mathcal{L}(G) \cong \oplus_{k} M_{n_{k}} \otimes \mathbb{C} 1_{n_{k}}$ and $|G|=\sum_{k} n_{k}^{2}$. Thus by the formula ($\stackrel{f 1}{12}$)

$$
D\left(\mathcal{L}(G)|\mid \mathbb{C})=\log |G|, D\left(B\left(l_{2}(G)\right)| | \mathcal{L}(G)\right)=\log \left(\sum_{k} n_{k}^{2}\right)=\log |G|\right.
$$

Consider $G=H \cup H g_{1} \cup \cdots H g_{n-1}$ decomposed as a disjoint union of cosets and $n=[G$: $H]$. Let P_{i} be the projection onto $l_{2}\left(H g_{i}\right)$ as a subspace of $l_{2}(G)$. So $\mathcal{L}(H)$ is a left regular representation of H of multiplicity n on $\oplus_{i} P_{i} l_{2}(G)=l_{2}(G)$. Thus

$$
D(\mathcal{L}(H)|\mid \mathbb{C})=\log |H|, D(\mathcal{L}(G) \| \mathcal{L}(H)) \geq[G: H]
$$

 conditional expectation $E_{H}: \mathcal{L}(G) \rightarrow \mathcal{L}(H)$ is given by

$$
\mathcal{E}_{H}\left(\sum_{g \in G} \alpha_{g} \lambda(g)\right)=\sum_{g \in H} \alpha_{g} \lambda(g)=\sum_{i} P_{i}\left(\sum_{g \in G} \alpha_{g} \lambda(g)\right) P_{i}
$$

where $\lambda(g)$ is the unitary of left shifting by g. For $g \in H, P_{i} \lambda(g) P_{i}=0$ because for any $h_{1}, h_{2} \in H, g h_{1} g_{i}=h_{2} g_{i}$ implies $g=h_{2} h_{1}^{-1} \in H$. Note that the trace on $\mathcal{L}(G)$ coincides with the induced normalized matrix trace of $B\left(l_{2}(G)\right)$. Consider $\mathcal{N}=\oplus B\left(l_{2}\left(H g_{i}\right)\right) \subset$ $B\left(l_{2}(G)\right)$. We have $D(\mathcal{M} \| \mathcal{N})=\log n$ adn $E_{\mathcal{N}}(\rho)=\sum_{i} P_{i} \rho P_{i}$ is the conditional expectation. Thus

$$
\begin{aligned}
D(\mathcal{L}(G) \| \mathcal{L}(H)) & =\sup _{\rho \in \mathcal{L}(G)} D\left(\rho \| \mathcal{E}_{H}(\rho)\right)=\sup _{\rho \in \mathcal{L}(G)} D\left(\rho \| \mathcal{E}_{\mathcal{N}}(\rho)\right) \\
& \leq \sup _{\rho \in B\left(l_{2}(G)\right)} D\left(\rho \| \mathcal{E}_{\mathcal{N}}(\rho)\right)=D(\mathcal{M} \| \mathcal{N})=\log n
\end{aligned}
$$

Therefore we obtain $D(\mathcal{M} \| \mathcal{N})=[G: H]$.
The continuity of $D(\cdot \| \mathcal{N})$ follows from $\frac{\mid \text { Winter }}{[30, \text { Lemma 7] }}$
Proposition 3.7. Let $\rho, \sigma \in S(\mathcal{M})$ be two densities with $\|\rho-\sigma\|_{1}=\epsilon$. Then

$$
|D(\rho \| \mathcal{N})-D(\sigma \| \mathcal{N})| \leq 2 \epsilon D(\mathcal{M} \| \mathcal{N})+(1+2 \epsilon) h\left(\frac{\epsilon}{1+2 \epsilon}\right)
$$

where $h(\lambda)=-\lambda \log \lambda-(1-\lambda) \log (1-\lambda)$ is the binary entropy function.
We know by convexity that adding an auxiliary classical (commutative) system l_{∞}^{n} does not change the maximal relative entropy,

$$
D_{p}\left(l_{\infty}^{n}(\mathcal{M}) \| l_{\infty}^{n}(\mathcal{N})\right)=D_{p}(\mathcal{M} \| \mathcal{N})
$$

However this is not the case if we replace l_{∞} by a quantum system M_{n}. For finite von Neumann algebras $\mathcal{N} \subset \mathcal{M}$, we define the $c b$-maximal relative entropy

$$
\left.D_{c b, p}(\mathcal{M} \| \mathcal{N}):=\sup _{n} D_{p}\left(M_{n}(\mathcal{M})\right) \| M_{n}(\mathcal{N})\right)
$$

In general, $D_{c b, p}(\mathcal{M} \| \mathcal{N}) \geq D_{p}(\mathcal{M} \| \mathcal{N})$ and the inequality can be strict. In particular, for all $\frac{1}{2} \leq p \leq \infty$

$$
\begin{align*}
& D_{p}\left(M_{n} \otimes M_{m} \| M_{n}\right)=m n=-\log \lambda\left(M_{n} \otimes M_{m}: M_{n}\right), \\
& D_{p, c b}\left(M_{n} \otimes M_{m} \| M_{n}\right)=m^{2}=\log \left[M_{n} \otimes M_{m}: M_{n}\right] . \tag{13}
\end{align*}
$$

which are different when $n<m$. Using the properties of $D(\mathcal{M} \| \mathcal{N})$, we immediately obtain

Corollary 3.8. i) $D_{p, c b}(\mathcal{M} \| \mathcal{N})$ is monotone for $p \in[1 / 2, \infty]$.
ii) If $\mathcal{N} \subset \mathcal{M}$ are $I I_{1}$ subfactors or hyperfinite, $D_{p, c b}(\mathcal{M} \| \mathcal{N})$ is independent of p.
iii) $\operatorname{For} \mathcal{N} \subset \mathcal{M}$ finite subfactors,

$$
\begin{equation*}
\log [\mathcal{M}: \mathcal{N}]=D_{p, c b}(\mathcal{M} \| \mathcal{N}) \tag{14}
\end{equation*}
$$

Proof. For iii), the finite dimensional case is $\left(\frac{\mathrm{cb}}{14}\right)$. For II_{1} subfactors, $D_{J^{c b}(\mathcal{M}}(\mathcal{M} \| \mathcal{N})=$ $D(\mathcal{M} \| \mathcal{N})=\log [\mathcal{M}: \mathcal{N}]$ because subfactor index $[\mathcal{M}: \mathcal{N}]$ is multiplicative 14$].$

The above proposition suggests that (the exponential of) $D_{p, c b}$ are extensions of subfactor index $[\mathcal{M}: \mathcal{N}]$ to finite von Neumann algebras. Using the connection between $D_{p}(\rho \| \mathcal{N})$ and $\|\rho\|_{L_{1}^{p}(\mathcal{N} \subset \mathcal{M})}$ for $1<p \leq \infty$, we see that $D_{p}(\mathcal{M} \| \mathcal{N})$ is basically the norm of identity map from $L_{1}(\mathcal{M})$ to $L_{1}^{p}(\mathcal{N} \subset \mathcal{M})$. Indeed, it suffices to consider positive elements because for $x=y z$,

$$
\|x\|_{L_{1}^{p}(\mathcal{N} \subset \mathcal{M})}=\|y\|_{L_{2 p^{\prime}}(\mathcal{N}) L_{2 p}(\mathcal{M})}\|z\|_{L_{2 p}(\mathcal{M}) L_{2 p^{\prime}}(\mathcal{N})} \leq\left\|y y^{*}\right\|_{L_{1}^{p}(\mathcal{N} \subset \mathcal{M})}\left\|z^{*} z\right\|_{L_{1}^{p}(\mathcal{N} \subset \mathcal{M})}
$$

Thus, for $1<p \leq \infty$,

$$
D_{p}(\mathcal{M} \| \mathcal{N})=p^{\prime} \log \left\|i d: L_{1}(\mathcal{M}) \rightarrow L_{1}^{p}(\mathcal{N} \subset \mathcal{M})\right\|
$$

For $\frac{1}{2}<p<1$ and $\frac{1}{2 p}=\frac{1}{r}+\frac{1}{2}$, the maximal relative entropy is

$$
D_{p}(\mathcal{M} \| \mathcal{N})=2 p^{\prime} \log \left\|i d: L_{2}(\mathcal{M}) \rightarrow L_{(r, \infty)}^{2}(\mathcal{N} \subset \mathcal{M})\right\|
$$

We shall show that for $1<p \leq \infty, D_{p, c b}$ are indeed given by the completely bounded norms. We discuss in the appendix that the natural operator space of $L_{1}^{p}(\mathcal{N} \subset \mathcal{M})$ is given by

$$
\begin{equation*}
S_{1}^{n} \widehat{\otimes} L_{1}^{p}(\mathcal{N} \subset \mathcal{M}) \cong L_{1}^{p}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right) \tag{15}
\end{equation*}
$$

where $S_{1}^{n}=\left(M_{n}\right)^{*}$ is n operator space of trace class operators.
Proposition 3.9. Let $1 \leq p \leq \infty$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
i) for $1 \leq p \leq \infty$

$$
\begin{equation*}
D_{p, c b}(\mathcal{M} \| \mathcal{N})=\sup _{\mathcal{R}} D_{p}(\mathcal{R} \bar{\otimes} \mathcal{M} \| \mathcal{R} \bar{\otimes} \mathcal{N}) \tag{16}
\end{equation*}
$$

where the supremum runs over all finite von Neumann algebra \mathcal{R}.
ii) for $1<p \leq \infty, D_{p, c b}(\mathcal{M} \| \mathcal{N})=p^{\prime} \log \left\|i d: L_{1}(\mathcal{M}) \rightarrow L_{1}^{p}(\mathcal{N} \subset \mathcal{M})\right\|_{c b}$.
iii) For $\mathcal{N}_{i} \subset \mathcal{M}_{i}, i=1,2$ finite von Neumann algebras

$$
\begin{align*}
& D_{c b}\left(\mathcal{M}_{1} \otimes \mathcal{M}_{2}| | \mathcal{N}_{1} \otimes \mathcal{N}_{2}\right)=D_{c b}\left(\mathcal{M}_{1}| | \mathcal{N}_{1}\right)+D_{c b}\left(\mathcal{M}_{2} \| \mathcal{N}_{2}\right) \tag{17}\\
& D_{p, c b}\left(\mathcal{M}_{1} \otimes \mathcal{M}_{2}| | \mathcal{N}_{1} \otimes \mathcal{N}_{2}\right) \leq D_{p, c b}\left(\mathcal{M}_{1}| | \mathcal{N}_{1}\right)+D_{\infty, c b}\left(\mathcal{M}_{2} \| \mathcal{N}_{2}\right) \tag{18}
\end{align*}
$$

In particular, for $p=\infty$,

$$
D_{\infty, c b}\left(\mathcal{M}_{1} \otimes \mathcal{M}_{2} \| \mathcal{N}_{1} \otimes \mathcal{N}_{2}\right)=D_{\infty, c b}\left(\mathcal{M}_{1}| | \mathcal{N}_{1}\right)+D_{\infty, c b}\left(\mathcal{M}_{2} \| \mid \mathcal{N}_{2}\right)
$$

Proof. Let $\mathcal{R} \subset B(H)$ and $\rho \in S(\mathcal{R} \bar{\otimes} \mathcal{M}), \sigma \in S(\mathcal{R} \bar{\otimes} \mathcal{N})$. Let $\tilde{\rho}$ (resp. $\tilde{\rho}$) be a normal state on $B(H) \bar{\otimes} \mathcal{M}($ resp. $B(H) \bar{\otimes} \mathcal{N})$ extending ρ (resp. σ). Let $\iota: \mathcal{R} \hookrightarrow B(H)$ be the inclusion. ι is a normal unital completely positive map. Its adjoint on the predual $\iota^{\dagger}: B(H)_{*} \rightarrow R_{*}$ is the restriction

$$
\iota^{\dagger}(\phi)=\phi \mid \mathcal{R}
$$

In particular, using the identification $B(H)_{*} \cong S_{1}(H)$ and $L_{1}\left(\mathcal{R}_{*}\right)$, ι^{\dagger} is a completely positive trace preserving map. We have

$$
\rho=\iota^{\dagger} \otimes i d_{\mathcal{M}_{*}}(\tilde{\rho}), \sigma=\iota^{\dagger} \otimes i d_{\mathcal{M}_{*}}(\tilde{\sigma}) .
$$

Then by data processing inequality,

$$
D_{p}(\rho \| \sigma)=D_{p}\left(\iota^{\dagger} \otimes i d(\tilde{\rho}) \| \iota^{\dagger} \otimes i d(\tilde{\sigma})\right) \leq D_{p}(\tilde{\rho} \| \tilde{\sigma})
$$

Since $B(H)$ is approximate finite dimensional, we can find $\tilde{\rho}_{n} \in S\left(M_{n}(\mathcal{M})\right), \tilde{\sigma}_{n} \in S\left(M_{n}(\mathcal{N})\right)$ such that

$$
\left\|\tilde{\rho}_{n}-\tilde{\rho}\right\|_{1} \rightarrow 0,\left\|\tilde{\sigma}_{n}-\tilde{\sigma}\right\|_{1} \dot{\text { Jencova18 }}
$$

By the lower-semicontinuity of D_{p} for $1 \leq p \leq \infty$ |Jencova18 12 , Proposition 3.7],

$$
D_{p}(\tilde{\rho} \| \tilde{\sigma}) \leq \liminf _{n \rightarrow \infty} D_{p}\left(\tilde{\rho}_{n} \| \tilde{\sigma}_{n}\right) \leq \sup _{n} D_{p}\left(M_{n}(\mathcal{M}) \| M_{n}(\mathcal{N})\right)=D_{p, c b}(\mathcal{M} \| \mathcal{N})
$$

ii) follows from (los2) and $\frac{\text { pisier93 }}{23, \text { Lemma 1.7] }}$. For iii), let $E_{i}: \mathcal{M}_{i} \rightarrow \mathcal{N}_{i}$ be the conditional expectation. For a density $\rho \in \mathcal{R} \bar{\otimes} \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}$,

$$
\begin{aligned}
& D\left(\rho \| i d \otimes E_{1} \otimes E_{2}(\rho)\right)=D\left(\rho \| i d \otimes i d \otimes E_{2}(\rho)\right)+D\left(i d \otimes i d \otimes E_{1}(\rho) \| i d \otimes E_{1} \otimes E_{2}(\rho)\right) \\
& \left.\left.\quad \leq D\left(\mathcal{R} \otimes \mathcal{M}_{1} \otimes \mathcal{M}_{2}\right) \| \mathcal{R} \otimes \mathcal{M}_{1} \otimes \mathcal{N}_{2}\right)+D\left(\mathcal{R} \otimes \mathcal{M}_{1} \otimes \mathcal{N}_{2}\right) \| \mathcal{R} \otimes \mathcal{N}_{1} \otimes \mathcal{N}_{2}\right) \\
& \quad \leq D_{c b}\left(\mathcal{M}_{1} \| \mathcal{N}_{1}\right)+D_{c b}\left(\mathcal{M}_{2} \| \mathcal{N}_{2}\right)
\end{aligned}
$$

This proves the case $p=1$. For $p>1$, let $\sigma \in \mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2}$ be a invertible density

$$
\left\|\sigma^{-\frac{1}{2 p^{\prime}}} \rho \sigma^{-\frac{1}{2 p^{\prime}}}\right\|_{p} \leq\left\|\sigma_{1}^{-\frac{1}{2 p^{\prime}}} \rho \sigma_{1}^{-\frac{1}{2 p^{\prime}}}\right\|_{p}\left\|\sigma^{-\frac{1}{2 p^{\prime}}} \sigma_{1}^{\frac{1}{2 p^{\prime}}}\right\|_{\infty}^{2}
$$

for some invertible density $\sigma_{1} \in \mathcal{N}_{1} \bar{\otimes} \mathcal{M}_{2}$. Note that

$$
\left\|\sigma^{-\frac{1}{2 p^{\prime}}} \sigma_{1}^{\frac{1}{2 p^{\prime}}}\right\|_{\infty}^{2} \leq\left\|\sigma^{-\frac{1}{2}} \sigma_{1}^{\frac{1}{2}}\right\|_{\infty}^{\frac{2}{p}}=\left\|\sigma^{-\frac{1}{2}} \sigma_{1} \sigma^{-\frac{1}{2}}\right\|_{\infty}^{\frac{1}{p^{\prime}}}
$$

By relative entropy, we have

$$
D_{p}(\rho \| \sigma) \leq D_{p}\left(\rho \| \sigma_{1}\right)+D_{\infty}\left(\sigma_{1} \| \sigma\right)
$$

Taking infimum for both $\sigma_{1} \in \mathcal{N}_{1} \bar{\otimes} \mathcal{M}_{2}$ and $\sigma \in \mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2}$, we have

$$
D_{p}\left(\rho| | \mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2}\right) \leq D_{p}\left(\rho \| \mathcal{N}_{1} \bar{\otimes} \mathcal{M}_{2}\right)+D\left(\sigma_{1}| | \mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2}\right)
$$

Taking supremum over ρ, we have

$$
D_{p}\left(\mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2} \| \mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2}\right) \leq D_{p}\left(\mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2} \| \mathcal{N}_{1} \bar{\otimes} \mathcal{M}_{2}\right)+D_{\infty}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{M}_{2} \| \mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2}\right)
$$

$$
\leq D_{p, c b}\left(\mathcal{M}_{1} \| \mathcal{N}_{1}\right)+D_{\infty, c b}\left(\mathcal{M}_{2} \| \mathcal{N}_{1} 2\right)
$$

Replacing $\mathcal{N}_{1} \subset \mathcal{M}_{1}$ by $\mathcal{R} \bar{\otimes} \mathcal{N}_{1} \subset \mathcal{R} \bar{\otimes} \mathcal{M}_{1}$ yeilds the inequality for $D_{p, c b}\left(\mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}| | \mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2}\right)$. The equality follows from choosing tensor product elements.

Up to this writing, we do not know whether $D_{c b, p}=D_{c b}$ independent of p holds for general finite von Neumann algebras. Recall that for subfactor ot hyperfinite case, this follows from the equality ($\frac{10 y)}{10)}$, which is open for general von Neumann algebras as mentioned in $\frac{\text { pipo }}{22] .}$

4. Applications to Decoherence time

In this section, we discuss the applications to decoherence time of quantum Markov processes. We discuss the symmetric case and briefly mention the modification for nonsymmetric ones in Appendix. We start with the continuous time setting. Let ($\mathcal{M}, \operatorname{tr})$ be a finite von Neumann algebra \mathcal{M} equipped with faithful normal tracail state $t r$. A quantum Markov semigroup $\left(T_{t}\right)_{t \geq 0}: M \rightarrow M$ for $t \geq 0$ is a w^{*}-continuous family of maps that satisfies
i) T_{t} is a normal unital completely positive (normal UCP) map for all $t \geq 0$.
ii) $T_{t} \circ T_{s}=T_{s+t}$ for any $t, s \geq 0$ and $T_{0}=i d$.
iii) for each $x \in \mathcal{M}, t \rightarrow T_{t}(x)$ is continuous in σ-weak topology.

We denote by A the generator of T_{t}, that is the densely defined operator on $L_{2}(\mathcal{M})$ given by

$$
A x=w^{*}-\lim _{t \rightarrow 0^{+}} \frac{1}{t}\left(x-T_{t}(x)\right)
$$

for all $x \in \mathcal{M}$ such that the σ-weak limit exists. We denote

$$
\mathcal{N}=\left\{a \in \mathcal{M} \mid T_{t}\left(a^{*}\right) T_{t}(a)=T_{t}\left(a^{*} a\right) \text { and } T_{t}(a) T_{t}\left(a^{*}\right)=T_{t}\left(a a^{*}\right), \forall t\right\}
$$

as the common multiplicative domain of T_{t}. We call \mathcal{N} the incoherent subalgebra. When $\mathcal{N}=\mathbb{C} 1$ is trivial, T_{t} is called primitive and has a unique invariant state. In general, $\left(T_{t}\right)_{t \geq 0}$ restricted on \mathcal{N} is a semigroup of $*$-homomorphism.

We say a quantum markov semigroup $\left(T_{t}\right)_{t \geq 0}$ is symmetric if for all $x, y \in \mathcal{M}$ and $t \geq 0, \operatorname{tr}\left(x^{*} T_{t}(y)\right)=\operatorname{tr}\left(T_{t}(x)^{*} y\right)$. Namely, $T_{t}=T_{t}^{\dagger}$ is self-adjoint with respect to trace. As a consequence T_{t} is trace preserving $\operatorname{tr}\left(T_{t}(\rho)\right)=\operatorname{tr}(\rho)$ and invariant on \mathcal{N}. Indeed, for $a, b \in \mathcal{N}$,

$$
\operatorname{tr}\left(a T_{2 t}(b)\right)=\operatorname{tr}\left(T_{t}(a) T_{t}(b)\right)=\operatorname{tr}\left(T_{t}(a b)\right)=\operatorname{tr}(a b)
$$

Let $E: \mathcal{M} \rightarrow \mathcal{N}$ be the trace preserving conditional expectation onto \mathcal{N}. By the above discussion, we know

$$
A \circ E=0, T_{t} \circ E=E \circ T_{t}=E
$$

One important functional inequality which relates the convergence property is the modified logarithmic Sobolev inequality. We say $\left(T_{t}\right)_{t \geq 0}$ satisfies λ-modified logarithmic Sobolev inequality (or λ-MSLI) for $\lambda>0$ if for any density $\rho \in \mathcal{M}$

$$
\lambda D(\rho \| \mathcal{N}) \leq I_{A}(\rho)=: \operatorname{tr}((A \rho) \ln \rho)
$$

This is equivalent to exponential decay of relative entropy $[9,2]$

$$
\begin{equation*}
D\left(T_{t}(\rho) \| \mathcal{N}\right)=D\left(T_{t}(\rho) \| E(\rho)\right) \leq e^{-\lambda t} D(\rho \| E(\rho)) \tag{19}
\end{equation*}
$$

By quantum Pinker inequality (c.f. | $\mid 28$ atrous

$$
D(\rho \| \sigma) \geq \frac{1}{2}\|\rho-\sigma\|_{1}^{2}
$$

this gives estimate of decoherence time

$$
t_{\text {deco }}(\epsilon)=\min \left\{t \geq 0 \mid\left\|T_{t}(\rho)-E(\rho)\right\|_{1} \leq \epsilon \forall \text { density } \rho \in \mathcal{M}\right\}
$$

Suppose the maximal relative entropy $D(\mathcal{M} \| \mathcal{N})=\sup _{\rho} D(\rho \| \mathcal{N})<\infty$ is finite, we have

$$
\begin{equation*}
\lambda-\mathrm{LSI} \Longrightarrow t_{\text {deco }}(\epsilon) \leq \frac{1}{\lambda}\left(2 \log \frac{1}{\epsilon}+\log 2 D(\mathcal{M} \| \mathcal{N})\right) \tag{20}
\end{equation*}
$$

Another important functional inequality is the spectral gap (also called Poincaré inequality) For $\lambda>0$, we say $\left(T_{t}\right)_{t}$ has λ-spectral gap (or λ-PI) if for any $x \in \mathcal{M}$,

$$
\lambda\|x-E(x)\|_{2}^{2} \leq \operatorname{tr}\left(x^{*} A x\right)
$$

Write I as the identity map on $L_{2}(\mathcal{M})$ and $I-E$ is the projection onto the orthgonoal complement $L_{2}(\mathcal{N})^{\perp}$. λ-PI is the spectral gap condition (see pardet 2$\}$) that

$$
\begin{array}{ll}
& \left\|A^{-1}(I-E): L_{2}(\mathcal{M}) \rightarrow L_{2}(\mathcal{M})\right\| \leq \lambda \\
\text { or equivalently } & \left\|T_{t}-E: L_{2}(\mathcal{M}) \rightarrow L_{2}(\mathcal{M})\right\| \leq e^{-\lambda t} \tag{21}
\end{array}
$$

This means for each x, the L_{2}-distance between $T_{t}(x)$ and its equilibrium $E(x)$ decays exponentially. In general, λ-MLSI implies λ-PI $\left[\begin{array}{l}\text { enaraet } \\ 2] \text {, which means that the entropy decay }\end{array}\right.$ (19) is stronger than L_{2}-norm decay (21). The next theorem shows that the spectral gap condition implies a weaker exponential decay of relative entropy.
d 2 Theorem 4.1. Let $\left(T_{t}\right)_{t \geq 0}: \mathcal{M} \rightarrow \mathcal{M}$ be a symmetric quantum Markov semigroup and \mathcal{N} be the incoherent subalgebra of T_{t}. Suppose T_{t} satisfies λ-PI. Then for density $\rho \in \mathcal{M}$,

$$
\begin{equation*}
D\left(T_{t}(\rho) \| \mathcal{N}\right) \leq 2 e^{-\lambda t+D_{2}(\rho \| \mathcal{N}) / 2} \tag{22}
\end{equation*}
$$

If in additional, $D_{2}(\mathcal{M} \| \mathcal{N})=\sup _{\rho} D_{2}(\rho \| \mathcal{N})<\infty$, then

$$
t_{\text {deco }}(\epsilon) \leq \frac{1}{\lambda}\left(2 \log \frac{2}{\epsilon}+D_{2}(\mathcal{M} \| \mathcal{N}) / 2\right)
$$

Proof. The λ-spectral gap property is equivalent to

$$
\left\|T_{t}-E: L_{2}(\mathcal{M}) \rightarrow L_{2}(\mathcal{M})\right\| \leq e^{-\lambda t}
$$

Since both T and E are \mathcal{N}-bimodule map, it follows from $[9$, LSI Lemma 3.12] that

$$
\begin{aligned}
\left\|T_{t}-E: L_{1}^{2}(\mathcal{N} \subset \mathcal{M}) \rightarrow L_{1}^{2}(\mathcal{N} \subset \mathcal{M})\right\| & =\left\|T_{t}-E: L_{2}^{2}(\mathcal{N} \subset \mathcal{M}) \rightarrow L_{2}^{2}(\mathcal{N} \subset \mathcal{M})\right\| \\
& =\left\|T_{t}-E: L_{2}(\mathcal{M}) \rightarrow L_{2}(\mathcal{M})\right\| \leq e^{-\lambda t}
\end{aligned}
$$

(see Appendix for definition of $L_{p}^{q}(\mathcal{N} \subset \mathcal{M})$ for general $1 \leq p, q \leq \infty$.) Then for a density $\rho \in \mathcal{M}$,

$$
\begin{aligned}
D\left(T_{t}(\rho) \| \mathcal{N}\right) & \leq D\left(T_{t}(\rho) \| \mathcal{N}\right) \\
& \leq 2 \log \left\|T_{t}(\rho)\right\|_{L_{1}^{2}(\mathcal{N} \subset \mathcal{M})} \\
& \leq 2 \log \left(\|E(\rho)\|_{L_{1}^{2}(\mathcal{N} \subset \mathcal{M})}+\left\|T_{t}-E(\rho)\right\|_{L_{1}^{2}(\mathcal{N} \subset \mathcal{M})}\right) \\
& \leq 2 \log \left(1+e^{-\lambda t}\|\rho\|_{L_{1}^{2}(\mathcal{N} \subset \mathcal{M})}\right) \leq 2 e^{-\lambda t+D_{2}(\rho \| \mathcal{N}) / 2}
\end{aligned}
$$

The decoherence time estimate follows from quantum Pinsker inequality.
Let us compare the above theorem with the decay property (entropydecay (19) obtained from λ MLSI. Because the MLSI constant \geq PI constant, the exponent in (23) is at least as the MLSI constant but the constant factor in ($\frac{\text { decay }}{23) \text { is }}$ larger.

On the other hand, tensorization is an important property of MLSI for classical Markov semigroup. However, tensorization propetry is not known for MLSI of quantum Markov semigroup. We say $\left(T_{t}\right)_{t \geq 0}$ satisfies λ-complete logarithmic Sobolev inequality (or λ-CLSI) if for any $n, i d_{M_{n}} \otimes T_{t}: M_{n}(\mathcal{M}) \rightarrow M_{n}(\mathcal{M})$ satisfies λ-MSLI. It follows from data processing inequality that λ-CLSI is tensor stable. However, it is not clear in the noncommutative case λ-LSI implies λ-CLSI. We refer to $[9]$ for more discussion about CLSI and related examples.

For $\mathcal{M}=B(H)_{\dot{\hat{K} S}}$ quantum Markov semigroups are also called GLKS equation in quantum physics (see $\frac{G L S S}{6] .}$. It models the evolution of open quantum system which potentially interacts with environment. In this setting, CLSI estimates the complete decoherence time

$$
t_{c . \text { deco }}=\inf \left\{t \geq 0 \mid\left\|i d \otimes T_{t}(\rho)-i d \otimes E(\rho)\right\|_{1} \leq \epsilon, \forall n \geq 1 \text { and density } \rho \in M_{n}(\mathcal{M})\right\}
$$

Suppose $D_{c b}(\mathcal{M} \| \mathcal{N})<\infty$, we have as analog of $\left(\frac{\text { deco }}{(20)}\right.$

$$
\lambda-\mathrm{CLSI} \Longrightarrow t_{c . d e c o}(\epsilon) \leq \frac{1}{\lambda}\left(2 \log \frac{1}{\epsilon}+\log 2 D_{c b}(\mathcal{M} \| \mathcal{N})\right)
$$

The complete version of decoherence time estimates the convergence rate independent of the dimension of auxiliary system M_{n}. In particular, when \mathcal{N} is a commutative algebra (classical system), $t_{\text {c.deco }}$ also bounds the entanglement breaking time.

In contrast to MLSI, the spectral gap property or PI is stable under tensorization. Indeed, for any n, the generator A has the same spectral as $I_{\otimes} A$, the generator of $i d_{M_{n}} \otimes T_{t}$. Based on this, Theorem (${ }^{\text {d2 }} 4$) also applies to $i d_{M_{n}} \otimes T_{t}$, which leads to an estimate of complete decoherence time.

Corollary 4.2. Let $\left(T_{t}\right)_{t \geq 0}: \mathcal{M} \rightarrow \mathcal{M}$ be a symmetric quantum Markov semigroup and \mathcal{N} be the incoherent subalgebra of T_{t}. Suppose T_{t} satisfies $\lambda-P I$. Then for any n and density $\rho \in M_{n}(\mathcal{M})$,

$$
\begin{equation*}
D\left(i d \otimes T_{t}(\rho) \| M_{n}(\mathcal{N})\right) \leq 2 e^{-\lambda t+D_{2}\left(\rho \| M_{n}(\mathcal{N})\right) / 2} \tag{23}
\end{equation*}
$$

If in additional $D_{2, c b}(\mathcal{M} \| \mathcal{N})<\infty$, then

$$
t_{c . \text { deco }}(\epsilon) \leq \frac{1}{\lambda}\left(2 \log \frac{2}{\epsilon}+D_{2, c b}(\mathcal{M} \| \mathcal{N}) / 2\right)
$$

The above theorem also works for tensor product of semigroups. Indeed, for two semigroups $S_{t}: \mathcal{M}_{1} \rightarrow \mathcal{M}_{1}$ and $T_{t}: \mathcal{M}_{2} \rightarrow \mathcal{M}_{2}$
i) If S_{t} satisfies λ_{1}-PI and T_{t} satisfies λ_{2}-PI, then $S_{t} \otimes T_{t}$ satisfies $\min \left\{\lambda_{1}, \lambda_{2}\right\}$-PI.
ii) If $D_{2, c b}\left(\mathcal{M}_{1}| | \mathcal{N}_{1}\right)<\infty$ and $D_{\infty, c b}\left(\mathcal{M}_{2}| | \mathcal{N}_{2}\right)<\infty$, then $D_{2, c b}\left(\mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}| | \mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2}\right)=$ $D_{2, c b}\left(\mathcal{M}_{1} \| \mathcal{N}_{1}\right)+D_{\infty, c b}\left(\mathcal{M}_{2} \| \mathcal{N}_{2}\right)<\infty$ by Theorem [b?
We now discuss the discrete time setting. A quantum Makrov map $T: M \rightarrow M$ is a symmetric normal completely positive unital map. Let $\mathcal{N}=\left\{a \in \mathcal{M} \mid T\left(a^{*} a\right)=\right.$ $\left.T\left(a^{*}\right) T(a)\right\}$ be the multiplicative domain of $T . T$ restricted on \mathcal{N} is a normal trace preserving $*$-homomorphism. T^{2} is identity on \mathcal{N} because for any $a, b \in \mathcal{N}$

$$
\operatorname{tr}\left(a T^{2}(b)\right)=\operatorname{tr}(T(a) T(b))=\operatorname{tr}(T(a b))=\operatorname{tr}(a b) .
$$

and T is a isometry on $L_{2}(\mathcal{N})$. Let $E: \mathcal{M} \rightarrow \mathcal{N}$ be the conditional expectation onto \mathcal{N} and I be the identity operator on $L_{2}(\mathcal{M})$. We have

$$
\begin{equation*}
T^{2} \circ E=E \circ T^{2}=E, T \circ E=E \circ T \tag{24}
\end{equation*}
$$

Theorem 4.3. Let $T: \mathcal{M} \rightarrow \mathcal{M}$ be a symmteric quantum Markov map and let \mathcal{N} be multiplicative domain of T. Suppose $\left\|T(I-E): L_{2}(\mathcal{M}) \rightarrow L_{2}(\mathcal{M})\right\| \leq \mu<1$. Then for any $n \geq 1$ and density $\rho \in M_{n}(\mathcal{M})$, we have

$$
D\left(T^{k}(\rho) \| M_{n}(\mathcal{N})\right) \leq 2 \mu^{k} e^{D_{2}\left(\rho \| M_{n}(\mathcal{N})\right) / 2}
$$

Moreover, for $k \geq\left(\log \frac{1}{\mu}\right)^{-1}\left(\log \frac{4}{\epsilon^{2}}+D_{2, c b}(\mathcal{M} \| \mathcal{N}) / 2\right)$,
$\left\|i d \otimes T^{k}(\rho)-i d \otimes E(\rho)\right\|_{1} \leq \epsilon$ for k even,
$\left\|i d \otimes T^{k}(\rho)-i d \otimes T \circ E(\rho)\right\|_{1} \leq \epsilon$ for k odd.

Proof. Using the relation $\left(\frac{\text { relation }}{24}\right)$, we have

$$
(T(I-E))^{2}=(T-T \circ E)^{2}=T^{2}-2 T^{2} \circ E+T^{2} \circ E=T^{2}-E .
$$

Then

$$
(T-T \circ E)^{2 k}=T^{2 n}-E,(T-T \circ E)^{2 k+1}=T^{2 k+1}-E \circ T .
$$

By [9, [LS Lemma 3.12] again, since $(T-E)^{k}$ are \mathcal{N}-bimodule map,

$$
\begin{aligned}
& \left\|(T-T \circ E)^{k}: L_{1}^{2}(\mathcal{N} \subset \mathcal{M}) \rightarrow L_{1}^{2}(\mathcal{N} \subset \mathcal{M})\right\| \\
= & \left\|(T-T \circ E)^{k}: L_{2}(\mathcal{M}) \rightarrow L_{2}(\mathcal{M})\right\| \leq \mu^{k}
\end{aligned}
$$

The rest of argument is similar to Theorem $\frac{122}{4.1}$. Here we show the case for k odd,

$$
\begin{aligned}
D\left(T^{2 m+1}(\rho) \| \mathcal{N}\right) & \leq D_{2}\left(I \otimes T^{k}(\rho) \| \mathcal{N}\right) \\
& \leq 2 \log \left\|T^{k}(\rho)\right\|_{L_{1}^{2}(\mathcal{N} \subset \mathcal{M})} \\
& \leq 2 \log \left(\left\|E \circ T^{k}(\rho)\right\|_{L_{1}^{2}\left(M_{m}(\mathcal{N}) \subset M_{m}(\mathcal{M})\right)}+\left\|(T-T \circ E)^{k}(\rho)\right\|_{L_{1}^{2}(\mathcal{N} \subset \mathcal{M})}\right) \\
& \leq 2 \log \left(1+\mu^{k}\|\rho\|_{L_{1}^{2}(\mathcal{N} \subset \mathcal{M})}\right) \\
& \leq 2 \mu^{k} e^{D_{2}(\rho \| \mathcal{N}) / 2}
\end{aligned}
$$

Applying the same argument for $\rho \in M_{n}(\mathcal{M})$ yields the desired estimate.
Acknowledgement-We thank Gilles Pisier for helpful discussion on Proposition lunique

References

Araki76
bardet
bardet2
berta18
bump GLKS
fack86
[1] Huzihiro Araki. Relative entropy of states of von neumann algebras. Publications of the Research Institute for Mathematical Sciences, 11(3):809-833, 1976.
[2] Ivan Bardet. Estimating the decoherence time using non-commutative functional inequalities. arXiv preprint arXiv:1710.01039, 2017.
[3] Ivan Bardet and Cambyse Rouzé. Hypercontractivity and logarithmic sobolev inequality for non-primitive quantum markov semigroups and estimation of decoherence rates. arXiv preprint arXiv:1803.05379, 2018.
[4] Mario Berta, Volkher B Scholz, and Marco Tomamichel. Rényi divergences as weighted noncommutative vector-valued l_{p}-spaces. In Annales Henri Poincaré, volume 19, pages 1843-1867. Springer, 2018.
[5] Daniel Bump. Lie groups. Springer, 2004.
[6] Dariusz Chruściński and Saverio Pascazio. A brief history of the gkls equation. arXiv preprint arXiv:1710.05993, 2017.
[7] Alain Connes and Erling Størmer. Entropy for automorphisms of ii 1 von neumann algebras. Acta Mathematica, 134(1):289-306, 1975.
[8] Thierry Fack and Hideki Kosaki. Generalized s-numbers of τ-measurable operators. Pacific Journal of Mathematics, 123(2):269-300, 1986.

Jencova18

Jencova2

Jones
JPmemo
kosaki84
wilde16
marvian14

Iman
muller13
hypo

superact

Umegaki62

Vedral02
watrous
[9] Li Gao, Marius Junge, and Nicolas LaRacuente. Fisher information and logarithmic sobolev inequality for matrix valued functions. arXiv preprint arXiv:1807.08838, 2018.
[10] Juan Gu, Zhi Yin, and Haonan Zhang. Interpolation of quasi noncommutative l_{p}-spaces. arXiv preprint arXiv:1905.08491, 2019.
[11] Manish K Gupta and Mark M Wilde. Multiplicativity of completely bounded p-norms implies a strong converse for entanglement-assisted capacity. Communications in Mathematical Physics, 334(2):867887, 2015.
[12] Anna Jenčová. Rényi relative entropies and noncommutative l_{p}-spaces. In Annales Henri Poincaré, volume 19, pages 2513-2542. Springer, 2018.
[13] Anna Jenčová. R\'enyi relative entropies and noncommutative L_{p}-spaces II. arXiv e-prints, page arXiv:1707.00047, Jun 2017.
[14] Vaughan FR Jones. Index for subfactors. Inventiones mathematicae, 72(1):1-25, 1983.
[15] Marius Junge and Javier Parcet. Mixed-norm inequalities and operator space L_p embedding theory. Number 952-956. American Mathematical Soc., 2010.
[16] Hideki Kosaki. Applications of the complex interpolation method to a von neumann algebra: noncommutative lp-spaces. Journal of functional analysis, 56(1):29-78, 1984.
[17] Felix Leditzky, Mark M Wilde, and Nilanjana Datta. Strong converse theorems using rényi entropies. Journal of Mathematical Physics, 57(8):082202, 2016.
[18] Iman Marvian and Robert W Spekkens. Extending noethers theorem by quantifying the asymmetry of quantum states. Nature communications, 5:3821, 2014.
[19] Iman Marvian Mashhad. Symmetry, asymmetry and quantum information. PhD thesis, University of Waterloo, 2012.
[20] Martin Müller-Lennert, Frédéric Dupuis, Oleg Szehr, Serge Fehr, and Marco Tomamichel. On quantum rényi entropies: A new generalization and some properties. Journal of Mathematical Physics, 54(12):122203, 2013.
[21] Tomohiro Ogawa and Hiroshi Nagaoka. Strong converse and stein's lemma in quantum hypothesis testing. In Asymptotic Theory Of Quantum Statistical Inference: Selected Papers, pages 28-42. World Scientific, 2005.
[22] Mihai Pimsner and Sorin Popa. Entropy and index for subfactors. In Annales scientifiques de l'Ecole normale supérieure, volume 19, pages 57-106, 1986.
[23] Gilles Pisier. Noncommutative vector valued $l_{-} p$-spaces and completely p-summing maps. arXiv preprint math/9306206, 1993.
[24] Éric Ricard. Hölder estimates for the noncommutative mazur maps. Archiv der Mathematik, 104(1):37-45, 2015.
[25] Graeme Smith and Jon Yard. Quantum communication with zero-capacity channels. Science, 321(5897):1812-1815, 2008.
[26] Hisaharu Umegaki. Conditional expectation in an operator algebra, iv (entropy and information). In Kodai Mathematical Seminar Reports, volume 14, pages 59-85. Department of Mathematics, Tokyo Institute of Technology, 1962.
[27] Vlatko Vedral. The role of relative entropy in quantum information theory. Reviews of Modern Physics, 74(1):197, 2002.
[28] John Watrous. The theory of quantum information. Cambridge University Press, 2018.

wilde14

winter
inter
yang
[29] Mark M Wilde, Andreas Winter, and Dong Yang. Strong converse for the classical capacity of entanglement-breaking and hadamard channels via a sandwiched rényi relative entropy. Communications in Mathematical Physics, 331(2):593-622, 2014.
[30] Andreas Winter. Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Communications in Mathematical Physics, 347(1):291313, 2016.
[31] Andreas Winter and Dong Yang. Operational resource theory of coherence. Physical review letters, 116(12):120404, 2016.

Appendix A

A.1. Amalgamated L_{p}-space and Conditional L_{p}-spaces. In this section, we recall the definition of amalgamated L_{p}-space and conditional L_{p}-spaces needed for our discus-
 $L_{q}^{p}(\mathcal{N} \subset \mathcal{M})$ as the completion of \mathcal{M} with respect the norm

$$
\|x\|_{L_{q}^{p}(\mathcal{N} \subset \mathcal{M})}= \begin{cases}\inf _{x=a y b, a, b \in \mathcal{N}}\|a\|_{L_{2 r}(\mathcal{N})}\|y\|_{L_{q}(\mathcal{M})}\|b\|_{L_{2 r}(\mathcal{N})} & \text { if } p \leq q \tag{25}\\ \sup _{\|a\|_{L_{2 r}(\mathcal{N})}=\|b\|_{L_{2 r}(\mathcal{N})}=1}\|a x b\|_{L_{p}(\mathcal{M})} & \text { if } p \geq q\end{cases}
$$

For $p \leq q, L_{q}^{p}(\mathcal{N} \subset \mathcal{M})$ is called amalgamated L_{p}-space and for $p \geq q$ conditional L_{p}-space. It follows from Hölder inequality that
i) $L_{p}^{p}(\mathcal{N} \subset \mathcal{M})=L_{p}(\mathcal{M})$,
ii) for $q_{1} \leq p \leq q_{2},\|x\|_{L_{p}^{q_{1}}(\mathcal{N} \subset \mathcal{M})} \leq\|x\|_{L_{p}(\mathcal{M})} \leq\|x\|_{L_{p}^{q_{2}}(\mathcal{N} \subset \mathcal{M})}$,
iii) $L_{p}(\mathcal{N}) \subset L_{p}^{q}(\mathcal{N} \subset \mathcal{M})$ for any $1 \leq q \leq \infty$. Moreover, $\|x\|_{L_{p}^{q}(\mathcal{N} \subset \mathcal{M})}=\|x\|_{L_{p}(\mathcal{N})}$ if and only if $x \in L_{p}(\mathcal{N})$
For $1<p, q<\infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1$ and $\frac{1}{q}+\frac{1}{q^{\prime}}=1$, we have the duality $L_{q}^{p}(\mathcal{N} \subset \mathcal{M})^{*}=L_{q^{\prime}}^{p^{\prime}}(\mathcal{N} \subset$ M) via

$$
\|x\|_{L_{q}^{p}(\mathcal{N} \subset \mathcal{M})}=\sup \left\{|\operatorname{tr}(x y)| \mid\|y\|_{L_{q^{p^{\prime}}}(\mathcal{N} \subset \mathcal{M})} \leq 1\right\}
$$

For $q=1, L_{1}^{p}(\mathcal{N} \subset \mathcal{M}) \subset L_{\infty}^{p^{\prime}}(\mathcal{N} \subset \mathcal{M})^{*}$ as a w^{*}-dense subspace. (see ${ }^{\text {|JPmemo }}$ Propsition 4.5]). In particular, the dual of amalgamated space is conditional space and vice versa. We also have complex interpolation relation

$$
L_{q}^{p}(\mathcal{N} \subset \mathcal{M})=\left[L_{q_{0}}^{p_{0}}(\mathcal{N} \subset \mathcal{M}), L_{q_{1}}^{p_{1}}(\mathcal{N} \subset \mathcal{M})\right]_{\theta}
$$

isometrically where $(1-\theta) / p_{0}+\theta / p_{1}=1 / p,(1-\theta) / q_{0}+\theta / q_{1}=1 / q$ and $\left(p_{1}-q_{1}\right)\left(p_{2}-q_{2}\right) \geq 0$.
We will also need some "square root" version of above L_{p}-spaces. For $2 \leq r \leq \infty, 1 \leq$ $p, q \leq \infty$ and $\frac{1}{q}=\frac{1}{r}+\frac{1}{p}$, we define the norm

$$
\|x\|_{L_{(r, \infty)}^{p}}(\mathcal{N} \subset \mathcal{M})=\sup _{\|a\| L_{r}(\mathcal{N})=1}\|a x\|_{L_{q}(\mathcal{M})} .
$$

where the supreme runs over all $a \in \mathcal{N}$ with $\|a\|_{L_{r}(\mathcal{N})}=1$. The dual spaces are the amalgamated space $L_{q^{\prime}}(\mathcal{M}) L_{r}(\mathcal{N})$ given by

$$
\|y\|_{L_{q^{\prime}}(\mathcal{M}) L_{r}(\mathcal{N})}=\inf _{y=z a}\|z\|_{L_{q^{\prime}}(\mathcal{M})}\|a\|_{L_{r}(\mathcal{N})} .
$$

For $1<q<\infty$, we have the dual relation

$$
\begin{align*}
\|x\|_{L_{(r, \infty)}^{2}(\mathcal{N} \subset \mathcal{M})} & =\sup \left\{\|a x\|_{L_{q}(\mathcal{M})} \mid\|a\|_{L_{r}(\mathcal{N})}=1\right\} \\
& =\sup \left\{|\operatorname{tr}(z a x)| \mid\|a\|_{L_{r}(\mathcal{N})}=1,\|z\|_{L_{q^{\prime}}(\mathcal{M})}=1\right\} \\
& =\sup \left\{|\operatorname{tr}(y x)| \mid\|y\|_{L_{q^{\prime}}(\mathcal{M}) L_{r}(\mathcal{N})}=1\right\} \tag{26}
\end{align*}
$$

These spaces also interpolates (see Theorem 4.6 from $\begin{aligned} & \text { JPmem. } \\ & [5])^{2} .\end{aligned}$ Note that the property ii) and iii) in Proposition 2.1 can also be obtained from complex interpolation relation of the space $L_{q}^{p}(\mathcal{N} \subset \mathcal{M})$ and $L_{(r, \infty)}^{p}$ proved in [PPmemo $[5]$. We now prove Proposition $\left[\frac{\text { unique }}{2.3}\right.$.

Proposition A.1. For $1 / 2 \leq p \leq \infty, D_{p}(\rho \| \mathcal{N})=\inf _{\sigma \in \mathcal{S}(\mathcal{N})} D_{p}(\rho \| \sigma)$ attains the infimum at an σ. For $1 / 2<p<\infty$, such σ is unique.
Proof. The case for $p=1$ follows from ($\left(\frac{p}{5}\right)$. For $1<p<\infty$, we use the norm expression

$$
D_{p}(\rho \| \mathcal{N})=p^{\prime} \log \inf _{\rho=a y a}\|a\|_{2 p^{\prime}}^{2}\|y\|_{p}=\inf _{\rho^{\frac{1}{2}}=a \eta}\|a\|_{2 p^{\prime}}\|\eta\|_{2 p}
$$

where $a \in L_{2 p^{\prime}}(\mathcal{N}), y \in L_{p}(\mathcal{M}), \eta \in L_{2 p}(\mathcal{M})$ and a positive. It suffices to show that the above infimum is attained at unique a. Assume $\|x\|_{L_{1}^{p}(\mathcal{N C \mathcal { M })}}=1$. We find sequences $\left(a_{n}\right) \subset L_{2 p^{\prime}}(\mathcal{N})$ and $\left(\eta_{n}\right) \subset L_{2 p}(\mathcal{M})$ such that for each $n, \sqrt{x}=a_{n} \eta_{n},\left\|a_{n}\right\|_{2 p^{\prime}}=1$ and

$$
\left\|\eta_{n}\right\|_{2 p} \geq 1, \lim _{n \rightarrow \infty}\left\|\eta_{n}\right\|_{2 p} \rightarrow 1
$$

Write $a_{n, m}=\left(\frac{1}{2} a_{n}^{2}+\frac{1}{2} a_{m}^{2}\right)^{\frac{1}{2}}$. Consider the factorization

$$
\sqrt{x}=\left[\begin{array}{cc}
\frac{a_{n}}{\sqrt{2}} & \frac{a_{m}}{\sqrt{2}}
\end{array}\right] \cdot\left[\begin{array}{l}
\frac{\eta_{n}}{\sqrt{2}} \\
\frac{\eta_{m}}{\sqrt{2}}
\end{array}\right]=a_{n, m} \eta_{n, m}
$$

where $\eta_{n, m}=a_{n, m}^{-1}\left(\frac{1}{2} a_{n} \eta_{n}+\frac{1}{2} a_{m} \eta_{m}\right)$. Note that

$$
\begin{aligned}
& \left\|a_{n, m}\right\|_{2 p^{\prime}}=\left\|\frac{a_{n}^{2}+a_{m}^{2}}{2}\right\|_{p^{\prime}}^{\frac{1}{2}}, \\
& \left\|\eta_{n, m}\right\|_{2 p}=\left\|\frac{\eta_{n}^{*} \eta_{n}+\eta_{m}^{*} \eta_{m}}{2}\right\|_{p}^{\frac{1}{2}} \leq\left(\frac{1}{2}\left\|\eta_{n}\right\|_{2 p}^{2}+\frac{1}{2}\left\|\eta_{m}\right\|_{2 p}^{2}\right)^{\frac{1}{2}} \rightarrow 1
\end{aligned}
$$

when $n, m \rightarrow \infty$. Because $\sqrt{x}=a_{n, m} \eta_{n, m},\left\|a_{n, m}\right\|_{2 p^{\prime}}\left\|\eta_{n, m}\right\| \geq 1$ for any n, m. Then we have

$$
\lim _{N \rightarrow \infty} \inf _{n, m \geq N}\left\|\frac{a_{n}^{2}+a_{m}^{2}}{2}\right\|_{p^{\prime}} \geq 1
$$

By uniform convexity of noncommutative L_{p} space (c.f. $\frac{\text { kosaki84, fack } 86}{[16,8]) \text {, this implies that }\left(a_{n}^{2}\right)}$ converges in $L_{2 p^{\prime}}$. Using the inequality $\left\|a^{2}-b^{2}\right\|_{2 p} \geq\|a-b\|_{p}^{\frac{1}{2}}$ from \| \# icard15 Lemma 2.1], we have that $\left(a_{n}\right)$ converges in $L_{p^{\prime}}(\mathcal{N})$. On the other hand, because $L_{2 p}(\mathcal{M})$ is reflexive, there exists a subsequence $\eta_{n_{k}} \rightarrow \eta$ weakly and $\|\eta\|_{2 p} \leq 1$. Thus $\sqrt{x}=a_{n_{k}} \eta_{n_{k}} \rightarrow a \eta$ weakly in $L_{2}(\mathcal{M})$. Hence $\sqrt{x}=a \eta$ and $\|a\|_{2 p^{\prime}}=\|\eta\|_{2 p}=1$. Note that we have shown that for any sequence a_{n} with $\sqrt{x}=a_{n} \eta_{n}$ and

$$
\begin{equation*}
\left\|a_{n}\right\|_{2 p^{\prime}}=1, \lim _{n \rightarrow \infty}\left\|\eta_{n}\right\|_{2 p} \rightarrow 1, \tag{27}
\end{equation*}
$$

con
a_{n} converges to some a in $L_{2 p^{\prime}}$. Let b_{n} be another such sequence with $x=b_{n} \eta_{n}^{\prime}$ and converges to b. Define $c_{2 n-1}=a_{n}, c_{2 n}=b_{n}, \xi_{2 n-1}=\eta_{n}, \xi_{2 n}=\eta_{n}^{\prime}$. Then $x=c_{n} \xi_{n}$ satisfies same condition of (른). Then c_{n} converges to some c in $L_{2 p^{\prime}}$ which implies that the limit $a=b=c$ is unique. For $p=\infty$, we know

$$
D_{\infty}(\rho \| \mathcal{N})=\log \inf \left\{\lambda \mid \rho \leq \lambda \sigma, \text { for some }\|\sigma\|_{L_{1}(\mathcal{N})}=1\right\}
$$

Let $\lambda=\inf \left\{\lambda \mid \rho \leq \lambda \sigma,\|\sigma\|_{L_{1}(\mathcal{N})}=1\right\}$ and let σ_{n} be a sequence of densities in $L_{1}(\mathcal{N}) \cong \mathcal{N}_{*}$ such that $\lambda_{n}:=\min \{\lambda \mid \rho \leq \lambda \sigma\} \rightarrow \lambda$ monotonically non-increasing. By w^{*}-compactness of state space in \mathcal{N}^{*}, we have a subsequence $\sigma_{n_{k}}$ converges to some state $\sigma \in \mathcal{N}^{*}$ in the weak* topology. Then for any $k, \lambda_{n_{k}} \sigma_{n_{m}} \geq \rho$ in \mathcal{N}^{*} for $m \geq k$. Passing to the limit, we have $\lambda \sigma \geq \rho$ for some state $\sigma \in \mathcal{N}^{*}$. We show that $\sigma \in \mathcal{N}_{*}$. By the decomposition of the double dual space $\mathcal{N}^{* *}=\mathcal{N} \oplus e \mathcal{N}^{* *} e$ for some projection $e \in \mathcal{N}^{* *}, \sigma=\sigma_{0} \oplus \sigma_{s}$ decomposed as a normal part $\sigma_{0} \in \mathcal{N}_{*}$ supported on \mathcal{N} and a singular part $\sigma_{s} \in \mathcal{N}^{* *}$ supported on $e \mathcal{N}^{* *} e$. Suppose $\sigma_{s} \neq 0$. Then $\sigma_{0}(1)=\mu<1$ and

$$
\rho \leq \lambda \sigma \Rightarrow \rho \leq \lambda \sigma_{0}
$$

Take the normalized density $\tilde{\sigma}=\frac{1}{\mu} \sigma_{0} \in \mathcal{N}_{*}$. We have $\rho \leq \frac{\lambda}{\mu} \tilde{\sigma}$ with $\lambda / \mu>\lambda$ which is a contradiction. This proves the existence of σ.

For $1<q=2 p<2$ and $\frac{1}{q}=\frac{1}{r}+\frac{1}{2}$., it sufficient to show that the norm

$$
\left\|\rho^{\frac{1}{2}}\right\|_{L_{(r, \infty)}^{2}(\mathcal{N C \mathcal { M })}}=\sup _{\|a\|_{L_{r}(\mathcal{N})}=1}\left\|a \rho^{\frac{1}{2}}\right\|_{L_{q}(\mathcal{M})}
$$

is attained for some $\|a\|_{L_{r}(\mathcal{N})}=1$. Let $\left\|\rho^{\frac{1}{2}}\right\|_{L_{(r, \infty)}^{2}(\mathcal{N} \subset \mathcal{M})}=\lambda$ and $a_{n} \geq 0$ be a positive sequence in $\left\|a_{n}\right\|_{L_{r}(\mathcal{N})}=1$ such that $\left\|a_{n} \rho^{\frac{1}{2}}\right\|_{L_{q}(\mathcal{M})} \rightarrow \lambda$. Write $a_{n, m}=\left(\frac{a_{n}^{2}+a_{m}^{2}}{2}\right)^{\frac{1}{2}}$. We have

$$
\left[\begin{array}{cc}
a_{n} \rho^{\frac{1}{2}} & a_{n} \rho^{\frac{1}{2}} \\
a_{m} \rho^{\frac{1}{2}} & a_{m} \rho^{\frac{1}{2}}
\end{array}\right]=\left[\begin{array}{ll}
a_{n} a_{n, m}^{-1} & 0 \\
a_{m} a_{n, m}^{-1} & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
a_{n, m} \rho^{\frac{1}{2}} & a_{n, m} \rho^{\frac{1}{2}} \\
0 & 0
\end{array}\right]
$$

Suppose $\left\|a_{n} \rho^{\frac{1}{2}}\right\|_{L_{q}(\mathcal{M})},\left\|a_{m} \rho^{\frac{1}{2}}\right\|_{L_{q}(\mathcal{M})} \geq(1-\epsilon) \lambda$. Then we have

$$
\begin{aligned}
& \left\|\left[\begin{array}{cc}
a_{n} \rho^{\frac{1}{2}} & a_{n} \rho^{\frac{1}{2}} \\
a_{m} \rho^{\frac{1}{2}} & a_{m} \rho^{\frac{1}{2}}
\end{array}\right]\right\|_{L_{q}\left(M_{2}(\mathcal{M})\right)} \geq\left\|\left[\begin{array}{ll}
a_{n} \rho^{\frac{1}{2}} & \\
& a_{m} \rho^{\frac{1}{2}}
\end{array}\right]\right\|_{L_{q}\left(M_{2}(\mathcal{M})\right)} \geq 2^{\frac{1}{q}}(1-\epsilon) \lambda, \\
& \left\|\left[\begin{array}{cc}
a_{n} a_{n, m}^{-1} & 0 \\
a_{m} a_{n, m}^{-1} & 0
\end{array}\right]\right\|_{L_{\infty}\left(M_{2}(\mathcal{M})\right)}=1 \\
& \left\|\left[\begin{array}{cc}
a_{n, m} \rho^{\frac{1}{2}} & a_{n, m} \rho^{\frac{1}{2}} \\
0 & 0
\end{array}\right]\right\|_{L_{q}\left(M_{2}(\mathcal{M})\right)}=\left\|\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\right\|_{L_{q}\left(M_{2}\right)}\left\|a_{n, m} \rho^{\frac{1}{2}}\right\|_{L_{q}(\mathcal{M})}=2^{\frac{1}{q}}\left\|a_{n, m} \rho^{\frac{1}{2}}\right\|_{L_{q}(\mathcal{M})}
\end{aligned}
$$

By the definition of λ,

$$
(1-\epsilon) \lambda \leq\left\|a_{n, m} \rho^{\frac{1}{2}}\right\|_{L_{q}(\mathcal{M})} \Rightarrow(1-\epsilon) \leq\left\|a_{n, m}\right\|_{L_{r}(\mathcal{N})} .
$$

Thus we have shown

$$
\lim _{N \rightarrow \infty} \inf _{n, m \geq N}\left\|\frac{a_{n}^{2}+a_{m}^{2}}{2}\right\|_{\frac{r}{2}} \geq 1
$$

Following the same argument of the case of $1<p<\infty$, we obtain that a_{n} converges a in $L_{r}(\mathcal{N})$ and such limit a is unique for $\rho^{\frac{1}{2}}$. Finally, we discuss the case for $p=1 / 2$. It suffices to show the following supremum is attained

$$
\begin{align*}
\|z\|_{L_{(2, \infty)}^{2}(\mathcal{N} \subset \mathcal{M})} & =\sup \left\{\|a z\|_{L_{1}(\mathcal{M})} \mid\|a\|_{L_{2}(\mathcal{N})}=1\right\} \\
& =\sup \left\{|\operatorname{tr}(a z y)|\|a\|_{L_{2}(\mathcal{N})}=1, y \in \mathcal{M} \text { unitary }\right\} \\
& =\sup \left\{\|E(z y)\|_{2} \mid y \in \mathcal{M} \text { unitary }\right\} \tag{28}
\end{align*}
$$

Consider the set

$$
C=\{(i d-E)(z y) \mid y \in \mathcal{M} \text { unitary }\}
$$

C is a weakly closed set in $L_{2}(\mathcal{M})$. Indeed, for any y_{n} such that $(i d-E)\left(z y_{n}\right) \rightarrow x$ weakly in $L_{2}(\mathcal{M})$, we can find a subsequence $y_{n_{k}} \rightarrow y$ weakly in \mathcal{M}. Then $(i d-E)\left(z y_{n_{k}}\right) \rightarrow$ $(i d-E)(z y)$ weakly in $L_{2}(\mathcal{M})$. Hence $x=(i d-E)(z y)$ which proves the closeness. We show that C admits an element attains the infimum

$$
\inf _{x \in C}\|x\|_{L_{2}(\mathcal{M})}:=\lambda
$$

Let x_{n} be a sequence such that $\left\|x_{n}\right\|_{2} \rightarrow \lambda$. For a weakly converging subsequence $x_{n_{k}} \rightarrow x$, we have $x \in C$ by closeness and

$$
\|x\|_{2} \leq \liminf _{k \rightarrow \infty}\left\|x_{n_{k}}\right\|_{2}=\lambda .
$$

Hence the infimum norm for is attained. Since $\mathcal{E}: L_{2}(\mathcal{M}) \rightarrow L_{2}(\mathcal{N})$ is a projection,

$$
\|E(z y)\|_{2}^{2}+\|(i d-E)(z y)\|_{2}^{2}=\|z y\|_{2}^{2}=1
$$

We have the supremum

$$
\sup \left\{\|E(z y)\|_{2} \mid y \in \mathcal{M} \text { unitary }\right\}
$$

is attained by some y_{0}. Therefore the supremum in ($\left.{ }^{\mathrm{b}} 8\right)$ is attained with $a=\left|E\left(z y_{0}\right)\right|$.
A.2. Operator space structures. We shall now discuss the operator space structures of $L_{1}^{p}(\mathcal{N} \subset \mathcal{M})$. Let us introduce the short notation

$$
L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})=L_{(2, \infty)}^{\infty}(\mathcal{N} \subset \mathcal{M}), L_{\infty}^{c}(\mathcal{N} \subset \mathcal{M})=L_{(\infty, c)}^{\infty}(\mathcal{N} \subset \mathcal{M})
$$

Recall that the norm of these two spaces are given by

$$
\|x\|_{L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})}=\left\|E\left(x x^{*}\right)\right\|_{\infty},\|x\|_{L_{\infty}^{c}(\mathcal{N} \subset \mathcal{M})}=\left\|E\left(x^{*} x\right)\right\|_{\infty} .
$$

We define the operator space structure as follows,

$$
\begin{aligned}
& M_{n}\left(L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})\right) \cong L_{\infty}^{r}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right) \\
& M_{n}\left(L_{\infty}^{c}(\mathcal{N} \subset \mathcal{M})\right) \cong L_{\infty}^{c}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right)
\end{aligned}
$$

Namely for $a=\sum_{j} a_{j} \otimes x_{j} \in M_{n} \otimes M$,

$$
\begin{aligned}
& \|a\|_{M_{n}\left(L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})\right)}:=\left\|i d \otimes E\left(a a^{*}\right)\right\|_{M_{n}(\mathcal{N})}^{1 / 2}=\|a\|_{L_{\infty}^{r}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right)} \\
& \|a\|_{M_{n}\left(L_{\infty}^{c}(\mathcal{N} \subset \mathcal{M})\right)}:=\left\|i d \otimes E\left(a^{*} a\right)\right\|_{M_{n}(\mathcal{N})}^{1 / 2}=\|a\|_{L_{\infty}^{c}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right)}
\end{aligned}
$$

We verify the above norms satisfies Ruan's axioms. For $a=a_{1} \oplus a_{2} \in M_{n}(\mathcal{M}) \oplus M_{m}(\mathcal{M})$,

$$
\begin{aligned}
\|a\|_{M_{n+m}\left(L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})\right)} & =\left\|i d \otimes E\left(a a^{*}\right)\right\|_{M_{n+m}(\mathcal{N})}^{1 / 2} \\
& =\left\|i d_{n} \otimes E\left(a_{1} a_{1}^{*}\right) \oplus i d_{m} \otimes E\left(a_{2} a_{2}^{*}\right)\right\|_{M_{n+m}(\mathcal{N})}^{1 / 2} \\
& =\max \left\{\left\|a_{1}\right\|_{M_{n}\left(L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})\right)},\left\|a_{2}\right\|_{M_{m}\left(L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})\right)}\right\}
\end{aligned}
$$

For $a \in M_{n}(\mathcal{M}), b_{1}, b_{2} \in M_{n}$, we have

$$
\left(b_{1} \otimes 1\right) a\left(b_{2} \otimes 1\right)\left(\left(b_{1} \otimes 1\right) a\left(b_{2} \otimes 1\right)\right)^{*}=\left(b_{1} \otimes 1\right) a\left(b_{2} b_{2}^{*} \otimes 1\right) a^{*}\left(b_{1}^{*} \otimes 1\right) \leq\left\|b_{2}\right\|_{\infty}^{2}\left(b_{1} \otimes 1\right) a a^{*}\left(b_{1}^{*} \otimes 1\right)
$$

Thus we have

$$
\begin{aligned}
\left\|\left(b_{1} \otimes 1\right) a\left(b_{2} \otimes 1\right)\right\|_{M_{n}\left(L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})\right)}^{2} & =\left\|i d \otimes E\left(\left(b_{1} \otimes 1\right) a\left(b_{2} b_{2}^{*} \otimes 1\right) a^{*}\left(b_{1}^{*} \otimes 1\right)\right)\right\|_{M_{n}\left(L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})\right)} \\
& \leq\left\|b_{2}\right\|_{\infty}^{2}\left\|\left(b_{1} \otimes 1\right) i d \otimes E\left(a a^{*}\right)\left(b_{1}^{*} \otimes 1\right)\right\|_{M_{n}\left(L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})\right)} \\
& \leq\left\|b_{2}\right\|_{\infty}^{2}\left\|b_{1}\right\|_{\infty}^{2}\left\|i d \otimes E\left(a a^{*}\right)\right\|_{M_{n}\left(L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})\right)} \\
& \leq\left\|b_{2}\right\|_{\infty}^{2}\left\|b_{1}\right\|_{\infty}^{2}\|a\|_{M_{n}\left(L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})\right)}^{2}
\end{aligned}
$$

The argument for $M_{n}\left(L_{\infty}^{c}(\mathcal{N} \subset \mathcal{M})\right)$ is similar. Using injectivity of minimal tensor product $\otimes_{\text {min }}$, we have for a finite von Neumann algebra $\mathcal{R} \subset B(H)$,

$$
\mathcal{R} \otimes_{\min } L_{\infty}^{1}(\mathcal{N} \subset \mathcal{M}) \subset B(H) \otimes_{\min } L_{\infty}^{1}(\mathcal{N} \subset \mathcal{M})
$$

and for $a \in \mathcal{R} \otimes \mathcal{M}$,

$$
\|a\|_{\mathcal{R} \otimes_{\min } L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})}=\|a\|_{B(H) \otimes_{\min } L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})}=\left\|i d \otimes E\left(a a^{*}\right)\right\|_{\infty}^{1 / 2}=\|a\|_{L_{\infty}^{r}(\mathcal{R} \bar{\otimes} \mathcal{N} \subset \mathcal{R} \bar{\otimes} \mathcal{M})}
$$

Therefore, $\mathcal{R} \otimes_{\min } L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M}) \subset L_{\infty}^{r}(\mathcal{R} \bar{\otimes} \mathcal{N} \subset \mathcal{R} \bar{\otimes} \mathcal{M})$ as a subspace. It is easy to verify that with above operator space structure $L_{\infty}^{r}(\mathcal{N} \subset \underset{\text { fpemb }}{\mathcal{M}})\left(\right.$ resp. $\left.L_{\infty}^{c}(\mathcal{N} \subset \mathcal{M})\right)$ is a right (resp. left) operator \mathcal{M}-module. It was proved in $[15$, Lemma 4.9] that for $z \in \mathcal{M}$,

$$
\begin{equation*}
\|z\|_{L_{\infty}^{1}(\mathcal{N} \subset \mathcal{M})}=\inf \left\{\|x\|_{L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})}\|y\|_{L_{\infty}^{c}(\mathcal{N} \subset \mathcal{M})} \mid z=x y, x, y \in \mathcal{M}\right\} \tag{29}
\end{equation*}
$$

fa
The lemma was stated for L_{∞}^{p} with $1<p<\infty$ although the proof works for $p=1$ as well). It suggests the following decomposition by module Haargerup tensor product (see [] for operator module and Haargerup tensor product).

Lemma A.2. We have isometric isomorphism

$$
L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M}) \otimes_{\mathcal{M}, h} L_{\infty}^{c}(\mathcal{N} \subset \mathcal{M}) \cong L_{\infty}^{1}(\mathcal{N} \subset \mathcal{M})
$$

where $\otimes_{\mathcal{M}, h}$ is the module Haagerup tensor product. Moreover, this induce the operator space structure

$$
\begin{aligned}
& M_{n}\left(L_{\infty}^{1}(\mathcal{N} \subset \mathcal{M})\right) \cong L_{\infty}^{1}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right) \\
& S_{1}^{n} \widehat{\otimes} L_{1}^{\infty}(\mathcal{N} \subset \mathcal{M}) \cong L_{1}^{\infty}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right)
\end{aligned}
$$

where $S_{1}^{n}=\left(M_{n}\right)^{*}$ is the n-dimensional trace class.
Proof. Let us consider the map

$$
m: L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M}) \otimes_{h} L_{\infty}^{c}(\mathcal{N} \subset \mathcal{M}) \rightarrow L_{\infty}^{1}(\mathcal{N} \subset \mathcal{M}), m(y \otimes z)=y z
$$

This is a contraction because for $\sum_{j=1}^{n} y_{j} \otimes z_{j}$,

$$
\begin{aligned}
\left\|\sum_{j} y_{j} z_{j}\right\|_{L_{1}(\mathcal{N} \subset \mathcal{M})} & =\sup \left\{\left\|\sum_{j} a y_{j} z_{j} b\right\|_{1} \mid\|a\|_{L_{2}(\mathcal{N})}=\|b\|_{L_{2}(\mathcal{N})}=1\right\} \\
& \leq \sup _{\|a\|_{L_{2}(\mathcal{N})}=1}\left\|\sum_{j} a y_{j} y_{j}^{*} a^{*}\right\|_{1}^{\frac{1}{2}} \sup _{\|b\|_{L_{2}(\mathcal{N})}=1}\left\|\sum_{j} b^{*} z_{j}^{*} z_{j} b\right\|_{1}^{\frac{1}{2}} \\
& \leq \sup _{\|a\|_{L_{2}(\mathcal{N})}=1}\left\|E\left(\sum_{j} y_{j} y_{j}^{*}\right)\right\|_{1}^{\frac{1}{2}} \sup _{\|b\|_{L_{2}(\mathcal{N})}=1}\left\|E\left(\sum_{j} z_{j}^{*} z_{j}\right)\right\|_{1}^{\frac{1}{2}} \\
& =\left\|\left(y_{1}, \cdots, y_{n}\right)\right\|_{R_{n}\left(L_{1}(\mathcal{N} \subset \mathcal{M})\right)}\left\|\left(z_{1}, \cdots, z_{n}\right)\right\|_{C_{n}\left(L_{1}(\mathcal{N} \subset \mathcal{M})\right)}
\end{aligned}
$$

where R_{n} (resp. C_{n}) are row (resp. column). space. Also, m induces a map on the module tensor product $L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M}) \otimes_{\mathcal{M}, h} L_{\infty}^{c}(\mathcal{N} \subset \mathcal{M})_{1 f}$ since $y, z, a \in \mathcal{M}$, the element $y a \otimes z-y \otimes a z$ is in the kernel of m. By the inequality $\left.{ }_{(29}^{2} 29\right), m$ is an isometry. Morover,
m is also surjective, because $\mathcal{M} \subset L_{1}(\mathcal{N} \subset \mathcal{M})$ is dense. Thus we proves the isometric isomorphism. Based on that, we obtain

$$
\begin{aligned}
M_{n}\left(L_{\infty}^{1}(\mathcal{N} \subset \mathcal{M})\right) & \cong M_{n}\left(L_{\infty}^{r}(\mathcal{N} \subset \mathcal{M})\right) \otimes_{M_{n}(\mathcal{M}), h} M_{n}\left(L_{\infty}^{c}(\mathcal{N} \subset \mathcal{M})\right) \\
& \cong L_{\infty}^{r}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right) \otimes_{M_{n}(\mathcal{M}), h} L_{\infty}^{c}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right) \\
& \cong L_{\infty}^{1}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right)
\end{aligned}
$$

We then define the operator space structure of L_{1}^{∞} by duality that

$$
L_{\infty}^{1}(\mathcal{N} \subset \mathcal{M}) \subset\left(L_{1}^{\infty}(\mathcal{N} \subset \mathcal{M})\right)^{*}
$$

as w^{*}-dense subspace. Then other identity follows from that

$$
\begin{aligned}
& L_{\infty}^{1}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right) \subset\left(L_{1}^{\infty}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right)\right)^{*} \\
& M_{n}\left(L_{\infty}^{1}(\mathcal{N} \subset \mathcal{M})\right) \subset\left(S_{1}^{n} \widehat{\otimes} L_{1}^{\infty}(\mathcal{N} \subset \mathcal{M})\right)^{*}
\end{aligned}
$$

both as w^{*}-dense subspace.
Recall the complex interpolation relation for $1 \leq p \leq \infty$,

$$
\begin{aligned}
& L_{1}^{p}(\mathcal{N} \subset \mathcal{M})=\left[L_{1}^{\infty}(\mathcal{N} \subset \mathcal{M}), L_{1}(\mathcal{M})\right]_{1 / p}=L_{1}^{p}(\mathcal{N} \subset \mathcal{M}) \\
& L_{\infty}^{p}(\mathcal{N} \subset \mathcal{M})=\left[L_{\infty}(\mathcal{M}), L_{\infty}^{1}(\mathcal{N} \subset \mathcal{M})\right]_{1 / p}=L_{\infty}^{p}(\mathcal{N} \subset \mathcal{M})
\end{aligned}
$$

Note that $S_{1}^{n} \widehat{\otimes} L_{1}(\mathcal{M})=L_{1}\left(M_{n}(\mathcal{M})\right)$ and $M_{n}\left(L_{\infty}(\mathcal{M})\right)=L_{\infty}\left(M_{n}(\mathcal{M})\right)$. Then by interpolation, we obtain the operator space structure for L_{1}^{p} and L_{∞}^{p}.

Corollary A.3. For $1 \leq p \leq \infty$,

$$
\begin{align*}
& M_{n}\left(L_{\infty}^{p}(\mathcal{N} \subset \mathcal{M})\right) \cong L_{\infty}^{p}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right) \\
& S_{1}^{n} \widehat{\otimes} L_{1}^{p}(\mathcal{N} \subset \mathcal{M}) \cong L_{1}^{p}\left(M_{n}(\mathcal{N}) \subset M_{n}(\mathcal{M})\right) \tag{30}
\end{align*}
$$

Question: 1. Do we have $L_{1}(\mathcal{R}) \widehat{\otimes} L_{1}^{p}(\mathcal{N} \subset \mathcal{M}) \cong L_{1}^{p}(\mathcal{R} \bar{\otimes} \mathcal{N} \subset \mathcal{R} \bar{\otimes} \mathcal{M})$? (complete) isometrically? Or we do have the identity map is a contraction

$$
i d: L_{1}(\mathcal{R}) \widehat{\otimes} L_{1}^{p}(\mathcal{N} \subset \mathcal{M}) \rightarrow L_{1}^{p}(\mathcal{R} \bar{\otimes} \mathcal{N} \subset \mathcal{R} \bar{\otimes} \mathcal{M})
$$

This gives an alternative way to show

$$
D_{p, c b}(\mathcal{M} \| \mathcal{N})=\sup _{\mathcal{R}} D(\mathcal{R} \otimes \mathcal{M} \| \mathcal{R} \otimes \mathcal{N})
$$

for \mathcal{R} finite von Neumann algebra.
It suffices to show $\mathcal{R} \otimes_{\text {min }} L_{\infty}^{1}(\mathcal{N} \subset \mathcal{M}) \subset L_{\infty}^{1}(\mathcal{R} \bar{\otimes} \mathcal{N} \subset \mathcal{R} \bar{\otimes} \mathcal{M})$ isometrically.
2. Do we have the identity map is a (complete) contraction?

$$
\begin{equation*}
L_{1}^{p}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right) \widehat{\otimes} L_{1}^{p}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right) \rightarrow L_{1}^{p}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right), x \otimes y \mapsto x \otimes y \tag{31}
\end{equation*}
$$

This implies the additivity for $1<p \leq \infty$

$$
D_{p, c b}(\mathcal{M} \| \mathcal{N})=D_{p, c b}\left(\mathcal{M}_{1}| | \mathcal{N}_{1}\right)+D_{p, c b}\left(\mathcal{M}_{2}| | \mathcal{N}_{2}\right)
$$

It suffices to show that $L_{1}^{p}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)$ induced a subcross norm on $L_{1}^{p}\left(\mathcal{N}_{1} \subset\right.$ $\left.\mathcal{M}_{1}\right) \otimes L_{1}^{p}\left(\mathcal{N}_{2} \subset \mathcal{M}_{2}\right)$. Actually, I can show the dual space $L_{\infty}^{p}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)$ gives a cross norm on $L_{\infty}^{p}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right) \otimes L_{\infty}^{p}\left(\mathcal{N}_{2} \subset \mathcal{M}_{2}\right)$ and for $\rho_{1} \in S_{1}^{n} \hat{\otimes} L_{1}^{p}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right), \rho_{2} \in$ $S_{1}^{m} \hat{\otimes} L_{1}^{p}\left(\mathcal{N}_{2} \subset \mathcal{M}_{2}\right)$

$$
\begin{equation*}
\left\|\rho_{1} \otimes \rho_{2}\right\|_{S_{1}^{n m} \hat{\otimes} L_{1}^{p}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)}=\left\|\rho_{1}\right\|_{S_{1}^{n} \hat{\otimes} L_{1}^{p}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right)}\left\|\rho_{1}\right\|_{S_{1}^{n} \hat{\otimes} L_{1}^{p}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right)} \tag{32}
\end{equation*}
$$

Below is a proof.
Proof. Let $E_{i}: \mathcal{M}_{i} \rightarrow \mathcal{N}_{i}$ be the conditional expectation. It is clear from definition that for $x \in \mathcal{M}_{1}, y \in \mathcal{M}_{2}$,

$$
\begin{aligned}
& \|x \otimes y\|_{L_{1}^{p}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)} \leq\|x\|_{L_{1}^{p}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right)}\|y\|_{L_{1}^{p}\left(\mathcal{N}_{2} \subset \mathcal{M}_{2}\right)} \\
& \|x \otimes y\|_{L_{\infty}^{p^{\prime}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)}} \geq\|x\|_{L_{\infty}^{p^{\prime}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right)}}\|y\|_{L_{\infty}^{p_{\infty}^{\prime}\left(\mathcal{N}_{2} \subset \mathcal{M}_{2}\right)}}
\end{aligned}
$$

For $p=\infty, p^{\prime}=1$,

$$
\begin{aligned}
& \|x \otimes y\|_{L_{\infty}^{1}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)} \\
= & \inf _{x \otimes y=a b}\left\|E_{1} \otimes E_{2}\left(a a^{*}\right)\right\|_{1}\left\|E_{1} \otimes E_{2}\left(b^{*} b\right)\right\|_{1} \\
\leq & \inf _{x \otimes y=a_{1} b_{1} \otimes a_{2} b_{2}}\left\|E_{1} \otimes E_{2}\left(a_{1} a_{1}^{*} \otimes a_{2} a_{2}^{*}\right)\right\|_{1}\left\|E_{2} \otimes E_{2}\left(b_{1}^{*} b_{1} \otimes b_{2}^{*} b_{2}\right)\right\|_{1} \\
\leq & \inf _{x=a_{1} a_{2}}\left\|E_{1}\left(a_{1} a_{1}^{*}\right)\right\|_{1}\left\|E_{1}\left(b_{1}^{*} b_{1}\right)\right\|_{1} \inf _{y=b_{1} b_{2}}\left\|E_{2}\left(a_{2} a_{2}^{*}\right)\right\|_{1}\left\|E_{2}\left(b_{2}^{*} b_{2}\right)\right\|_{1} \\
= & \|x\|_{L_{\infty}^{1}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right)}\|y\|_{L_{\infty}^{1}\left(\mathcal{N}_{2} \subset \mathcal{M}_{2}\right)}
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\|x \otimes y\|_{L_{\infty}^{1}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)}=\|x\|_{L_{\infty}^{1}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right)}\|y\|_{L_{\infty}^{1}\left(\mathcal{N}_{2} \subset \mathcal{M}_{2}\right)} \tag{33}
\end{equation*}
$$

Then by duality,

$$
\begin{aligned}
& \|x \otimes y\|_{L_{1}^{\infty}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)} \\
= & \sup \left\{\left|\operatorname{tr}_{1} \otimes \operatorname{tr}_{2}((x \otimes y) z)\right|\|z\|_{L_{\infty}^{1}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2}\right)}=q\right\} \\
\geq & \sup \left\{\left|\operatorname{tr}_{1} \otimes \operatorname{tr}_{2}((x \otimes y)(a \otimes b))\right|\|a \otimes b\|_{L_{\infty}^{1}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)}=1\right\} \\
= & \sup \left\{\left|t r_{1}(x a) \operatorname{tr}_{2}(y b)\right|\|a\|_{L_{\infty}^{1}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right)}=\|b\|_{L_{\infty}^{1}\left(\mathcal{N}_{2} \subset \mathcal{M}_{2}\right)}=1\right\} \\
= & \|x\|_{L_{1}^{\infty}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right)}\|y\|_{L_{1}^{\infty}\left(\mathcal{N}_{2} \subset \mathcal{M}_{2}\right)}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\|x \otimes y\|_{L_{1}^{\infty}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)}=\|x\|_{L_{1}^{\infty}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right)}\|y\|_{L_{1}^{\infty}\left(\mathcal{N}_{2} \subset \mathcal{M}_{2}\right)} . \tag{34}
\end{equation*}
$$

By interpolation, we have for all $1 \leq p \leq \infty$,

$$
\begin{aligned}
& \|x \otimes y\|_{L_{\infty}^{p}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)}=\|x\|_{L_{\infty}^{p}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right)}\|y\|_{L_{\infty}^{1}\left(\mathcal{N}_{2} \subset \mathcal{M}_{2}\right)} \\
& \|x \otimes y\|_{L_{1}^{p}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)}=\|x\|_{L_{1}^{p}\left(\mathcal{N}_{1} \subset \mathcal{M}_{1}\right)}\|y\|_{L_{1}^{p}\left(\mathcal{N}_{2} \subset \mathcal{M}_{2}\right)} .
\end{aligned}
$$

The same argument works for $M_{n}\left(\mathcal{N}_{1}\right) \subset M_{n}\left(\mathcal{M}_{1}\right)$ and $M_{m}\left(\mathcal{N}_{2}\right) \subset M_{n}\left(\mathcal{M}_{2}\right)$, which implies $L_{\infty}^{p}\left(\mathcal{N}_{1} \bar{\otimes} \mathcal{N}_{2} \subset \mathcal{M}_{1} \bar{\otimes} \mathcal{M}_{2}\right)$ gives a crostity \mathcal{M}_{2}) and the equality (32).
A.3. Non-tracial Cases. In previous discussion, we considered amalgamated L_{p} space and conditional L_{p} space with respect to a normal faithful finite trace. These spaces in $\left[\begin{array}{l}\text { JPmemo } \\ {[15]} \\ \text { was } \\ \text { and }\end{array}\right.$ use the non-tracial cases for non-symmetric quantum Markov semigroups. For simplicity, we consider $\mathcal{M}=M_{n}$ the matrix algebras equipped with normalized trace $\operatorname{tr}(1)=1$.

Let $\left(T_{t}\right)_{t \geq 0}: \mathcal{M} \rightarrow \mathcal{M}$ be a quantum Markov semigroup and

$$
\mathcal{N}=\left\{a \in \mathcal{M} \mid T_{t}\left(a^{*} a\right)=T_{t}\left(a^{*}\right) T_{t}(a), T_{t}(a a)=T_{t}(a) T_{t}\left(a^{*}\right), \forall t \geq 0\right\}
$$

be the incoherent subalgebra of T_{t}. Denote $\left(T_{t}^{\dagger}\right)_{t \geq 0}: L_{1}(\mathcal{M}) \rightarrow L_{1}(\mathcal{M})$ as the adjoint semigroup on the predual. $\left(T_{t}^{\dagger}\right)_{t \geq 0}$ models the time evolution of states in Schrödinger pciture whereas $\left(T_{t}\right)_{t \geq 0}$ transforms observables in Heisenberg picture. We assume that $\left(T_{t}\right)_{t \geq 0}$ admits an invariant normal faithful state σ satisfying $T_{t}^{\dagger}(\sigma)=\sigma$. Let $E: \mathcal{M} \rightarrow \mathcal{N}$ be the σ-preserving conditional expectation onto \mathcal{N}. The natural reference state is

$$
\sigma_{0}=E^{\dagger}(1)
$$

Note that σ_{0} restricted on \mathcal{N} is the trace
Department of Mathematics, Texas A\&M University, College Station, TX 77840, USA E-mail address, Li Gao: ligao@tamu.math.edu

Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
E-mail address, Marius Junge: mjunge@illinois.edu
Department of Physics, University of Illinois, Urbana, IL 61801, USA
E-mail address, Nicholas LaRacuente: laracue2@illinois.edu

[^0]: 2010 Mathematics Subject Classification: Primary: 46L53. Secondary: 46L60, 46L37, 46L51

