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Abstract: In the field of reinforcement learning, we propose a Correct Proximal Policy Optimization
(CPPO) algorithm based on the modified penalty factor β and relative entropy in order to solve the
robustness and stationarity of traditional algorithms. Firstly, In the process of reinforcement learning,
this paper establishes a strategy evaluation mechanism through the policy distribution function.
Secondly, the state space function is quantified by introducing entropy, whereby the approximation
policy is used to approximate the real policy distribution, and the kernel function estimation and
calculation of relative entropy is used to fit the reward function based on complex problem. Finally,
through the comparative analysis on the classic test cases, we demonstrated that our proposed
algorithm is effective, has a faster convergence speed and better performance than the traditional
PPO algorithm, and the measure of the relative entropy can show the differences. In addition, it can
more efficiently use the information of complex environment to learn policies. At the same time, not
only can our paper explain the rationality of the policy distribution theory, the proposed framework
can also balance between iteration steps, computational complexity and convergence speed, and we
also introduced an effective measure of performance using the relative entropy concept.

Keywords: correct proximal policy optimization; approximation theory; reinforcement learning;
optimization; policy gradient; entropy

1. Introduction

In recent years, artificial intelligence has been successfully applied in many fields
of Applied Science. Among them, deep reinforcement learning has made great progress.
In particular, AlphaGo, AlphaZero, which are developed by DeepMind, have surpassed
the top human players. In practice, OpenAI can even train the same fluent “parkour”
action as human beings in robotic control [1]. In addition, deep reinforcement learning also
has outstanding performance in games, and exceeds the top human players even in their
natural creativity to solve hard problems. Specifically, the core technology that is used by
DeepMind is reinforcement learning.

In information theory, entropy is a measure of uncertainty. Entropy is also a commonly
used index to measure the uncertainty of random variables in traditional reinforcement
learning, which is limited to small action space and sample space that is generally discrete
application scenarios. However, more complex and realistic tasks often have a large state
space and continuous action space. For example, when the input data are images and
sounds, such inputing features often have high dimensions. Traditional reinforcement
learning is difficult to deal with. Deep reinforcement learning combines high-dimensional

Entropy 2022, 24, 440. https://doi.org/10.3390/e24040440 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24040440
https://doi.org/10.3390/e24040440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4450-5345
https://doi.org/10.3390/e24040440
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24040440?type=check_update&version=1


Entropy 2022, 24, 440 2 of 14

inputting with reinforcement learning. In the field of deep reinforcement learning, the rep-
resentative research methods are divided into value-based reinforcement learning method,
direct policy search-based reinforcement learning method and reverse reinforcement learn-
ing method. They have made great breakthroughs in the fields of games, automation
control and robotics. For example, Duan et al. used reinforcement learning to control the
sustainability of benchmark depth [2]. Qureshi et al. used multi-modal reinforcement
learning to train robots in order to acquire social intelligence [3]. Mnih et al. completed
the control system that can reach the human level through the reinforcement learning
theory [4]. Our contributions to this paper can be divided into the following points:

• From the experimental point of view, the inherent defects of the traditional PPO
algorithm are analyzed, and the optimum space is obtained.

• The mathematical model of modified fragments is established to describe the process
of reinforcement learning, and the change of probability distribution is used to explain
the stationarity analysis of reinforcement learning.

• Through introducing the concept of entropy in information theory, the reward function
H(R) is used to describe the policy distribution function, and H(R) is quantified by
kernel density estimation. The change of H(R) distribution is evaluated and tested by
Kullback-Leibler divergence (as a measure of relative entropy).

The structure of this paper is as follows: Section 2 mainly introduces some important
related work in the field of reinforcement learning, some mainstream algorithms, and some
derived variant algorithms. Section 3 mainly introduces the traditional PPO algorithm
related to the theory of policy distribution, the mathematical model of the evaluation
algorithma measure of performance based on the relative entropy concept, as well as the
proposed novel CPPO algorithm and related definitions and analysis. Section 4 presents
experimental simulations and related results. Section 5 presents conclusions of this paper
and is also the future development direction of CPPO algorithm.

2. Related Work
2.1. Policy Gradient Algorithm

Over the past few years, the policy gradient algorithm has made great progress in deep
neural network control, but good results that can be obtained by the policy gradient method
are often accompanied with a great cost, because these methods are very sensitive to the
numbers of iteration steps: if the selecting step size is too small, the training process will
be very slow; if the selecting step size is too large, the feedback signal will be submerged
in the noise. The non-convergence of the method may even cause the model to show an
avalanche field decline until it collapses [5]. The sampling efficiency of this method is also
very low.

Learning simple tasks require of iterations (e.g., millions to billions). Its principle is to
control actions randomly and then influence policy changes. Therefore, traditional policy
gradient methods cannot avoid the drawbacks of large variance and slow convergence
of learning process, such as the representative Deterministic Policy Gradient Algorithms
(DPGA) [6]. Based on this motivation, researchers switched to another way of thinking:
to find the policy optimization algorithm by variance reduction. The representative algo-
rithms are Trust Region Policy Optimization (TRPO) proposed by Schulman et al. [7]. And
Sample Efficient Actor-Critic with Experience Replay (ACER) [8] proposed by Wang et al.
Therefore, according to these strategies, Schulman et al. further proposed the Proximal
Policy Optimization (PPO) [9,10], which has strong performance and is easy to implement.
Although these algorithms have achieved great success, they still have spaces for optimiza-
tion. For example, because TRPO algorithm is too complex to implement, PPO algorithm is
proposed to simplify. In many tasks (e.g., Atari 2600 game), it achieves or even exceeds
the performance of TRPO algorithm, and saves a lot of computing resources, so it can be
extended to more complex state space fields. Our motivation is also to design more efficient
and refined algorithms.
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2.2. Proximal Policy Optimization Algorithm

This section mainly introduces some relevant theoretical backgrounds of PPO algo-
rithm, including strategy gradient, advantage function and importance sampling, which
paves the way for us to expand the theory of PPO algorithm.

PPO algorithm was proposed by Schulman et al. in order to reduce the complex
computational problems that are caused by the TRPO algorithm. Its principle is to estimate
the actual strategy (the original strategy distribution of the actual problem) by using the
strategy gradient method combined with the stochastic gradient descent algorithm, so how
to find the appropriate strategy is the key to solving the practical problem successfully.
Generally used strategy gradient estimation can take the following form [9].

ĝ = Êt
[
∇θ log πθ(at | st)Ât

]
(1)

where πθ is a random strategy, Ât is an estimate of the advantage function under time step
t. It can be seen that this estimation method is relatively simple and does not limit the
search step size. If the appropriate step size is not selected, there will be a large deviation
in the process of strategy updating. In order to solve this problem, the TRPO algorithm
used a new proxy objective function to maximize the objective function by searching the
confidence domain to approach the original strategy. Therefore, the problem of finding the
optimal strategy is transformed into the following constraint problem [7].

maximize Êt

[
πθ(at | st)

πθold(at | st)
Ât

]
(2)

subject to Êt
[
KL
[
πθold(·|st), πθ(·|st)

]]
≤ δ (3)

One advantage of this transformation is that the KL divergence parameter can be
used to quantify the distribution differences between the old strategy πθold and the new
strategy πθ . As a result, it can be used as a criterion for selecting the appropriate step size.
For example, when there are too many differences between the old and new strategies,
it reminds us that we should adjust the updating step. Although many approximation
methods can be used to simplify the problem for Equation (2), the theory of TRPO algorithm
shows that we can use penalty term method to transform into unconstrained problem often
has better performance [7].

maximize
θ

Êt

[
πθ(at|st)

πθold(at|st)
Ât − βKL

[
πθold(·|st), πθ(·|st)

]]
(4)

After further simplifying the proxy function of strategy search, the PPO algorithm
simplifies the computation of TRPO algorithm by constructing a monotonously increasing
strategy function, and gives a more refined form by truncating the proxy target as follows:

LCLIP(θ) = Êt
[
min

(
γt(θ)Ât, clip(γt(θ), 1− ε, 1 + ε)

)
Â
]

(5)

where ε is a super parameter (the parameter set at the beginning of the learning process,
the empirical value is 0.2). By this truncation method, the step size of strategy updating is
controlled within a certain range, so as to prevent the uncontrollable impact on learning
caused by the too fast updating process. Another way to optimize the agent’s objective is
through the adaptive KL penalty coefficient method, which is not introduced in detail in
this paper. Therefore, the pseudo code of the PPO method is shown in Algorithm 1 [9].

The standard solution of TRPO algorithm is that the objective function is approximated
by the first order, the constraints are expanded by Taylor’s second order, and then the
conjugate gradient method is used to solve the optimal update parameters. However,
when the strategy is represented by deep neural network, the standard solution of TRPO
algorithm will have a large amount of computation. Because the conjugate gradient method
requires the second-order expansion of the constraints, the calculation of the second-order
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matrix will consume a lot of computational resources. PPO algorithm is the first-order
approximation of TRPO algorithm, so it can be applied to large-scale policy updatings,
which also explains why the TRPO algorithm in Atari 2600 game can reach or even exceed
the performance of PPO. Although PPO algorithm has these excellent performances, there
are still some spaces for optimization, so our work starts from the problems of improving
PPO algorithm.

Algorithm 1: PPO

Input: Number of iterations episode
Output: Rewards, losses
initialization
for iteration = 1, 2, 3, . . . , M do

while actor = 1, 2, 3, . . . , N do
run policy πθold

for T timesteps.
compute advantage estimates Â1, Â2, Â3, . . . , ÂT ;

end
optimize surrogate L wrt θ;
θold ← θ ;

end

2.3. Entropy in Information Theory

In the physical world, entropy is a parameter describing the disorder of things. The
greater the entropy, the more chaos. Similarly, in information theory, entropy represents
the uncertainty of random variables. Given the random variable X = {x1, x2, x3, · · · , xm},
then the information entropy is

H(X) =
m

∑
i=1

p(xi) · log
1

p(xi)
= −

m

∑
i=1

p(xi) · log p(xi) (6)

Equation (6) shows that information entropy can also be used as a measure of system
complexity. If a system is more complex and therefore has more unknown states inside
it, its information entropy is larger. Conversely, if a system is simpler, it contains fewer
kinds of situations. Under extreme conditions, if there is only one state inside the system,
its corresponding probability is 1, so its corresponding information entropy is 0, and then
the information entropy is the smallest. In practice, different state spaces and evolutionary
processes can be considered as a complex system. Therefore, information entropy can be
used to quantify their differences, and an effective mathematical model can be established
to study their characteristics.

3. Methods
3.1. Policy Distribution Theory and Relative Entropy

In this section, we will introduce the theory of policy distribution in complex scenarios
and give some basic definitions. Finally, we will give the policy distribution evaluation
algorithm based on relative entropy. Therefore, we proposed a modified penalty factor
β based PPO algorithm, which is named Correct Proximal Policy Optimization (CPPO)
algorithm. The test results based on Atari 2600 game showed that CPPO algorithm can
achieve the performance of PPO algorithm, the converging process is faster, and the learning
process is more stable. Therefore, our work starts from implementing the PPO algorithm.

Definition 1. As shown in Figure 1, in Markov decision-making process, each step in the iteration
process of policy gradient exploration is recorded as episode, which is represented by symbol ℘. In the
state space, we have ℘ = {℘1, ℘2, ℘3, . . . , ℘n}. For any given ordered fragment [℘i, . . . , ℘j],
and satisfy 0 ≤ i ≤ j ≤ n, we call this fragment as modified fragment, denoted by Ψ, where
Ψ = {Ψ1, Ψ2, Ψ3, . . . , Ψi}.
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Next, we will explain the necessity of defining modified fragments. PPO algorithm
can achieve good results in the overall state space (e.g., episode can reach millions or even
higher), but there are large fluctuations in some specific small area for update steps. For
example, in the ℘∈ (150, 200) ∪ (250, ∞) region of Figure 2b. To solve these problems, we
give the reason that when agents explore the state space through random strategies, there
may be over-fitting when using proximal policy optimization policy. Therefore, there is
such a situation that we can believe is that the sub-distribution of the update agent policy
has changed while the overall policy has not changed. The traditional PPO algorithm
adapts to this change by truncating the agent target, so that the new policy reaches a certain
threshold when old policy changed. The agent target is truncated by mandatory constraints
to ensure that the policy update is within a reasonable range. Next, we will show the
relationship between episode set and modified fragment.
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Figure 2. Traditional PPO algorithms in the Atari 2600 game whereby the OpenAI experimental
platform is used here, which is a comprehensive experimental platform for testing the new algorithm.
(a) PPO algorithm in Alien-ram-v0. (b) Reward of PPO algorithm in Alien-ram-v0.

Theorem 1. According to Definition 1, we can redefine the policy update process with modified
fragment Ψ, In other words, when a task learning process is described as ℘ = {℘1, ℘2, ℘3, . . . , ℘n}.
At the same time, the corresponding modified fragment is described as Ψ = {Ψ1, Ψ2, Ψ3, . . . , Ψi},
and satisfy I < n. If and only if i = n, episode set is equivalent to modified fragment set. We call it as
a sufficient and necessary condition for equivalence.

Proof. Obviously, Ψ is a subset of ℘, in terms of inclusion relations of assemblage, when
the [℘i, . . . , ℘j] interval of ordered fragments is 0 and satisfy i = n (℘i = epsilon i). It shows
that we have not partitioned the subset, so we derive that ℘ is equivalent to Ψ, therefore,
the sufficient condition is proved. When ℘ is equivalent to Ψ, it is easy to know that the
[℘i, . . . , ℘j] interval of ordered fragments is 0. So, we can conclude that i = n, necessary
condition is proved. �
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From the perspective of policy updating, the basic principle of reinforcement learning
is through the Markov decision-making process (S, A, P, R, γ), where S is a state set, A is the
action set, P is the state transition probability, R is a reward function, γ is the discount factor,
which are used to calculate cumulative rewards [11], the optimization algorithm is used
to approximate the real policy distribution in the actual task, so as to implement efficient
decision-making process. Therefore, in this context, we will use the idea of statistical
probability distribution to quantify the process.

Hypothesis 1. For general reinforcement learning tasks, in the process of policy updating, we
can assume that the total distribution of policies is π (the distribution that we will eventually
approximate), and can be divided into π1, π2, π3, . . . , πθ , and satisfy π = π1⊗π2⊗π3 . . .⊗πθ ,
where the symbol ⊗ is a merging operation of policy distribution law, which is often unknown
in reality.

Our assumption is mainly based on such a prerequisite, because in the experiment, we
found an interesting phenomenon. Take the background of the Atari 2600 game application
as an example, we present the following expressions: when the protagonist of the game is
close to the enemy, the policy is πdangerous_state; using πsecurity_state to express the policy will
stay away from the enemy; using πcenter_state to indicate the policy used when not approach-
ing or away from the enemy. In a small range, we can think that the policy distribution
after these partitions is different when the overall policy distribution is unchanged. For
example, when an enemy is close, the correct decision of policy πdangerous_state is to keep
away from the enemy as far as possible. Although the description of policies is abstract, it
does not mean that mathematical tools can not be used to analyze them. As a matter of fact,
we can use deep neural networks to approximate these policies. Meanwhile, we can use
the concept of entropy in information theory to measure the value of policy distribution
differences, and use the letter H to express the value of entropy [12–15]. Therefore, through
the above examples, we will further refine the general principles in the next section.

3.2. Fitting of Reward Function

In order to describe the distribution in modified fragments, we can quantify the
difference of modified fragments distribution. For the fitting of policy distribution, we
have two methods to fit the modified fragment distribution: parameter estimation method
and non-parameter estimation method. The two methods have their own advantages. The
parameter estimation rule assumes that the sample set obeys a certain distribution, and
then the parameters in the distribution are fitted according to the sample. For example,
maximum likelihood estimation and estimation of Gaussian mixtures [16] can be used,
but a great deal of prior knowledge of human subjectivity needs to be added. The non-
parametric estimation method does not need prior knowledge, but fits the distribution
according to the characteristics and properties of the sample itself, so it may be more
suitable for the field of reinforcement learning in complex environments. The commonly
used non-parametric estimation method is the kernel density estimation method, which
can estimate the modified fragment distribution [17].

In modified fragment, according to Hypothesis 1, the distribution it obeys is
π = {π1, π2, π3, . . . , πθ}. We need to estimate the distribution obeyed in the modified
fragment. The actual policy is very complex. We use deep neural network to approximate
π [18]. Because our ultimate motivation is to judge whether the distribution of policies has
changed, we use the reward function to approximately replace the impact of the distribu-
tion of policies, so we can know whether the distribution of policies has changed or not.
That is,

E[π1, π2, π3, . . . , πθ ]⇒ E(R1, R2, R3, . . . , Rθ) (7)

where π1, π2, π3, . . . , πθ is a practical policy. R1, R2, R3, . . . , Rθ is the corresponding reward
function. We use “⇒” symbols to define action operation, which requires that the action
object and the object to be acted have a single correlation effect. For example, when one
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side changes, the other side will change accordingly. It can also be regarded as an extended
operation of function operation, which belongs to weak operation, and the action objective
function here is a reward function. After the transformation of action operation, we can
reduce the complex policy distribution to a relatively simple function. It is much easier
to deal with simple functions. In the field of reinforcement learning, the data of reward
function is very easy to obtain, so we estimate the reward function Ri by kernel density
estimation method based on these data.

In the i-th modified fragment Ψi, we suppose that R1, R2, R3, . . . , Rθ is a sample of R
from the overall reward function. Here, R represents the observed value of the sample, and
therefore, in interval Ψi, the total density function in any point r is

Γh(r) =
1

nh

n

∑
i=1

K∗
[

r− Ri
h

]
(8)

where K∗(·) is a kernel function, h is called window, and in order to satisfy the statistical
significance of Equation (8), the kernel function is required to satisfy the

K∗(r) ≥ 0,
∫ +∞

−∞
K∗(r)dr = 1 (9)

We can take the Gaussian kernel [19], Laplace kernel [20], or polynomial kernel for
commonly used to represent the value of K(r). Therefore, we derive that in any modified
fragment Ψ, the distribution function of the reward function Γ(r) is estimated by the kernel
function. After such transformation, the distribution of the reward function Γ(r) can be
examined to evaluate the quality of the policy function.

3.3. Difference Measurement of Reward Function by Relative Entropy

In the previous section, we have estimated the distribution of the reward function
Γ(r) by using the kernel function method, because each reward function is different among
all segments of modified fragment Ψ. Kullback-Leibler divergence, an important index
widely used in different fields [21,22], is introduced to quantify the difference between
policies [21], in this way, the change of Ψ distribution can be calculated, which can help us
to judge the change of policy distribution.

Firstly, by discretizing the continuous reward function, we introduce the concept
of entropy in the reward function Γ(r) [23]. In the i-th fragment, if the reward function
is a random variable R, then the possible value of R is Ri =

{
Ri

1, Ri
2, Ri

3, . . . , Ri
θ

}
, the

corresponding probability distribution is Pi
(

Ri = ri
j

)
, where j = 1, 2, 3, . . . , θ. Then, the

random variable R of the reward function is defined as:

H(R) = −
n

∑
i=1

P(ri)logP(ri) (10)

In machine learning, if the distribution of training data has been fixed, the entropy
H (R) of the real distribution is a fixed value, therefore, we can use relative entropy
to judge the difference between the two distributions, also known as Kullback-Leibler
divergence [21,24]. In the i-th modified fragment Ψi and (i + 1)-th modified fragment Ψi+1.
The probability distributions of their reward functions are Γi(r) and Γi+1(r). And then the
KL divergence of Ψi to Ψi+1 is

D
(

Γi ‖ Γi+1
)
=
∫

Γi(r)log
Γi(r)

Γi+1(r)
(11)

Relative entropy can measure the distance between two random distributions. When
two random distributions are the same, their relative entropy is 0. When the difference
between two random distributions increases, their relative entropy will also increase.
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Therefore, our motivation is to use this property to describe the difference between two
adjacent modified fragments Ψi and Ψi+1. If the difference reaches the pre-determined
value, we need to adjust the policy updating step size to ensure the step size is within
a reasonable range and the stability of the algorithm is maintained in the convergence
process. We give a policy distribution evaluation (PDE) as in Algorithm 2.

Algorithm 2: PDE

Input: Policy distribution function
Output: Policy change outcomes
initialization: manual partition of Modified Fragments Ψ1, Ψ2, Ψ3, . . . , Ψθ , setting threshold D0.
for iteration = 1, 2, 3, . . . , n do

update Γi according to Equation (7).
update Γi+1 according to Equation (7).

update D(Γi
∣∣∣∣∣∣Γi+1) according to Equation (10).

if D(Γi |
∣∣∣Γi+1)〉D0 then

Output information: The distribution of policies has changed.
else

Output information: The distribution of policies has not changed.
end

end

3.4. Correct Proximal Policy Optimization Algorithm

Previously, we have redefined the distribution range of policy by modifying fragments,
and evaluated the performance of policy function by reward function. So in this section,
we will introduce CPPO algorithm.

From the PPO algorithm, we know that the value of β is easily affected. And the
updating methods are adjusted in a fixed way, such as optimizing KL-penalized target by a
random gradient descent search algorithm [9]:

L(θ) = Êt

[
πθ(at|st)

πθold(at|st)
Ât − βKL

[
πθold (·|st), πθ(·|st)

]]
(12)

For computation of d = Êt
[
KL
[
πθold(· | st), πθ(· | st)

]]
, if d < 2

3 dtarg, the updating
method we chose is βnew ← βnew/2, if d > 2

3 dtarg , the corresponding update method
is βnew ← βnew × 2 . Therefore, although β can be quickly adjusted by the algorithm, its
updating method is relatively fixed, and it is not suitable for the use of learning scenarios
in complex environments. So, we adjust β by using the modified fragment.

For three adjacent modified fragments Ψm−1, Ψm, Ψm+1, The information entropy of
the influence is calculated by Equation (9): Hψm−1 , Hψm , Hψm+1 . In the updating process, the
corresponding penalty factor β is βm−1, βm, βm+1. Therefore, in order to make the algorithm
converge more smoothly and increase robustness, we need to ensure that the penalty terms
can be reasonably selected. If the β is too small, it obviously does not achieve the effect
of constraints. If it is too large, the algorithm will produce a lot of shocks, which may
eventually lead to poor performance and even difficult to converge. The PDE algorithm
can help us find out the difference between the two distributions, but how to quantify the
difference is the next problem we need to solve. Therefore, we give the following formula:

ξ = Hψm−1 − Hψm (13)

According to Hypothesis 1, at the beginning of distribution change, policy updates are
often greatly affected. When β is modified, the condition to be satisfied is |ξ| ≥ ξ0, where
ξ0 is our pre-set threshold, and satisfies the condition ξ ≥ 0, according to the Equation (13)
and principle of entropy, there are two different cases.
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Case 1. When the condition ξ > ξ0 is satisfied, this indicates that the distribution of the modified
fragments Ψm−1 and Ψm has changed significantly, therefore, the update policy should slow down
the step size.

Case 2. When the condition ξ < ξ0 is satisfied, this indicates that the distribution of the modified
fragments Ψm−1 and Ψm has changed slightly, so the update policy should increase the step size.

We adjust β by using the following modification functions. Assuming that the output
of PED algorithm is true or false, where true represents a change in the policy distribution,
we need to adjust the updated parameters, false represents no change in the policy distri-
bution, we can maintain the current update parameters. For the case of true, we use the
principle of entropy to modify the value of β by using the correction function Y, that is
Y
(

β, Hψm−1 , Hψm

)
, the correction function Y can be used in the following expression when

it is reduced:

γ
(

β, Hψm−1 , Hψm

)
= β ∗

[∣∣∣∣∣min
(

Hψm−1 , Hψm

)
max

(
Hψm−1 , Hψm

) ∣∣∣∣∣
]

(14)

Therefore, through the above deduction, one assumes that when the distribution
changes and according to the results of Equation (12), we can adjust β according to the
following Equation (15).

βm+1 =


β

ppo
m ∗

[
min

(
Hψm−1 ,Hψm

)
max

(
Hψm−1 ,Hψm

)
]

, ξ > 0

β
ppo
m ∗

[
max

(
Hψm−1 ,Hψm

)
min

(
Hψm−1 ,Hψm

)
]

, ξ < 0
(15)

where Hψm−1 , Hψm , Hψm+1 is the corresponding entropy of the extracted fragment. β
ppo
m is

the old value of β in PPO algorithm before the next update. We give the pseudo code of
CPPO algorithm as shown in Algorithm 3.

Algorithm 3: CPPO

initialization: Calculation of β1, β2, β3 by PPO algorithm, state;
classification of ψ1, ψ2, ψ3, . . . , ψθ ;
for j = 1, 2, 3, . . . , n do

execute algorithm 1 and return the value of state;
if state==true then

//Updating β according to Equation (14);
β

cppo
j+1 = Y(β

ppo
j , Hψm?1 , Hψm )

else
β

ppo
j+1 ← β

cppo
j+1 ;

end
end

Therefore, compared with the traditional PPO algorithm, the corrected CPPO algo-
rithm can search the policy function more accurately. Note that the β punishment can more
efficiently adjust the inappropriate step size, which in turn has a widespread impact on
search results. In the field of optimization, the choice of parameters is often very important,
which will have a huge impact on the results.

4. Experimental Simulation and Results

In this section, we will verify some difficult problems existing in the traditional PPO
algorithm. At the same time, we use the Atari 2600 game to test the algorithm given
in this paper and make a comparative analysis with the traditional PPO algorithm. The
environment we use is the Intelligent Reinforcement Learning Experimental Environment
developed by OpenAI (https://gym.OpenAI.com/envs/, accessed on 11 March 2022). The

https://gym.OpenAI.com/envs/


Entropy 2022, 24, 440 10 of 14

CPPO algorithm and the PPO algorithm are compared on Atari 2600 game “Alien-ram-v0”,
“Asterix-v0”, “Enduro-v0”, “SpaceInvader-ram-v0”. Finally, we make the corresponding
return function curve and the corresponding learning cost chart.

Although PPO algorithm is the first-order approximation result of TRPO algorithm,
which greatly reduces the computational complexity and can be used in most learning
scenarios. Although it can be one of the most popular algorithms in the field of reinforce-
ment learning, it still has some shortcomings. Taking the “Alien-ram-v0” game in Atari
2600 as an example, Figure 2a shows the performance of PPO algorithm in the game, and
Figure 2b shows the curve of the corresponding re-ward changing with time step. We can
see that in a small range of intervals, the reward can not increase steadily. In other words,
the convergence and stationarity of the algorithm still have some optimization spaces.

Figure 2 shows that PPO algorithm can learn the rules of the game quickly by online
learning, but as the number of learning cycles (episodes) increases gradually, some unstable
factors begin to appear in the proxy target. Therefore, we need to establish the proxy target
to suffer from the negative impact of excessive change of policy gradient. At the same time,
we want to ensure the robustness and convergence of the algorithm. Hence, we need to
find a more stable and robust proxy target.

Through the above comparative analysis, the traditional PPO algorithm has a slow
convergence speed in the field of complex learning scenarios, so the modified CPPO
algorithm proposed in this paper has a strong convergence. It can quickly converge to better
results in the initial training period, such as Figure 3a–d. They achieve the performance of
PPO algorithm in a very short training period and can maintain a smooth learning process.
In addition, Figure 4 shows that CPPO algorithm converges faster than PPO algorithm at
the beginning of training, although there is little difference between the convergence of
CPPO algorithm and that of the Enduro-v0 game. For different application scenarios [25],
the performance may also depend on the step size. According to Hypothesis 1, if the
application background is very different, then the step size adjustment and correction will
face great challenges. If the KL divergence does not reflect the distribution change well
in our modified fragments, then we will make the exploration step size according to the
environment scenario. It is difficult to adjust appropriately. This also shows the application
scope of CPPO algorithm. In particular, it is suitable for all reinforcement learning tasks
and scenarios with obvious changes in distribution.
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For supervised learning, the processing strategy of hybrid data to identify useful
information and eliminate noise might be explored as much as possible [26–28]. However,
unlike supervised learning, reinforcement learning derives from experience rather than
data set. At this time, exploring and improving the state of reward and acquisition are
the target, which means the reward gained by the algorithm in the iteration process is
an important index to evaluate the performance of reinforcement learning algorithm. In
addition, the loss suffered by the algorithm is also an important index. Figure 5 shows the
loss of CPPO algorithm and PPO algorithm on Atari 2600. The total loss of CPPO algorithm
proposed in this paper is lower than that of PPO algorithm. Table 1 is a comparison of
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the total rewards obtained by CPPO algorithm and PPO algorithm in the same number
of iterations. As it can be seen, the total rewards of CPPO algorithm are 226,214, 183,496,
267,548 and 175,857, which are much higher than that of PPO algorithm. In addition,
the empirical values of D0 for Equation (7) and ξ0 for PDE algorithms are 7.45 and 16.93
respectively. These two parameters will affect the convergence of the algorithm, but the
mechanism is not clear yet.
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Table 1. CPPO and PPO algorithm achieving total reward based on the same number of iterations.

Performance Game Items Alien−ram−v0 Asterix−v0 Enduro−v0 SpaceInvader−ram−v0

CPPO 226,214 183,496 267,548 175,857
PPO 45,931 81,578 221,451 43,571

Number of iterations 1200 1200 1200 1000
Iteration time ≥6.5 h ≥7 h ≥7.5 h ≤5 h

5. Conclusions

This paper presents a CPPO algorithm based on the fragment method and relative
entropy, which the traditional PPO algorithm. Algorithms in the field of deep reinforce-
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ment learning have some inherent shortcomings, such as slow convergence and long
training time.

Specifically, the relative entropy that is introduced in this paper is used to quantify the
modified fragments, and finally the CPPO algorithm is established. The CPPO algorithm
has faster convergence than traditional PPO algorithm, and the focus of after this study
is how to further improve the anti-jamming performance algorithm. By reducing the
instability caused by random gradient search in PPO algorithm, the instability factor
can be.
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