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Relative hyperbolicity and relative quasiconvexity for
countable groups

G CHRISTOPHER HRUSKA

We lay the foundations for the study of relatively quasiconvex subgroups of relatively
hyperbolic groups. These foundations require that we first work out a coherent
theory of countable relatively hyperbolic groups (not necessarily finitely generated).
We prove the equivalence of Gromov, Osin and Bowditch’s definitions of relative
hyperbolicity for countable groups.

We then give several equivalent definitions of relatively quasiconvex subgroups in
terms of various natural geometries on a relatively hyperbolic group. We show
that each relatively quasiconvex subgroup is itself relatively hyperbolic, and that
the intersection of two relatively quasiconvex subgroups is again relatively quasi-
convex. In the finitely generated case, we prove that every undistorted subgroup is
relatively quasiconvex, and we compute the distortion of a finitely generated relatively
quasiconvex subgroup.

20F65, 20F67

1 Introduction

Gromov introduced the theory of hyperbolic groups in [19]. In this theory, the quasi-
convex subgroups play a central role. They are geometrically the simplest and most
natural subgroups: those whose intrinsic geometry (the word metric with respect to a
finite generating set) is preserved under the embedding into the hyperbolic group. The
two most fundamental properties of quasiconvex subgroups of a hyperbolic group are
the following.

(1) Each quasiconvex subgroup is itself word hyperbolic.

(2) The intersection of two quasiconvex subgroups is quasiconvex.

In the same article, Gromov also introduced relatively hyperbolic groups. In the present
article, we lay the foundations for a theory of “relatively quasiconvex” subgroups, which
are expected to play a central role in the theory of relatively hyperbolic groups. There
are several equivalent ways to formulate this idea. Two of these formulations were
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introduced by Dahmani [11] and Osin [27] in special cases. Indeed Osin’s definition
has already been used in work of Martı́nez-Pedroza [26; 25] and Manning–Martı́nez-
Pedroza [24].

Yet Dahmani’s and Osin’s definitions were not previously known to be equivalent, and
neither of these notions was known to satisfy both of the fundamental properties above.
In addition, no criterion was previously known for relative quasiconvexity using the
“intrinsic” geometry of geodesics in the Cayley graph (for a finite generating set). In this
article, we give several definitions of relative quasiconvexity, prove their equivalence,
and use them to prove many properties of such subgroups. In particular, we show that
relatively quasiconvex subgroups satisfy analogues of the two fundamental properties
listed above.

1.1 Non–finitely generated groups and relative hyperbolicity

Historically the main conceptual difficulty to forming a satisfying theory of relative
quasiconvexity has been the necessity of considering non–finitely generated groups.
Relatively hyperbolic groups have been defined in different ways by Gromov [19],
Farb [15] and Dru;tu–Sapir [13]. Three different model geometries arise in these
three definitions. The geometry in Gromov’s definition can be obtained by attaching
“horoballs” to the peripheral subgroups. This definition generalizes the fundamental
group of a finite volume hyperbolic manifold. The geometry in Farb’s definition (of
strong relative hyperbolicity) is obtained by collapsing each peripheral subgroup to
a set of bounded diameter. This definition generalizes the structure of a free product
acting on its Bass–Serre tree. The geometry in Dru;tu and Sapir’s definition is the
“intrinsic” geometry of the word metric with respect to a finite generating set. This
definition generalizes the geometry of a CAT.0/ space with isolated flats. These model
geometries have substantially different flavors.

Farb’s definition and Dru;tu and Sapir’s definition each require that the group in question
be finitely generated. However, Gromov’s definition requires only that the group be
countable. (It must act properly discontinuously on a proper metric space.) In the setting
of finitely generated groups, these three definitions are equivalent. (See Bowditch [7]
and Dru;tu–Sapir [13] for details.)

Bowditch [7] and Osin [27] have given variants of Farb’s definition that do not require
finitely generated groups. (They are variants in the sense that they essentially use
the same model geometry introduced by Farb.) The exact relation between these
definitions has not been clear. Many researchers have concluded that finite generation
should be part of the definition of relative hyperbolicity. (Gromov and Osin are notable
exceptions to this trend.) Indeed, no version of Dru;tu and Sapir’s definition is known
for non–finitely generated groups.
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Yet any natural definition of relatively quasiconvex subgroups will include non–finitely
generated groups. Additionally, the intersection of two finitely generated relatively
quasiconvex subgroups is often not finitely generated. Thus in order to formulate a
natural theory of relative hyperbolicity, we must allow non–finitely generated relatively
hyperbolic groups.

The following theorem reconciles the various existing definitions into a unified theory
of relative hyperbolicity that includes all of the above examples. See Section 3 for
precise statements of the various definitions of relative hyperbolicity.

Theorem 1.1 If G is countable and P is a finite collection of infinite subgroups of G ,
then the definitions of relative hyperbolicity for .G;P / given by Gromov, Bowditch
and Osin are equivalent.

In fact, there are numerous examples of non–finitely generated relatively hyperbolic
groups:

� A free product A � B where A or B is not finitely generated is relatively
hyperbolic with respect to the factors.

� A nonuniform lattice � in a rank one Lie group G over a nonarchimedian
local field is relatively hyperbolic with respect to its parabolic subgroups by
Lubotzky [23]. These lattices are never finitely generated. A typical example
is the lattice � D SL2.Fq Œt �/ in the group G D SL2.Fq..1=t///. In this case �
acts on the Bruhat–Tits tree for G with quotient a ray.

� Many relatively quasiconvex subgroups of relatively hyperbolic groups are not
finitely generated.

1.2 Relative quasiconvexity

As mentioned above, two different definitions of a relatively quasiconvex subgroup H

of a relatively hyperbolic group G have been introduced by Dahmani and Osin in
the special case that G is finitely generated. Dahmani’s “dynamical quasiconvexity”
is defined in terms of the dynamics at infinity in Gromov’s model geometry. Osin’s
“relative quasiconvexity” is defined in terms of Farb’s “coned-off” model geometry and
makes sense only for subgroups of a finitely generated relatively hyperbolic group.
Dahmani’s definition immediately implies that a dynamically quasiconvex subgroup is
itself relatively hyperbolic. On the other hand, Martı́nez-Pedroza used Osin’s definition
to prove that the intersection of two relatively quasiconvex subgroups is again relatively
quasiconvex [26]. Osin asked whether the two definitions are equivalent, and also
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asked whether all relatively quasiconvex subgroups are relatively hyperbolic (using his
definitions) [27].

In this article, we clarify the notion of relatively quasiconvex subgroups by giving
criteria for relative quasiconvexity in terms of the model geometries of Gromov, Farb
and Dru;tu–Sapir. (Recall that Dru;tu and Sapir’s geometry, the word metric for a finite
generating set, is defined only when G is finitely generated.) When G is finitely
generated, these subgroups coincide with those studied by Dahmani and Osin. A
significant part of this paper involves showing that various definitions of relative
quasiconvexity are equivalent. This equivalence has several consequences.

Theorem 1.2 Let G be a countable group that is relatively hyperbolic with respect to
a finite family of subgroups P D fP1; : : : ;Png.

(1) If H �G is relatively quasiconvex, then H is relatively hyperbolic with respect
to a natural induced collection of subgroups.

(2) If H1;H2 � G are relatively quasiconvex, then H1 \ H2 is also relatively
quasiconvex.

In the manifold setting, our characterization of relative quasiconvexity has the following
corollary.

Corollary 1.3 Let G be a geometrically finite subgroup of Isom.X / for X a complete,
simply connected manifold with pinched negative curvature. Then H �G is relatively
quasiconvex (with respect to the maximal parabolic subgroups of G ) if and only if H

is geometrically finite.

Furthermore, if H;K �G are geometrically finite then H \K is also geometrically
finite.

In the special case when X is the real hyperbolic space Hn , the second claim of the
preceding corollary is due to Susskind–Swarup [31]. See also Corollary 1.6 below,
which strengthens the first conclusion in the real hyperbolic case. The preceding
corollary appears to be new even in the special case of complex hyperbolic manifolds.

If G is relatively hyperbolic, H �G is relatively quasiconvex, and both H and G are
finitely generated, we compute the distortion of H in G , which measures the difference
between the word metric on H and the word metric on G . See Theorem 10.5 for a
more precise statement.
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Theorem 1.4 Let G be relatively hyperbolic with respect to P1; : : : ;Pn . Suppose
H � G is relatively quasiconvex, and both H and G are finitely generated. Then
the distortion of H in G is a combination of the distortions of the infinite subgroups
O � Pi where O D gHg�1\Pi .

More precisely, the distortion �G
H

of H in G satisfies

f ��G
H �

xf

where f is the supremum of the distortions of the subgroups O � Pi and xf is the
superadditive closure of f .

The proof of this theorem uses a characterization of relative quasiconvexity in terms
of the word metric on G with respect to a finite generating set. Indeed Gromov’s and
Farb’s model geometries are poorly suited to prove such a result, since the subgroups Pi

are badly distorted in these geometries (exponentially distorted in the Gromov model
and crushed to a finite diameter in the Farb model). On the other hand, the proof is quite
natural using the word metric because by Dru;tu–Sapir [13] the peripheral subgroups Pi

are undistorted in G .

Dru;tu and Sapir previously showed that undistorted subgroups of a finitely generated
relatively hyperbolic group are themselves relatively hyperbolic [13]. The following
theorem places Dru;tu and Sapir’s result in the context of relative quasiconvexity.

Theorem 1.5 (Undistorted) relatively quasiconvex) Let G be a finitely generated
relatively hyperbolic group and let H be a finitely generated subgroup. If H is
undistorted in G , then H is relatively quasiconvex.

Using Theorem 1.4 and a result of the author from [22], we obtain a characterization
of the geometrically finite subgroups H of a geometrically finite Kleinian group G

that strengthens the conclusion of Corollary 1.3.

Corollary 1.6 Let G be a geometrically finite subgroup of Isom.Hn/, and let H �G

be a subgroup. The following are equivalent.
(1) H is geometrically finite.
(2) H is relatively quasiconvex with respect to the maximal parabolic subgroups

of G .
(3) H is finitely generated and undistorted in G , in the sense that the inclusion

H ,! G is a quasi-isometric embedding with respect to the word metrics for
finite generating sets.

(4) H is CAT.0/–quasiconvex in G , in the sense that whenever G acts properly,
cocompactly and isometrically on any CAT.0/ space X , the orbits of H are
quasiconvex in X .
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1.3 Summary of the sections

In Section 2 we review the definition of a horoball in a ı–hyperbolic space and prove
several lemmas about geodesics in horoballs. In Section 3 we explicitly state six
different definitions of relative hyperbolicity. Section 4 is a review of Groves and
Manning’s construction of combinatorial horoballs based on a connected graph. We
observe that their construction can be applied more generally to produce horoballs
based on an arbitrary metric space. Using this observation, we state more general
versions of some results of Groves and Manning that we apply in the following section.
Section 5 consists of the proof that the six definitions of relative hyperbolicity are
equivalent. Many of the directions are proved by observing that various proofs in the
literature go through without change when one uses weaker hypotheses.

In Section 6 we introduce five equivalent definitions of relative quasiconvexity for
subgroups of a relatively hyperbolic group. Section 7 contains a proof of the equivalence
of the definitions introduced in the previous section. In Section 8 we turn our attention
to the word metric on a relatively hyperbolic group G with a finite generating set. In the
case when G is finitely generated, we characterize relatively quasiconvex subgroups H

in terms of the word metric on G .

In Section 9 we prove several basic results about relatively quasiconvex subgroups,
including Theorems 1.2 and 1.5 and Corollary 1.3. We also characterize strongly
relatively quasiconvex subgroups, which were introduced by Osin in [27]. Finally
in Section 10 we examine distortions of relatively quasiconvex subgroups, proving
Theorem 10.5 (Theorem 1.4) and Corollary 1.6.

1.4 Remark

Shortly after the initial circulation of this article, Agol, Groves and Manning [1]
introduced another definition of a relatively quasiconvex subgroup. Manning and
Martı́nez-Pedroza [24] have shown that this definition is equivalent to definition (QC–3)
of the present article.
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2 Hyperbolic spaces and horoballs

A geodesic space .X; �/ is ı–hyperbolic if every geodesic triangle with vertices in X

is ı–thin in the sense that each side lies in the ı–neighborhood of the union of the
other two sides. If X is a ı–hyperbolic space, the boundary (or boundary at infinity)
of X , denoted @X , is the set of all equivalence classes of geodesic rays in X , where
two rays c; c0 are equivalent if the distance d

�
c.t/; c0t/

�
remains bounded as t !1.

The set @X has a natural topology, which is compact and metrizable (see, for instance,
Bridson–Haefliger [9] for details).

Increasing the constant ı if necessary, we will also assume that every geodesic triangle
with vertices in X [ @X is ı–thin.

Let �D�.x;y; z/ be a triangle with vertices x;y; z 2X [ @X . A center of � is a
point w 2X such that the ball B.w; ı/ intersects all three sides of the triangle. It is
clear that each side of � contains a center of �.

A function hW X !R is a horofunction about a point � 2 @X if there is a constant D0

such that the following holds. Let �.x;y; �/ be a geodesic triangle, and let w 2X be
a center of the triangle. Thenˇ̌�

h.x/C �.x; w/
�
�
�
h.y/� �.y; w/

�ˇ̌
<D0:

A closed subset B �X is a horoball centered at � if there is a horofunction h about �
and a constant D1 such that h.x/ � �D1 for all x 2 B and h.x/ � D1 for all
x 2X �B .

We remark that every horoball or horofunction has a unique center, and every � 2 @X
is the center of a horofunction (see Gromov [19, Section 7.5] for details).

Lemma 2.1 Let B be a horoball of a ı–hyperbolic space .X; �/. For each L > 0,
there is a constant M0 DM0.B;L/ such that any geodesic c in NL.X �B/\B has
length at most M .

The notation Nr .A/ denotes the open r –neighborhood of A; ie, the set of all points
at a distance less than r from A.

Proof Let � 2 @X be the center of B , and choose a horofunction h and constants
D0;D1 for B as above. Suppose c has endpoints x0 and x1 , and choose geodesic
rays Œxi ; �/ for i D 1; 2. Choose z 2 c within a distance 2ı of both rays Œxi ; �/, and
choose a ray Œz; �/.
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In order to complete the proof, it suffices to bound �.xi ; z/ from above. We first
compute an upper bound for h.z/. If we choose w 2 X �B such that �.w; z/ < L,
then h.w/ �D1 . Applying the definition of horofunction to a triangle with vertices
w; z; � and center p 2 Œw; z�, gives

h.z/C �.z;p/ < h.w/C �.z;p/CD0:

Thus we obtain the following upper bound:

h.z/ < h.w/C �.w;p/� �.z;p/CD0

� h.w/C �.w; z/CD0

�D1CLCD0:

On the other hand, since xi 2 B we have a lower bound h.xi/� �D1 .

Let �i D�.xi ; z; �/ be the triangle with sides Œxi ; �/, Œz; �/, and Œxi ; z�, where Œxi ; z�

is the portion of c from xi to z . Observe that z is a center of �i . Applying the
definition of horofunction to �i , we have

�.xi ; z/ < h.z/� h.xi/CD0 � .D1CLCD0/CD1CD0;

completing the proof.

The following result can be also proved by a similar proof.

Lemma 2.2 Let B and B0 be horoballs of .X; �/ centered at the same point � 2 @X .
There is a constant M1 DM1.B;B

0/ such that any geodesic c in B�B0 has length at
most M1 .

Lemma 2.3 Let B be a horoball of .X; �/ with corresponding horofunction h. There
is a constant M2 DM2.B; h/ such that the following holds. Suppose x;y 2 X �B

satisfy h.x/D h.y/D 0. Then for any geodesic c joining x and y we have

c \ .X �B/�NM2

�
fx;yg

�
:

Proof Let z be an arbitrary point of c \ .X �B/. Then h.z/ � D1 . Choose rays
Œx; �/, Œy; �/ and Œz; �/. The point z is within a distance 2ı of one of the rays Œx; �/ or
Œy; �/, say Œx; �/. Since z is a center of �D�.x; z; �/, the definition of horofunction
implies that

�.x; z/� h.z/CD0 �D1CD0;

completing the proof.
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3 Notions of relative hyperbolicity for countable groups

It is well-known that finitely generated relatively hyperbolic groups can be characterized
in several equivalent ways. In this section, we discuss natural extensions of these
properties to the setting of countable groups. Throughout the section, G is a countable
group with a finite collection of subgroups P D fP1; : : : ;Png.

3.1 Geometrically finite groups

The first definition of relative hyperbolicity is in terms of dynamical properties of an
action on a compact space M . More precisely, below we define a group G to be
relatively hyperbolic if it admits a geometrically finite convergence group action on
some compactum M . In fact by Corollary 5.3 below the compactum M always arises
as the boundary of a ı–hyperbolic space on which G acts. Thus we lose no generality
by keeping this geometric example in mind throughout the following definitions.

The notion of a convergence group action was introduced by Gehring and Martin in [18]
to axiomatize certain dynamical properties of the action of a Kleinian group on its
limit set in the ideal sphere at infinity of real hyperbolic space. The dynamical version
of geometrical finiteness defined here was introduced by Beardon and Maskit [3] for
Kleinian groups.

A convergence group action is an action of a group G on a compact, metrizable
space M satisfying the following conditions, depending on the cardinality of M :

� If M is the empty set, then G is finite.

� If M has exactly one point, then G can be any countable group.

� If M has exactly two points, then G is virtually cyclic.

� If M has at least three points, then the action of G on the space of distinct
(unordered) triples of points of M is properly discontinuous.

In the first three cases the action is elementary, and in the final case the action is
nonelementary.

Suppose G has a convergence group action on M . An element g 2G is loxodromic
if it has infinite order and fixes exactly two points of M . A subgroup P � G is a
parabolic subgroup if it is infinite and contains no loxodromic element. A parabolic
subgroup P has a unique fixed point in M , called a parabolic point. The stabilizer
of a parabolic point is always a maximal parabolic group. A parabolic point p with
stabilizer P WD StabG.p/ is bounded if P acts cocompactly on M � fpg. A point
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� 2M is a conical limit point if there exists a sequence .gi/ in G and distinct points
�0; �1 2M such that gi.�/! �0 , while for all � 2M �f�g we have gi.�/! �1 .

Tukia has shown that every properly discontinuous action of a group G on a proper
ı–hyperbolic space induces a convergence group action on the boundary at infinity [34]
(a similar result was proved independently by Freden [16]).

A convergence group action of G on M is geometrically finite if every point of M

is either a conical limit point or a bounded parabolic point. In addition if P is a set
of representatives of the conjugacy classes of maximal parabolic subgroups, then we
say that the action of the pair .G;P / on M is geometrically finite. Observe that every
elementary convergence group action is geometrically finite.

The following definition was proposed by Bowditch in [7] and studied by Yaman
in [36] (with the additional assumption that the peripheral subgroups P 2 P are finitely
generated).

Definition 3.1 (RH–1) Suppose .G;P / has a geometrically finite convergence group
action on a compact, metrizable space M . Then .G;P / is relatively hyperbolic.

The following definition is similar to the preceding one, except that we assume that
the compact space M is the boundary of a ı–hyperbolic space. This definition was
introduced by Bowditch in [7].

Definition 3.2 (RH–2) Suppose G has a properly discontinuous action on a proper
ı–hyperbolic space X such that the induced convergence group action on @X is
geometrically finite. If P is a set of representatives of the conjugacy classes of maximal
parabolic subgroups then .G;P / is relatively hyperbolic.

In this case, we also say that .G;P / acts geometrically finitely on X .

3.2 Cusp uniform actions

The next definition is essentially Gromov’s original definition of relative hyperbolicity
from [19], as stated by Bowditch in [7]. The structure is analogous to the well-known
decomposition of a finite volume hyperbolic manifold as the union of a compact
part together with finitely many cusps due to Garland–Raghunathan [17] (see also
Thurston [33, Section 4.5]).

Definition 3.3 (RH–3) Suppose G acts properly discontinuously on a proper ı–
hyperbolic space X , and P is a set of representatives of the conjugacy classes of
maximal parabolic subgroups. Suppose also that there is a G –equivariant collection of

Algebraic & Geometric Topology, Volume 10 (2010)



Relative hyperbolicity and relative quasiconvexity for countable groups 1817

disjoint horoballs centered at the parabolic points of G , with union U open in X , such
that the quotient of X �U by the action of G is compact. Then .G;P / is relatively
hyperbolic.

In this case, we say that the action of .G;P / on X is cusp uniform, and the space
Y D X �U is a truncated space for the action. By a slight abuse of notation, we
refer to the horoballs of U as horoballs of Y . If U 0 is any other G –equivariant family
of disjoint open horoballs centered at the parabolic points of X , then G also acts
cocompactly on Y 0 D X �U 0 , and hence Y 0 is also a truncated space for the cusp
uniform action of .G;P / on X (see Bowditch [7] for details).

3.3 Fine hyperbolic graphs

The following definition of relative hyperbolicity was proposed by Bowditch in [7] as
an abstraction of the Farb approach that does not require finite generation. Bowditch
studied finitely generated groups satisfying this condition, but it is a completely trivial
matter to remove the finite generation hypothesis from his definition.

A graph K is fine if each edge of K is contained in only finitely many circuits of
length n for each n.

Definition 3.4 (RH–4) Suppose G acts on a ı–hyperbolic graph K with finite
edge stabilizers and finitely many orbits of edges. If K is fine, and P is a set of
representatives of the conjugacy classes of infinite vertex stabilizers then .G;P / is
relatively hyperbolic.

3.4 The coned-off Cayley graph and Bounded Coset Penetration

Next we consider Farb’s notion of (strong) relative hyperbolicity from [15]. (Our
terminology here does not agree with Farb’s and has been adjusted to be more consistent
with the other definitions of relative hyperbolicity in this article.)

In brief, Farb’s definition requires that the “coned-off” Cayley graph is hyperbolic and
satisfies Bounded Coset Penetration (defined below). Farb also considered a weak
version of relative hyperbolicity, which has many interesting applications. We will not
discuss weak relative hyperbolicity here.

Farb originally proposed this definition for finitely generated groups. After the work
of Bowditch and Osin [7; 27], it is clear that the following condition is the natural
formulation of Farb’s notion in the non–finitely generated setting.

Let G be a group with a collection of subgroups P D fP1; : : : ;Png. A set S is a
relative generating set for the pair .G;P / if the set S[P1[� � �[Pn is a generating set
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for G in the traditional sense. We will always implicitly assume that S is symmetrized,
so that S D S�1 . Let � be the Cayley graph Cayley.G;S/. Note that � is connected
if and only if S is a traditional generating set for G . We do not require connectedness
of � .

Form a new graph y�.G;P ;S/, called the coned-off Cayley graph, as follows. For each
left coset gP with g 2G and P 2 P , add a new vertex v.gP / to � , and add an edge
of length 1=2 from this new vertex to each element of gP . The key point to note here
is that the coned-off Cayley graph is connected if and only if S is a relative generating
set for .G;P /.

Given an oriented path  in the coned-off Cayley graph, we say that  penetrates the
coset gP if  passes through the cone point v.gP /. A vertex vi of p immediately
preceding the cone point is an entering vertex of p in the coset gP . Exiting vertices
are defined similarly. Observe that entering and exiting vertices are always elements
of G , and hence can also be considered as vertices of � . A path  in the coned-off
Cayley graph is without backtracking if, for every coset gP which  penetrates, 
never returns to gP after leaving gP .

Definition 3.5 (Bounded Coset Penetration) Let S be a relative generating set for
.G;P /. The triple .G;P ;S/ satisfies Bounded Coset Penetration if for each � � 1,
there is a constant a.�/ > 0 such that if  and  0 are .�; 0/–quasigeodesics without
backtracking in the coned-off Cayley graph y�.G;P ;S/ with initial endpoints �D  0�
and terminal endpoints C and  0C , and dS.C; 

0
C/ � 1, then the following two

conditions hold.

(1) If  penetrates a coset gP , but  0 does not penetrate gP , then the entering
vertex and exiting vertex of  in gP are at an S–distance at most a from each
other.

(2) If  and  0 both penetrate a coset gP , then the entering vertices of  and  0

in gP are at an S–distance at most a from each other. Similarly, the exiting
vertices are at an S–distance at most a from each other.

Definition 3.6 (RH–5) Suppose G is finitely generated relative to P , and each Pi

is infinite. The pair .G;P / is relatively hyperbolic if for some (every) finite relative
generating set S , the coned-off Cayley graph y�.G;P ;S/ is ı–hyperbolic and .G;P ;S/
has Bounded Coset Penetration.

In the finitely generated case, BCP is independent of the choice of generating set due
to the following fact: a change of generating set induces a quasi-isometry of Cayley
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graphs and also a quasi-isometry of coned-off Cayley graphs. However, in general this
independence is less obvious. The difficulty is that a Cayley graph for a nongenerating
set is not connected. It is possible for two group elements to be connected by an edge
in one Cayley graph and lie in distinct components of another. In Section 5 we indicate
a proof of this independence based on arguments of Dahmani [12].

3.5 Linear relative Dehn function

Finally we state the definition due to Osin in terms of relative isoperimetric func-
tions introduced in [27]. The definition, as presented here, includes only countable
groups G with finitely many infinite peripheral subgroups P D fP1; : : : ;Png. We
remark that Osin’s theory does not impose such restrictions. However, these restrictions
are necessary for the equivalence with other definitions of relative hyperbolicity.

Let G be a group with a collection of subgroups P . If .G;P / has a relative generating
set S , then there is a canonical homomorphism from the group

K WD F.S/� .�P2P
zP /

onto G . Here F.S/ denotes the group freely generated by S , and zP denotes an
abstract group isomorphic to P . Let N be the kernel of this homomorphism.

If R�N is a subset whose normal closure in K is equal to N , then we say that G

has a relative presentation
hP ;S jRi:

If S and R are both finite, then the relative presentation above is a finite relative
presentation.

Suppose .G;P / has a relative presentation as above. Consider the disjoint union

P WD
a

P2P

�
zP �f1g

�
:

Each word W in the alphabet .S [P/ naturally represents both an element of K and
an element of G (via the quotient map above). If W represents 1 in G , then in K we
have an equation

(|) W DK

Ỳ
iD1

f �1
i Rifi

where Ri 2R and fi 2K for each i .

A function f W N!N is a relative isoperimetric function for the relative presentation
hP ;S j Ri if for each m 2 N and any word W over .S [P/ of length at most m
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representing the identity of G , we have an equation in K of the form (|) with `�f .m/.
We remark that some relative presentations do not admit a finite relative isoperimetric
function. The relative Dehn function of a relative presentation is the smallest possible
relative isoperimetric function. If there does not exist a relative isoperimetric function
with finite values, we say that the relative Dehn function is not well-defined.

Definition 3.7 (RH–6) Suppose P is a finite collection of infinite subgroups of a
countable group G . If .G;P / has a finite relative presentation, and the relative Dehn
function is well-defined and linear for some/every finite relative presentation then
.G;P / is relatively hyperbolic.

We remark that if one finite relative presentation has a linear relative Dehn function
then so does any other by Osin [27, Theorem 2.34].

4 The cusped space

Our immediate goal is to prove that the definitions of relative hyperbolicity for count-
able groups given above are equivalent. As discussed below in Section 5 several of
the necessary implications are either already known or follow from straightforward
modifications of existing proofs in the literature.

In this section we lay the groundwork for the implication (RH–6) ) (RH–3). The
main step is the construction of a space obtained by attaching certain “combinatorial
horoballs” to G along the left cosets of the peripheral subgroups. The idea of gluing
horoballs onto a finitely generated group is due to Cannon–Cooper [10], and variations
have been studied by Bowditch [7], Rebbechi [29] and Groves–Manning [20].

The construction presented here is closely modeled on Groves and Manning’s combi-
natorial horoballs. Groves and Manning constructed horoballs based on an arbitrary
connected graph, and showed that such a horoball is always ı–hyperbolic. A minor
modification of the Groves–Manning construction produces connected horoballs based
on any metric space. If the base metric space is discrete and proper, the resulting
horoball is a locally finite ı–hyperbolic graph.

Using this modification, Groves and Manning’s proofs about finitely generated relatively
hyperbolic groups extend to any countable relatively hyperbolic group equipped with a
proper, left invariant metric.

Definition 4.1 (Combinatorial horoballs) Let .P; d/ be a metric space. The combi-
natorial horoball based on P , denoted H.P; d/ is the graph defined as follows:

Algebraic & Geometric Topology, Volume 10 (2010)



Relative hyperbolicity and relative quasiconvexity for countable groups 1821

(1) H.0/ D P �N .

(2) H.1/ contains the following two types of edges:
(a) For each k 2N and p; q 2P , if 0< d.p; q/� 2k then there is a horizontal

edge connecting .p; k/ and .q; k/.
(b) For each k 2N and p 2 P , there is a vertical edge connecting .p; k/ and

.p; kC 1/.

As in Groves–Manning [20], we consider each edge of H to have length one, and we
endow H with the induced length metric dH . We identify P with its image P � f0g

in H .

The following result is proved by Groves and Manning under the additional hypothesis
that .P; d/ is the set of vertices of a connected metric graph where each edge has
length one [20, Section 3.1]. The proof given there extends with no changes to the
current setting.

Theorem 4.2 Let .P; d/ be any metric space (with all distances finite). Then H.P; d/
is connected and ı–hyperbolic for some ı � 0 independent of .P; d/. Moreover, if
.P; d/ is a discrete, proper metric space, then H.P; d/ is a locally finite graph.

Definition 4.3 (The augmented space) Suppose G is a countable group with sub-
groups P D fP1; : : : ;Png. Let S be a finite relative generating set for .G;P /, and
choose a proper, left invariant metric di on each Pi . The metric di induces a metric
(again called di ) on each left coset gPi using left translation by g . The metric space
.gPi ; di/ is locally finite. Consequently, H.gPi ; di/ is a locally finite connected graph.

Let � be the graph Cayley.G;S/. The augmented space is the space

X WD � [
�[

H.gPi ; di/
.1/
�
;

where the inner union ranges over all i D 1; : : : ; n and all left cosets gPi of Pi , and
where each coset gPi � �

.0/ is identified with gPi �H.gPi ; di/ in the obvious way.

Observe that X is locally finite since each combinatorial horoball is locally finite and
the collection of cosets gPi is locally finite in G (ie, each finite subset of G intersects
only finitely many such cosets). Furthermore X is connected because S is a relative
generating set. The natural action of G on X is properly discontinuous and isometric.

The next theorem follows from arguments of Groves–Manning in [20, Section 3.3].
Groves and Manning assume that G is finitely generated, but their proofs remain valid
when G is countable and X is constructed as above. The only difference here is that
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we have imposed a proper, left invariant metric on each peripheral subgroup, while
Groves and Manning metrize each peripheral subgroup using the word metric for a
finite generating set.

Theorem 4.4 Suppose G is countable and P is a finite collection of subgroups of G .
Choose a finite relative generating set S for .G;P /. For each Pi 2 P choose a proper,
left invariant metric di . If .G;P / has a finite relative presentation with a linear relative
Dehn function, then the augmented space X is ı–hyperbolic.

5 Equivalence of notions of relative hyperbolicity for count-
able groups

The goal of this section is the following theorem.

Theorem 5.1 The six definitions of relative hyperbolicity given above are equivalent.
In addition, condition (RH–5) does not depend on the choice of relative generating set.

Our strategy for proving the theorem is to explain the following implications:

(RH–1) ks +3 (RH–2) ks +3 (RH–3) +3 (RH–4)

��
(RH–6)

4<

(RH–5w)ks

4<

(RH–5s)ks

where (RH–5s) denotes the strong condition that (RH–5) holds for every finite relative
generating set, and (RH–5w) denotes the weak condition that it holds for some particular
finite relative generating set. We have included the implication (RH–5w)) (RH–4)
in order to give a more direct proof of the equivalence of the weak and strong forms
of (RH–5).

In fact most of the ingredients already exist in the literature. Some are proved completely,
and others are proved for the finitely generated case but the proofs don’t really use
finite generation. In several places we replace the Cayley graph for a finite generating
set with the (possibly disconnected) Cayley graph for a finite relative generating set.
With this small change of perspective, the proofs in the literature go through almost
verbatim.

As explained in the previous section, the most significant changes occur in our proof
of (RH–6)) (RH–3), where we need to modify the Groves–Manning construction of
combinatorial horoballs to account for non–finitely generated groups. Note that we also
use combinatorial horoballs to prove (RH–1)) (RH–2) in the elementary parabolic
case.
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The first implication we discuss is a consequence of the following theorem due to
Yaman.

Theorem 5.2 [36] If G acts as a nonelementary geometrically finite convergence
group on a metrizable compactum M , then there is a proper ı–hyperbolic space X on
which G acts properly such that M is G –equivariantly homeomorphic to @X with its
induced G –action.

Corollary 5.3 Definitions (RH–1) and (RH–2) are equivalent.

Proof The implication (RH–2)) (RH–1) is obvious. Now suppose .G;P / satisfies
(RH–1). If the action of G on M is nonelementary, then we are done by Theorem 5.2.

If the action on M is elementary, it is a simple matter to construct an appropriate
hyperbolic space X as follows. If M is empty, then G acts trivially on a point X Dfag.
If M has one point then we choose a proper, left invariant metric d on G , and let G

act properly on the combinatorial horoball X DH.G; d/. If M has two points, then
G is virtually cyclic and acts properly on the line X DR. In this last case, arrange the
action so that g 2G preserves the orientation of R if and only if g fixes both points
of M . In each case it is clear that the induced action on @X is equivalent to the given
action on M , establishing (RH–2).

The equivalence (RH–2), (RH–3) was discovered by Thurston in the classical setting
of 3–dimensional Kleinian groups [32], and has been extended to various manifold
cases by Apanasov [2] and Bowditch [4; 5]. The following result due to Bowditch [7]
extends this equivalence to actions on ı–hyperbolic spaces.

Theorem 5.4 [7] Let G act properly on a proper ı–hyperbolic space X . Let P be
a finite family of subgroups of G . Then the action of .G;P / on X is geometrically
finite if and only if it is cusp uniform.

Corollary 5.5 Definitions (RH–2) and (RH–3) are equivalent.

The following is one of the main theorems of [7]. We note that the result is stated
with the extra assumption that the peripheral subgroups are finitely generated, but this
hypothesis plays no role in the proof and is present only to make the result consistent
with Bowditch’s convention that peripheral subgroups should be finitely generated.

Theorem 5.6 [7] Definition (RH–3) implies (RH–4).
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As an aside, we remark that Bowditch also proves the converse (RH–4)) (RH–3) for
finitely generated groups. However, his proof uses the finite generation hypothesis in
an essential manner, and the proof does not extend to non–finitely generated groups.
This implication is not necessary for our purposes.

Recall that in the finitely generated case (RH–5s) and (RH–5w) are equivalent by a
standard argument. This standard argument does not extend in the obvious way to the
non–finitely generated case.

Bowditch claims without proof in [7] that (RH–4) and (RH–5) are equivalent for
finitely generated groups. Dahmani provides a sketch in [11] and a complete proof in
an appendix to his thesis [12]. Dahmani’s proof extends with trivial modifications to
the general case. For the benefit of the reader, we sketch the outline of a proof based
on Dahmani’s arguments indicating places where modifications must be made.

Proof of (RH–4)) (RH–5s) Suppose G acts on a fine, ı–hyperbolic graph K with
finite edge stabilizers and finitely many orbits of edges. Choose edges representing
the G–orbits, and let fv1; : : : ; v`g be the set of all vertices incident to any of these
finitely many edges. If vi and vj lie in the same G–orbit, choose gij 2 G so that
gij .vi/D vj . Then G is generated by the stabilizers of the vi and the finitely many
elements gij (see, for instance, Bridson–Haefliger [9, Theorem I.8.10]). In particular,
G is finitely generated with respect to the infinite vertex stabilizers.

Now let S be an arbitrary finite relative generating set for .G;P /. Observe that the
coned-off Cayley graph y� WD y�.G;P ;S/ has trivial edge stabilizers and finitely many
orbits of edges. The argument in [12, Lemma A.4] produces a fine graph K0 with
finite edge stabilizers and finitely many orbits of edges such that K and y� both embed
equivariantly and simplicially into K0 . Any subgraph of a fine graph is fine, so y� is fine.
Furthermore, a connected, equivariant subgraph of K0 is quasi-isometric to K0 . Since
K is ı–hyperbolic, it follows that y� is quasi-isometric to K , so y� is ı0–hyperbolic for
some ı0 � 0. Now by [12, Lemma A.5], the fineness of the coned-off Cayley graph y�
implies that .G;P ;S/ has Bounded Coset Penetration. (The proof of [12, Lemma A.5]
never uses the connectedness of � , so it remains valid when S is a relative generating
set, as opposed to a generating set in the traditional sense.)

Proof of (RH–5w) ) (RH–4) This implication follows directly from [12, Propo-
sition A.1] with no change, as Dahmani’s proof does not use the finite generation
hypothesis.

Proof of (RH–5w) ) (RH–6) This implication is proved by Osin in the finitely
generated case in an appendix to [27]. However, he never uses the finite generation
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hypothesis in the proof. Again, the finite generation hypothesis seems to be present
only to make the statement consistent with Farb’s original version of (RH–5) for finitely
generated groups.

We remark that Osin also gives a substantially more involved proof of the converse
(RH–6)) (RH–5) for finitely generated groups. These arguments use finite generation
extensively, and it is not clear whether the same arguments go through in general. Note
that we do not require this implication.

Proof of (RH–6)) (RH–3) Choose any finite relative generating set S for .G;P /
and choose a proper, left invariant metric di for each subgroup Pi 2 P . By Theorem
4.4, the augmented space X corresponding to these data is connected and ı–hyperbolic
for some ı � 0. It is straightforward to verify that the combinatorial horoballs of X

are also horoballs as defined in Section 2. Deleting these horoballs from X gives
the (possibly disconnected) Cayley graph Cayley.G;S/ for G , on which G acts with
compact quotient. Therefore .G;P / is relatively hyperbolic in the sense of (RH–3).

6 Relatively quasiconvex subgroups: Definitions

Now that we have established the notion of relative hyperbolicity for countable groups,
we turn our attention to the most natural class of subgroups, namely the relatively
quasiconvex subgroups. In this section we introduce these subgroups from several
different points of view, corresponding to the various characterizations of relative
hyperbolicity. In each setting, we describe a geometrically natural family of “relatively
quasiconvex” subgroups. As before, our main goal is to show that the various definitions
of relative quasiconvexity are equivalent. As part of this equivalence, we will show
that each of the conditions below is an intrinsic property of the subgroup H in the
relatively hyperbolic group .G;P /, and does not depend on any specific choices made
throughout the definition.

Throughout this section, we assume that G is countable, P D fP1; : : : ;Png is a finite
collection of subgroups, and that .G;P / is relatively hyperbolic.

Definition 6.1 (Quasiconvex subspace) Let X be a geodesic metric space. A sub-
space Y � X is �–quasiconvex for some � > 0 if every geodesic of X connecting
two points of Y lies in the �–neighborhood of Y .

Definition 6.2 (QC–1) A subgroup H �G is relatively quasiconvex if the following
holds. Let M be some (any) compact, metrizable space on which .G;P / acts as a
geometrically finite convergence group. Then the induced convergence action of H on
the limit set ƒH �M is geometrically finite.
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The next two definitions of relative quasiconvexity allow us to recognize relatively
quasiconvex subgroups in the setting of Gromov’s original definition of relative hyper-
bolicity.

To express the first, we need the notion of the join of a set in the boundary.

Definition 6.3 (Join) Let X be ı–hyperbolic, and suppose ƒ� @X is a subset with
at least two points. The join of ƒ, denoted join.ƒ/, is the union of all geodesic lines
in X joining pairs of points in ƒ.

Remark 6.4 One should think of the join as a “quasiconvex hull.” In fact, it is easy
to see that if X is ı–hyperbolic, then join.ƒ/ is a �–quasiconvex subspace for some
� D �.ı/ (see for instance Gromov [19, Section 7.5.A]). By an elementary argument,
join.ƒ/ is quasi-isometric to a geodesic hyperbolic space Y whose boundary @Y

is canonically homeomorphic to ƒ. Any horofunction on X based at a point of ƒ
restricts to a horofunction on Y . Consequently a horoball of X centered in ƒ restricts
to a horoball of Y .

Definition 6.5 (QC–2) A subgroup H �G is relatively quasiconvex if the following
holds. Let X be some (any) proper ı–hyperbolic space on which .G;P / has a cusp
uniform action. Then either H is finite, H is parabolic, or H has a cusp uniform action
on a geodesic hyperbolic space Y quasi-isometric to the subspace join.ƒH /�X .

Definition 6.6 (QC–3) A subgroup H �G is relatively quasiconvex if the following
holds. Let .X; �/ be some (any) proper ı–hyperbolic space on which .G;P / has a
cusp uniform action. Let X �U be some (any) truncated space for G acting on X .
For some (any) basepoint x 2X �U there is a constant �� 0 such that whenever c

is a geodesic in X with endpoints in the orbit Hx , we have

c \ .X �U /�N�.Hx/;

where the neighborhood is taken with respect to the metric � on X .

The following construction was introduced by Farb [15] in the context of manifolds
with pinched negative curvature, and further elaborated by Bowditch [7]. Farb credits
the “electric” terminology to Thurston.

Definition 6.7 (Electric space) Suppose .G;P / has a cusp uniform action on a ı–
hyperbolic space .X; �/, and let X � U be a truncated space for the action. The
electric pseudometric y� on X is the path pseudometric obtained by modifying � so
that it is identically zero on each horoball of U (essentially collapsing each horoball
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of U to a point). The electric space associated to the pair .X;U / is the pseudometric
space .X; y�/.

A relative path .; ˛/ in .X;U / is a path  together with a subset ˛ consisting of
a disjoint union of finitely many paths ˛1; : : : ; ˛n occurring in this order along 
such that each ˛i lies in some closed horoball Bi of U . We also assume that Bi ¤

BiC1 . The relative length of .; ˛/ is the length in X of  � ˛ . We write  D
ˇ0[˛1[ˇ1[ � � � [˛n[ˇn , where the ˇi are the complementary paths of  . (Either
of ˇ0 or ˇn could be a trivial path.) A relative path .; ˛/ is efficient if Bi ¤ Bj for
i ¤ j , and is semipolygonal if each ˛i is a geodesic of X .

There are natural notions of a relative path .; ˛/ being an electric geodesic or an electric
�–quasigeodesic given by comparing the relative length of an arbitrary subsegment
with the electric distance between its endpoints in the obvious way.

The following result, roughly speaking, says that an electric quasigeodesic is also a
quasigeodesic in .X; d/.

Lemma 6.8 [7, Lemma 7.3] Given constants ı; � > 0, there are constants r D r.ı/

and �0D �0.ı; �/ so that the following holds. Suppose .G;P / has a cusp uniform action
on a ı–hyperbolic space .X; �/. Let X �U be a truncated space for the action such
that any two horoballs of U are separated in X by a �–distance at least r , and let y� be
the corresponding electric metric. If .; ˛/ is an efficient, semipolygonal relative path
in .X;U / and also an electric �–quasigeodesic then  is an �0–quasigeodesic in X .

Roughly speaking the following definition says that a subgroup is relatively quasiconvex
if its orbits are quasiconvex with respect to electric geodesics.

Definition 6.9 (QC–4) A subgroup H �G is relatively quasiconvex provided that
the following holds. Let .G;P / have a cusp uniform action on some (any) ı–hyperbolic
space .X; d/, and choose some (any) truncated space X �U for the action. Suppose
each pair of horoballs of U is separated by at least a distance r , where r D r.ı/ is the
constant given by Lemma 6.8.

For some (each) basepoint x 2 X � U there is a constant � > 0 so that for every
efficient, semipolygonal relative path .; ˛/ that is also an electric geodesic connecting
points of Hx , the subset  �˛ lies in the �–neighborhood of Hx in .X; �/.

Observe that a similar condition will hold for electric quasigeodesics connecting points
of the orbit Hx , since Lemma 6.8 implies that electric quasigeodesics with common
endpoints track Hausdorff close in X .
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The next definition is quite close to the one introduced by Osin for subgroups of a
finitely generated relatively hyperbolic group. The only difference between Osin’s
definition and the one below is that we use a proper, left invariant metric d on G where
Osin used the word metric for a finite generating set. It is not clear whether one can use
the word metric for a finite relative generating set in place of the proper, left invariant
metric.

Definition 6.10 (QC–5) A subgroup H �G is relatively quasiconvex if the following
holds. Let S be some (any) finite relative generating set for .G;P /, and let P be the
union of all Pi 2 P . Consider the Cayley graph x� D Cayley.G;S [P/ with all edges
of length one. Let d be some (any) proper, left invariant metric on G . Then there is a
constant � D �.S; d/ such that for each geodesic xc in x� connecting two points of H ,
every vertex of xc lies within a d –distance � of H .

We will see that the preceding definition is independent of the choice of finite relative
generating set S and the choice of proper metric d . In particular, if S is a finite
generating set for G in the traditional sense, then we can choose d to be the word
metric for S . Thus in the finitely generated case, (QC–5) is equivalent to the definition
given by Osin in [27].

7 Relative quasiconvexity: Equivalence of definitions

We now establish the equivalence of the various definitions of relative quasiconvexity
introduced in the previous section. Throughout this section .G;P / is a relatively
hyperbolic group and H is any subgroup of G .

Proposition 7.1 Definitions (QC–1) and (QC–2) are well-defined and are equivalent.

The proof uses the following result due to Bowditch.

Theorem 7.2 [7, Theorem 9.4] Suppose .G;P / has cusp uniform actions on spaces
X and X 0 . Then @X and @X 0 are G –equivariantly homeomorphic.

Proof of Proposition 7.1 By Corollary 5.3, if .G;P / has a geometrically finite
convergence action on a compact, metrizable space M , then .G;P / acts geometrically
finitely on a proper ı–hyperbolic space X and M is G –equivariantly homeomorphic
to the boundary of X . It follows from Theorem 7.2 that condition (QC–1) does not
depend on the choice of compactum M or the choice of geometrically finite action of
.G;P / on M .
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Suppose .G;P / has a cusp uniform action on a proper ı–hyperbolic space X . Then
the induced action on M D @X is a geometrically finite convergence action. We will
show that (QC–1) holds for the action of G on M if and only if (QC–2) holds for the
action of G on X . By the preceding paragraph, it follows immediately that (QC–2) is
independent of the choice of X .

Recall our convention that the unique action of a finite group H on the empty set
is a convergence group action. Therefore each finite subgroup H �G satisfies both
(QC–1) and (QC–2). Similarly, the unique action of a countable group H on a single
point is a convergence group action. If H is parabolic then ƒH is a single point, and
hence H satisfies both (QC–1) and (QC–2).

Now suppose H is neither finite nor parabolic. Then ƒH � @X contains at least
two points, and join.ƒH / is a nonempty quasiconvex subspace of X invariant under
the action of H . By Remark 6.4, the subspace join.ƒH / with the subspace metric
is quasi-isometric to a ı0–hyperbolic geodesic space Y for some ı0 � 0, and @Y is
H –equivariantly homeomorphic to ƒH � @X .

Applying Theorem 5.4 to Y , we see that (QC–1) holds for @Y DƒH if and only if
(QC–2) holds for Y .

Lemma 7.3 Let .G;P / have a cusp uniform action on a ı–hyperbolic space .X; �/
with associated truncated space X �U . For each N there is a constant M1 so that the
following holds. Choose two �–geodesics c; c0 such that

maxf�.c�; c0�/; �.cC; c
0
C/g<N:

If c \ .X �U / and c0 \ .X �U / are both nonempty then the Hausdorff �–distance
between c \ .X �U / and c0\ .X �U / is less than M1 .

Proof The geodesics c and c0 are opposite sides of a 2ı–thin geodesic quadrilateral.
It follows that the Hausdorff distance in X between c and c0 is at most N 0 WDN C2ı .
Choose a point p 2 c \ .X �U /. Then p is within a distance N 0 of a point q 2 c0 .
Observe that q also lies in NN 0.X �U /. By Lemma 2.1 there is a segment of c0

from q to X �U of length at most M0 , where M0 depends only on X �U and N 0 .
Therefore p lies within a distance N 0CM of a point r 2 c0\ .X �U /. Interchanging
the roles of c and c0 completes the proof.

Lemma 7.4 Let .G;P / have a cusp uniform action on a ı–hyperbolic space .X; �/.
Let X � U and X � U 0 be two corresponding truncated spaces. Then there is a
constant M2 such that for each �–geodesic c in X , if c \ .X �U / and c \ .X �U 0/

are both nonempty then the Hausdorff �–distance between c\.X�U / and c\.X�U 0/

is at most M2 .
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Proof Recall that the horoballs of U and U 0 lie in finitely many G–orbits, corre-
sponding to the finitely many peripheral subgroups of P . By shrinking the horoballs
of U and U 0 equivariantly, we can obtain a third truncated space X � V such that
V � U \U 0 . If c has nonempty intersection with each of the given truncated spaces
then it also has nonempty intersection with X �V . Thus it suffices to prove the lemma
in the special case when U 0�U . Moreover, it is enough to consider the further special
case that U and U 0 differ on only one orbit of horoballs, since this case can be iterated
finitely many times to obtain the desired result.

Suppose U and U 0 agree on all but one orbit, and this exceptional orbit is represented by
horoballs B and B0 of U and U 0 respectively, such that B0�B . Then X�U �X�U 0 .
Clearly we have

c \ .X �U /� c \ .X �U 0/:

On the other hand, any subsegment xc of c that lies in X �U 0 but not in X �U is a
translate of a geodesic in B �B0 . By Lemma 2.2, such a segment has length at most
M1 DM1.B;B

0/. Thus

c \ .X �U 0/�NM0

�
c \ .X �U /

�
;

completing the proof.

Proposition 7.5 Suppose .G;P / has a cusp uniform action on .X; �/, and H �G . If
H satisfies (QC–3) with respect to one choice of truncated space X �U and basepoint
x 2X �U , then H satisfies (QC–3) with respect to any other truncated space X �U 0

and basepoint x0 .

Proof Let us first consider the effect of changing the basepoint x 2X �U to another
point x0 2X �U in the same truncated space. Choose h0; h1 2H , a �–geodesic c

from h0.x/ to h1.x/, and a �–geodesic c0 from h0.x
0/ to h1.x

0/. Then

�.c�; c
0
�/D �.cC; c

0
C/D �.x;x

0/:

By Lemma 7.3, the Hausdorff distance between c \ .X �U / and c0\ .X �U / is at
most M1 for some constant M1 that depends on x and x0 but not on the choice of
h0 and h1 . If c\ .X �U / lies in N�.Hx/ then c0\ .X �U / lies in N�CM1

.Hx0/.
Therefore if we fix X �U , then (QC–3) does not depend on the choice of basepoint
x 2X �U .

Now suppose X �U and X �U 0 are two truncated spaces corresponding to the action
of G on X . Choose basepoints x 2 X �U and x0 2 X �U 0 . Shrinking horoballs,
we can obtain a third truncated space X � V with V � U \U 0 . In particular, note
that x and x0 both lie in X �V . If H satisfies (QC–3) with respect to X �U with
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basepoint x , then by Lemma 7.4 it also satisfies (QC–3) with respect to X �V with
basepoint x . By the preceding paragraph, H also satisfies (QC–3) with respect to
X � V and basepoint x0 . Finally, another application of Lemma 7.4 shows that H

satisfies (QC–3) with respect to X �U 0 and basepoint x0 .

Thus (QC–3) is independent of the choice of truncated space X �U and independent
of the choice of basepoint x 2X �U .

Proposition 7.6 Definition (QC–3) is well-defined and is equivalent to Definition
(QC–2).

Proof In Proposition 7.5 we showed that for each fixed cusp uniform action of .G;P /
on a space .X; �/, whether a subgroup H satisfies (QC–3) does not depend on the
choice of truncated space and basepoint. In Proposition 7.1 we showed that (QC–2)
does not depend on the choice of space X or the choice of cusp uniform action of
.G;P / on X . Thus, in order to show that (QC–3) is also independent of the space X

and cusp uniform action, it suffices to show that (QC–2) holds for a particular action of
G on X if and only if (QC–3) holds for the same action with respect to some choice
of truncated space X �U and basepoint x 2X �U .

(QC–2)) (QC–3) Choose any truncated space X �U for the action of G on X .
If H is finite, then (QC–3) is immediate since the orbit Hx is bounded. If H is
parabolic with parabolic fixed point p 2 @X , and x 2 X �U is any basepoint, then
there is a horofunction based at p that is identically zero on the orbit Hx . Let B be
the horoball of U centered at p . By Lemma 2.3, there is a constant M2 such that for
each geodesic c D Œa; b� connecting two points of Hx , we have

c \ .X �U /�NM2

�
fa; bg

�
:

Thus (QC–3) holds for H .

Now suppose ƒH contains at least two points. Then join.ƒH / is nonempty and
�–quasiconvex for some � > 0. Suppose the action of H on Y is cusp uniform, where
Y is quasi-isometric to join.ƒH /. Under this quasi-isometry, every horoball of Y

pulls back to a subset of join.ƒH / of the form B \ join.ƒH / for some horoball B

of X . Therefore, the action of H on join.ƒH / is “cusp uniform” in the sense that
X contains a union of horoballs U 0 centered at the parabolic points of H such that
the horoballs lie in finitely many H –orbits and such that H acts cocompactly on the
“truncated space” join.ƒH /�U 0 .

Shrink the horoballs of U 0 H –equivariantly so that �.U 0;X�U />� . Then H still acts
cocompactly on join.ƒH /�U 0 . Let � <1 be the �–diameter of a compact set K�X
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whose H –translates cover join.ƒH /�U 0 . Choose a basepoint x 2 join.ƒH /�U 0 ,
and let c be a geodesic in X connecting two points of Hx . Since the endpoints of c

lie in join.ƒH /, the �–quasiconvexity of join.ƒH / implies that each p 2 c\.X �U /

is within a distance � of a point q 2 join.ƒH /. Observe that q is also in N�.X �U /.
By our choice of U 0 , it follows that both x and q lie in join.ƒH /�U 0 . Therefore,
for some h 2H , we have �.hx; q/ < � , establishing (QC–3).

(QC–3)) (QC–2) Suppose .G;P / has a cusp uniform action on .X; �/, and H �G

is infinite and not parabolic. Then join.ƒH / is nonempty and �–quasiconvex for some
� > 0, and quasi-isometric to a hyperbolic geodesic space Y . In order to establish
(QC–2), it suffices to show that the action of H on Y 0 WD join.ƒH / is cusp uniform
in the above sense.

Choose a truncated space X � U for the cusp uniform action of G on X and a
basepoint x 2 Y 0 �U such that H satisfies (QC–3) with respect to X �U and x

using quasiconvexity constant �.

Then any geodesic c connecting two points of Hx satisfies

c \ .X �U /�N�.Hx/

If xc is a bi-infinite geodesic in X obtained as a pointwise limit of such segments c ,
then xc connects two points of ƒH and satisfies

xc \ .X �U /�N�.Hx/:

Since X is ı–hyperbolic, and each point of ƒH is a limit point of Hx , every geodesic
connecting two points of ƒH lies in the 2ı–neighborhood of such a geodesic xc .
(This is because any two bi-infinite geodesics with the same endpoints at infinity in a
ı–hyperbolic space have Hausdorff distance at most 2ı .) Therefore

Y 0�U �N2ıC�.Hx/;

proving that H acts cocompactly on Y 0�U .

In order to establish (QC–2), we must show that H acts cocompactly on Y 0 �U 0 ,
where U 0 is an H –equivariant family of horoballs centered only at the parabolic points
of H . It suffices to show that the horoballs B of U that meet Y 0 and are not based in
ƒH have uniformly bounded intersections with Y 0 . Since then Y 0�U is quasidense
in Y 0�U 0 .

If a horoball B of U � U 0 meets Y 0 , then it also meets Y 0 � U , which lies in
N2ıC�.Hx/. Hence, �.B;Hx/ is at most 2ıC�. Then the translate hB of B by
some element h2H intersects B.x; 2ıC�/. Since only finitely many horoballs of U
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meet any metric ball in X , the horoballs of U meeting Y 0 must lie in only finitely
many H –orbits. If such a horoball is not based in ƒH , then its intersection with Y 0

is bounded. Combining these bounds for the finitely many H –orbits gives a uniform
bound on the diameter of all such intersections, which completes the proof.

Proposition 7.7 Definition (QC–4) is well-defined and equivalent to (QC–3).

Proof Recall that we have shown that if a subgroup H � G satisfies (QC–3) with
respect to a cusp uniform action, truncated space, and basepoint, then it satisfies (QC–3)
with respect to any other such choices. Choose a proper ı–hyperbolic space .X; �/,
a cusp uniform action of .G;P / on X , a truncated space X �U , and a basepoint
x 2 X � U . Suppose further that the horoballs of U are pairwise separated by a
�–distance at least r , where r D r.ı/ is the constant provided by Lemma 6.8. We
will show that H satisfies (QC–3) with respect to these choices if and only if it
satisfies (QC–4).

More specifically, we will show that there is a constant L such that the following holds.
Let c be a �–geodesic and .; ˛/ a semipolygonal relative path that is also an electric
geodesic. If c and  have the same endpoints in Hx , then the Hausdorff �–distance
between c \ .X �U / and  �˛ is at most L.

By Lemma 6.8, the path  is an �–quasigeodesic in .X; �/ for some uniform constant � .
By the Morse Lemma, the Hausdorff �–distance between c and  is at most �D�.ı; �/.
Since .; ˛/ is an electric geodesic with respect to .X;U /, the subset  � ˛ must
lie in X � U . Therefore any point p 2  � ˛ is within a �–distance � of a point
q 2 c\N�.X �U /. By Lemma 2.1 the point q is within a �–distance M0 of a point
q0 2 c \ .X � U /, where M0 depends only on � and U . (Here we are using that
N�.X �U / differs from X �U on only finitely many orbits of horoballs.) A similar
argument (using a quasigeodesic variation of Lemma 2.1) bounds the distance from
an arbitrary point of  � ˛ to c \ .X �U /. Thus we have an upper bound on the
Hausdorff �–distance between  �˛ and c \ .X �U /. It is now clear that if either
set lies near Hx , then so does the other.

It is a well-known result, first observed by Efromovich [14] that if X is a connected
length space, and G is a group acting metrically properly, coboundedly and isometrically
on X , then G is finitely generated and quasi-isometric to X . Recall that a length
space is connected if and only if all distances are finite. The following result dealing
with actions on arbitrary length spaces is an easy corollary to Efromovich’s Theorem.

Proposition 7.8 (Disconnected Efromovich’s Theorem) Let X be a length space
(possibly disconnected ). Let G be a countable group with proper, left invariant metric d

Algebraic & Geometric Topology, Volume 10 (2010)



1834 G Christopher Hruska

acting metrically properly, coboundedly and isometrically on X . Let Y be a component
of X . Then the G–translates of Y cover X , the stabilizer H of Y has a finite
generating set S , and for each basepoint x0 2 X , the map g 7! g.x0/ induces a
quasi-isometry from the (possibly disconnected ) Cayley graph Cayley.G;S/ to X .

Proof Since any two components of X are separated by an infinite distance, it is clear
that H acts coboundedly on Y . Applying Efromovich’s theorem to the action of H

on the connected length space Y gives a finite generating set S for H and shows that
Cayley.H;S/ is quasi-isometric to Y . Note that if H ¤ G , then Cayley.G;S/ and
X are both disconnected with all components separated by infinite distances. Since
G acts on X with a connected quotient, the translates of Y cover X . In other words,
the path components of X are precisely the translates of Y , which are in one-to-one
correspondence with the left cosets gH of H in G , which in turn correspond to the
path components in the Cayley graph.

Proposition 7.9 Suppose .G;P / is relatively hyperbolic with finite relative generating
set S . Let .G;P / have a cusp uniform action on .X; �/ with associated truncated
space X �U . Suppose the horoballs of U are pairwise separated by some minimum
positive distance r .

For each basepoint x 2X �U the orbit map g 7! g.x/ extends to a quasi-isometry

f W Cayley.G;S [P/! .X; y�/;

where y� denotes the electric pseudometric for .X;U /. Furthermore, f can be chosen
so that each geodesic edge-path in the Cayley graph maps to an efficient semipolygonal
relative path in .X;U /.

Proof Choose a basepoint x 2X �U , and let Z be the rectifiable-path component
of X �U containing x . Then Z is connected when endowed with the induced length
metric. Let Y be the union of all G–translates of Z . Since G acts cocompactly
on .X �U; �/ and Y is a nonempty, G–equivariant subspace of X �U , it follows
that Y is quasidense in .X �U; �/. Therefore, G acts on Y with a rectifiable-path
connected quotient. Let x� denote the length metric on Y induced by � . Then G acts
coboundedly, metrically properly and isometrically on .Y; x�/. By Proposition 7.8, the
stabilizer H of Z is generated by a finite set T , and the orbit map g 7! g.x/ induces
a quasi-isometry Cayley.G; T /! .Y; x�/. Under this quasi-isometry, the set of left
cosets gP for all g 2 G and all P 2 P corresponds with the set of horoballs in U .
The electric space .X; y�/ is quasi-isometric to its quasidense subspace .Y; y�/, which
in turn is clearly quasi-isometric to Cayley.G; T [P/. In particular, since the electric
space is connected, this Cayley graph is also connected, establishing that T is a relative
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generating set for .G;P /. By an elementary argument (see, for instance, Osin [27,
Proposition 2.8]), the identity G!G induces a quasi-isometry

Cayley.G;S [P/! Cayley.G; T [P/

for any other relative generating set S . Composing these quasi-isometries gives a
quasi-isometry

f WCayley.G;S [P/! .X; y�/

mapping g 7! g.x/ for each g 2G .

Since G is quasidense in the Cayley graph, we can modify f so that it sends the edges
of the Cayley graph to any relative paths we like, provided that the relative lengths of
these paths are uniformly bounded. For each generator s 2 S , choose a �–geodesic ˇs

from x to s.x/, considered as a relative path .; ˛/ with ˛ empty. Let f map each
Cayley graph edge labeled by s to the appropriate translate of ˇ . For each P 2 P ,
choose a �–geodesic ˇP from x to the horoball B stabilized by P . For each generator
labeled by p 2 P , let .p; p̨/ be the relative path with p WD ˇP [ p̨ [ .p ıˇP /,
where p̨ is a �–geodesic path in B from the terminal point b of ˇP to the point
p.b/, and where the bar indicates following a path in the reverse direction. Let f map
each Cayley graph labeled by p to the appropriate translate of .p; p̨/.

Observe that each edge path in the Cayley graph is mapped by f to a semipolygonal
relative path. Furthermore, if the image .; ˛/ is not efficient, and ˛ is a disjoint
union of paths ˛1; : : : ; ˛n , then for some i < j the paths ˛i and j̨ lie in the same
horoball B . Let ei and ej be the corresponding edges in the Cayley graph. It follows
that the initial point v of ei and the terminal point w of ej lie in the same left coset gP

of some P 2 P . In particular, in the Cayley graph, the distance from v to w is at
most 1, so the given edge path cannot be geodesic.

Proposition 7.10 Definition (QC–5) is well-defined and equivalent to (QC–4).

Proof Fix a finite relative generating set S for .G;P /, and suppose H satisfies
(QC–5) with respect to S and some proper left-invariant metric d with quasiconvexity
constant �D �.S; d/. We first show that (QC–5) continues to hold if we replace d with
another proper left-invariant metric d 0 . Let B be the finite ball of radius � centered at
the identity in the metric space .G; d/. Let

�0 WDmaxfd 0.1;g/ j g 2 BgC 1<1:

We will see that (QC–5) holds for S and d 0 with �.S; d 0/ WD �0 . Let xc be any geodesic
in Cayley.G;S [ P/ connecting two points of H , and let v 2 G be a vertex of c .
Then there is an element w 2 H such that d.v; w/ < � . Since d is left-invariant,
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d.1; v�1w/ < � so that v�1w 2 B . But then d 0.v; w/D d 0.1; v�1w/ < �0 as desired,
establishing (QC–5) for S and d 0 . Note that the above argument holds even if d or d 0

is a pseudometric (rather than a metric) provided that both are proper and left-invariant.

Now let us consider the equivalence of (QC–4) and (QC–5). Fix a finite relative
generating set S for .G;P / and a cusp uniform action of .G;P / on a proper ı–
hyperbolic space .X; �/ with an associated truncated space X �U . Suppose further
that the horoballs of U are pairwise separated by at least a distance r , where r D r.ı/

is the constant given by Lemma 6.8. Fix a basepoint x 2 X �U . Define a proper
left-invariant pseudometric dG on G using distances in X between orbit points; that
is, we set

dG.g1;g2/ WD �
�
g1.x/;g2.x/

�
:

To prove the proposition, it suffices to show that (QC–5) holds for S and dG if and
only if (QC–4) holds for X , U , and x . Since S is arbitrary, it therefore follows that
(QC–5) is independent of the choice of S .

(QC–4)) (QC–5) By Proposition 7.9, there is an �–quasi-isometry

f W Cayley.G;S [P/! .X; y�/

for some � > 0, such that f maps g 2 G to g.x/ and such that each geodesic c in
Cayley.G;S [P/ with endpoints in H maps to an efficient, semipolygonal relative
�–quasigeodesic .; ˛/ in .X;U 0/ such that  has endpoints in Hx . Let . 0; ˛0/ be
an efficient, semipolygonal relative geodesic such that  0 has the same endpoints as  .
By Lemma 6.8,  and  0 are �0–quasigeodesics in .X; �/ for some �0 depending
on � . In particular, by the Morse Lemma the Hausdorff �–distance between  and  0

is at most LD L.ı; �0/. As in the proof of Proposition 7.7 there is a uniform upper
bound L0 on the Hausdorff �–distance between  �˛ and  0�˛0 .

Choose an arbitrary vertex g of c . Being a vertex of the Cayley graph, g is an element
of G . Thus f maps g to the orbit point g.x/2  �˛ , which is within a �–distance L0

of some y 2 0�˛0 . By (QC–4), the point y is within a �–distance � of Hx . Applying
the triangle inequality shows that �.g.x/;Hx/ <LC � . By our definition of dG , we
also have dG.g;H / <LC � , establishing (QC–5).

(QC–5)) (QC–4) Let . 0; ˛0/ be an efficient, semipolygonal relative geodesic in
.X;U / such that  0 has endpoints hx and h0x . Let c be a geodesic in Cayley.G;S[P/
with endpoints h and h0 . As above, f maps c to an efficient, semipolygonal relative
�–quasigeodesic .; ˛/, and the Hausdorff �–distance between  �˛ and  0�˛0 is
bounded above by a constant L0 that does not depend on the choice of h; h0 2H . Each
point y 2  0 � ˛0 is within a �–distance L0 of a point z 2  � ˛ , which is within a
�–distance � of gx for some vertex g of c . By (QC–5), we have dG.g;H / < � . Thus
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by the definition of dG , we have �
�
g.x/;Hx

�
< � as well. By the triangle inequality

it follows that
�.y;Hx/ <L0C �C �;

establishing (QC–4).

8 Relative quasiconvexity in the word metric

In this section we characterize relatively quasiconvex subgroups of finitely generated
relatively hyperbolic groups in terms of the geometry of the word metric. We emphasize
that throughout this section .G;P / always denotes a finitely generated relatively
hyperbolic group, and S is always a finite generating set for G in the traditional sense.
As above, P denotes the union of the peripheral subgroups P 2 P .

If c is a path in Cayley.G;S [P/, a lift of c is a path formed from c by replacing
each edge of c labelled by an element of P with a geodesic in Cayley.G;S/. The
S–edges are left unchanged.

If c is a path in Cayley.G;S/ and M > 0, the M –saturation of c is the union of c

together with all peripheral cosets gP such that dS.c;gP / <M .

We will need to use several results due to Dru;tu–Sapir [13] describing the geometry of
the word metric for a finitely generated relatively hyperbolic group. These results are
collected below.

The first result states that neighborhoods of peripheral subgroups are quasiconvex.

Theorem 8.1 [13, Lemma 4.15] Let .G;P / be a relatively hyperbolic group with
finite generating set S . For each A0 there is a constant A1 D A1.A0/ such that
the following holds in Cayley.G;S/. Let c be a geodesic segment whose endpoints
lie in the A0 –neighborhood of a peripheral subgroup P 2 P . Then c lies in the
A1 –neighborhood of P .

In particular, each peripheral subgroup P 2 P is quasiconvex with respect to S . It
follows easily that conjugates of peripheral subgroups are quasiconvex as well.

Corollary 8.2 For each P 2 P and g 2G , the subgroup gPg�1 is quasiconvex with
respect to S .

Proof Translating the result of Theorem 8.1 by g , we see that neighborhoods of gP

are quasiconvex. Now the Hausdorff distance between gP and gPg�1 is bounded
above by A0 WD jgjS . Thus any geodesic c with endpoints in gPg�1 lies in the A1 –
neighborhood of gP , for A1DA1.A0/. Hence c lies in the .A1CA0/–neighborhood
of gPg�1 .
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Quasiconvexity of peripheral subgroups (and their conjugates) has the following con-
sequences using well-known results of Short [30]. We remark that finite generation
of peripheral subgroups was first proved by Osin [27] prior to the work of Dru;tu and
Sapir.

Corollary 8.3 (Osin, Dru;tu–Sapir) If .G;P / is relatively hyperbolic with a finite
generating set, then for each P 2 P and g 2 G , the conjugate gPg�1 has a finite
generating set T . Furthermore each conjugate gPg�1 is undistorted in the sense that
the inclusion gPg�1 ,!G induces a quasi-isometric embedding

Cayley.gPg�1; T /! Cayley.G;S/:

The next result states that a (sufficiently large) saturation of a geodesic is quasiconvex.
Furthermore, neighborhoods of saturations are also quasiconvex.

Theorem 8.4 [13, Theorem 1.12(4)] Let .G;P / be a relatively hyperbolic group with
finite generating set S . For each � > 0, there is a constant M DM.�/ such that the
following holds. Let c be an �–quasigeodesic in Cayley.G;S/ and let yc be a geodesic
in Cayley.G;S [P/ with the same endpoints as c . If zc is any lift of yc then zc lies in
the M –neighborhood of the M –saturation of c with respect to the metric dS .

Theorem 8.5 [13, Theorem 4.1] Suppose .G;P / is relatively hyperbolic with finite
generating set S . For each M <1 there is a constant �D �.M / <1 so that for any
two peripheral cosets gP ¤ g0P 0 we have

diam
�
NM .gP /\NM .g0P 0/

�
< �

with respect to the metric dS .

The preceding result has the following stronger form that restricts the possible interac-
tions between two distinct peripheral cosets in a saturation of a quasigeodesic.

Proposition 8.6 [13, Lemma 8.11] Let .G;P / be a relatively hyperbolic group with
finite generating set S . For each choice of positive constants � , � , and � , there is a
constant �0D �0.�; �; �/ such that the following holds. Let c be an �–quasigeodesic in
Cayley.G;S/. Suppose gP and g0P 0 are distinct peripheral cosets in Sat�.c/. Then

N� .gP /\N� .g0P 0/�N�0
.c/

with respect to the metric dS .
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Lemma 8.7 Let .G;P / be a relatively hyperbolic group with finite generating set S .
Choose positive constants � , � , and � . Then there exists a constant �1 D �1.�; �; �/

such that the following holds in the graph Cayley.G;S/. Let b be an �–quasigeodesic,
and suppose C is a connected subset of N�

�
Sat�.c/

�
. If C does not intersect N�1

.c/,
then C intersects N� .gP / for a unique peripheral coset gP � Sat�.c/. Furthermore,
C �N� .gP /.

Proof By hypothesis, C is contained in the following union of open sets:

N� .c/[
�[˚

N� .gP /
ˇ̌
gP � Sat�.c/

	�
Assume that C does not intersect N� .c/. If C intersects N� .gP /\N� .g0P 0/ for
distinct peripheral cosets gP and g0P 0 contained in Sat�.c/, then Proposition 8.6 gives
a constant �0 D �0.�; �; �/ such that C intersects N�0

.c/. Otherwise, C intersects
N� .c/ for a unique peripheral coset gP � Sat�.c/, and thus C �N� .gP /.

Lemma 8.8 Let .G;P / be a relatively hyperbolic group with a finite generating set S .
For each � > 0 there is a constant A0 D A0.�/ such that the following holds. Let c

be an �–quasigeodesic segment in Cayley.G;S/, and let yc be a geodesic segment in
Cayley.G;S [P/. Suppose c and yc have the same endpoints in G . Then each vertex
of yc lies in the A0 –neighborhood of some vertex of c with respect to the metric dS .

Proof Let zc be a lift of yc to Cayley.G;S/. By Theorem 8.4, zc lies in the M –
neighborhood of the M –saturation of c for some M depending only on � and the
generating set S . Let � D �.M / be the constant given by Theorem 8.5. Let v be a
vertex of yc . If v is within an S–distance 2�M of an endpoint of zc , then we are done.
Otherwise let  be the subpath of zc of S–length 4�M centered at v . Since  is
connected, either  lies in the M –neighborhood of some coset gP � SatM .c/, or 
intersects N�1

.c/, where �1 D �1.1;M;M / is given by Lemma 8.7.

We will show that  intersects N�1
.c/. Assume by way of contradiction that  �

NM .gP / for gP �SatM .c/. It follows that the endpoints x and y of  are connected
by a relative geodesic y passing through v , each of whose vertices lies within an S–
distance M of gP . Evidently y contains at most 2M C 1 edges. If an edge e of y
does not have both endpoints in gP , then its endpoints are separated by an S –distance
less than � by Theorem 8.5. At most one edge of y has both endpoints in gP . Without
loss of generality, we may assume the subpath of y from x to v does not contain such
an edge. Since dS[P.x; v/� 2M , it follows that dS.x; v/ < 2�M , contradicting our
choice of path  .

Thus  intersects N�1
.c0/ as desired. It follows that v is within an S–distance

2�M C �1 of c , completing the proof.
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Definition 8.9 Let c be a geodesic of Cayley.G;S/, and let �;R be positive constants.
A point x 2 c is .�;R/–deep in a peripheral left coset gP (with respect to c ) if x is
not within a distance R of an endpoint of c and B.x;R/\ c lies in N�.gP /. If x is
not .�;R/–deep in any peripheral left coset gP then x is an .�;R/–transition point
of c .

Lemma 8.10 Let .G;S/ be relatively hyperbolic with finite generating set S . For
each � there is a constant R D R.�/ such that the following holds. Let c be any
geodesic of Cayley.G;S/, and let xc be a connected component of the set of all .�;R/–
deep points of c . Then there is a peripheral left coset gP such that each x 2 c is
.�;R/–deep in gP and is not .�;R/–deep in any other peripheral left coset.

Proof Let gP and g0P 0 be distinct left cosets of peripheral subgroups. Then
N�.gP / \N�.g0P 0/. has diameter less than R, where R WD �.�/ is the constant
given by Theorem 8.5.

Let cgP WD c\N�.gP /. (Note that this set might not be connected.) Deleting the points
that are within a distance R of an endpoint of cgP gives precisely the set of points
of c that are .�;R/–deep in gP . Evidently the intersection cgP \ cg0P 0 has diameter
at most R since it lies in N�.gP /\N�.g0P 0/. It is clear that if x is .�;R/–deep
in gP and y is .�;R/–deep in g0P 0 then d.x;y/ � R. In particular, within each
component xc of the set of .�;R/–deep points, every point is .�;R/–deep in a unique
peripheral left coset gP that depends only on the choice of component xc .

If xc is a component of the .�;R/–deep points as above, we say that xc is .�;R/–deep
in gP , where gP is the unique peripheral left coset associated to every point of xc .

Lemma 8.11 For each �;L> 0, there is a constant �D �.�;L/ so that the following
holds. Suppose c is a geodesic in Cayley.G;S/ that lies in N�.gP / for some left coset
of a peripheral subgroup P 2 P . Suppose yc is a geodesic in Cayley.G;S [P/ such
that each point of c is within an S –distance L of some vertex of yc . Then c has length
at most �.

Proof Let v0; : : : ; vn be the vertices of yc . Without loss of generality we can assume
that v0 and vn both lie within an S–distance L of c . (If not, then we first shorten yc
so that this condition holds.) Let ci � c be the set NL.vi/\ c . Then c is covered by
the sets c0; : : : ; cn , each of which has diameter at most 2L.

In order to bound the length of c , it suffices to bound the integer n in terms of �
and L. But v0 and vn are each within an S–distance �CL of a vertex of gP . Thus
dS[P.v0; vn/ � 2.�CL/C 1. In particular, n is at most 2.�CL/C 1, completing
the proof.
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Definition 8.12 Let c be a geodesic in a space X . If c0 is any subset of c , then the hull
of c0 in c , denoted Hullc.c0/ is the smallest connected subspace of c containing c0 .

Proposition 8.13 Let .G;P / be relatively hyperbolic with a finite generating set S .
There exist constants � , R, and L such that the following holds. Let c be any geodesic
of Cayley.G;S/ with endpoints in G , and let yc be a geodesic of Cayley.G;S [P/
with the same endpoints as c . Then in the metric dS , the set of vertices of yc is at a
Hausdorff distance at most L from the set of .�;R/–transition points of c . Furthermore,
the constants � and R satisfy the conclusion of Lemma 8.10

Proof Let A0 DA0.1/ be the constant given by Lemma 8.8. Then each vertex of yc
is within a distance A0 of c . For each vertex v of yc , let

cv WD Hullc
�
c \B.v;A0/

�
:

For each edge e of yc with endpoints v and w , let

ce WD Hullc.cv [ cw/:

Then c is covered by the sets ce for all edges e of yc .

If e is labelled by an edge of S , then ce has length at most 2A0C1. Thus every point
of ce lies within a distance 2A0C 1 of c\B.v;A0/, and hence lies within a distance
3A0C 1 of v , where v is a vertex incident to e .

On the other hand, if e is labelled by an edge of P then the endpoints of e lie in the
same left coset gP of some peripheral subgroup. Thus c \B.v;A0/ lies in the A0 –
neighborhood of gP for each endpoint v of e . As each point of ce lies between two
such points, it follows that ce lies in the A1 –neighborhood of gP where A1DA1.A0/

is the constant given by Theorem 8.1. Let R WDR.A1/ be the constant given by Lemma
8.10. The points of ce within a distance R of the endpoints of ce are also within a
distance A0CR of the vertices of yc . All other points of ce must be .A1;R/–deep
points of c . In particular, we have shown that the .A1;R/–transition points of c each
lie within a distance 3A0CRC 1 of the set of vertices of yc .

In order to complete the proof, we need to bound the distance from an arbitrary vertex
of yc to the set of .A1;R/–transition points of c . Choose a vertex v 2 yc . If cv contains
an .A1;R/–transition point, then we are done, since cv has length at most 2A0 and
intersects B.v;A0/. It suffices to assume that cv is contained in some .A1;R/–deep
component xc of c that is deep in a peripheral left coset gP . By Lemma 8.10, each
endpoint of xc is an .A1;R/–transition point of c , so we need only bound the distance
from cv to an endpoint of yc .

Algebraic & Geometric Topology, Volume 10 (2010)



1842 G Christopher Hruska

Since yc is a geodesic of Cayley.G;S [P/, it contains at most one edge e0 whose
endpoints both lie in the coset gP . Choose an edge path e1; : : : ; ek in yc such that v
is the initial vertex of e1 , such that for i D 1; : : : ; k � 1 we have cei

� xc , and such
that ck contains an endpoint of xc . Since xc has two endpoints, we can also choose
e1; : : : ; ek so that none of the edges is equal to e0 (if there is such an edge e0 ).

Let w denote the common endpoint of ek�1 and ek . Both v and w lie within a
dS –distance A0CA1 of gP , so dS[P.v; w/ < 2A0C 2A1C 1. Therefore k � 1 �

2A0C2A1C1. Suppose i D 1; : : : ; k�1. If ei is labeled by an element of S then, as
noted above, cei

has length at most 2A0C1. On the other hand, if ei is labelled by an
element of P , then the endpoints of ei lie in a peripheral left coset g0P 0 ¤ gP . Since
cei
� xc cannot contain any points that are .A1;R/–deep in g0P 0 , it follows that cei

has length less than 2R. So we have an upper bound on the dS –distance from v to w .

Now consider the last edge ek of our edge path, which contains an endpoint of xc . If
ek is labelled by an edge of S , then we are done, since the dS –distance from w to
this endpoint is bounded above by the length of ek , which is at most 2A0C1. If ek is
labelled by an edge of P , then xc can intersect cek

in a subsegment of length at most R,
so w is within a dS –distance R of an endpoint of xc , completing the proof.

It is worth noting the following corollary, which could also be derived directly from
the work of Dru;tu–Sapir [13]. The corollary deals with only the geometry of the finite
generating set S .

Corollary 8.14 Let .G;P / be a relatively hyperbolic group with finite generating
set S . Then there exist constants �;R;M such that � and R satisfy the conclusion
of Lemma 8.10 and such that the following holds. Let c and c0 be two geodesics
in Cayley.G;S/ with the same endpoints in G . Then the set of .�;R/–transition
points of c and the set of .�;R/–transition points of c0 are at a Hausdorff distance at
most M .

We also recover the following result due to Osin [27, Proposition 3.15]. We remark
that if S is a relative generating set rather than a generating set, the result still holds
and can be derived as a corollary of Osin [28, Proposition 3.2].

Corollary 8.15 Let .G;P / be a relatively hyperbolic group with finite generating
set S . Then there exists a constant N such that if c and c0 are two geodesics in
Cayley.G;S [P/ with the same endpoints in G , then the set of vertices of c and the
set of vertices of c0 are within a Hausdorff distance N in the metric dS .
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Finally, we deduce the following corollary describing relatively quasiconvex subgroups
of G using only the geometry of Cayley.G;S/.

Corollary 8.16 Let .G;P / be relatively hyperbolic with finite generating set S . There
are �;R satisfying the conclusion of Lemma 8.10 such that the following holds. Let
H be a subgroup of G . Then H is relatively quasiconvex if and only if there is a
constant � such that for each geodesic c in Cayley.G;S/ joining points of H , the set
of .�;R/–transition points of c lies in the �–neighborhood of H (with respect to the
metric dS ).

Proof A subgroup H �G is relatively quasiconvex if and only if it satisfies (QC–5)
with respect to the generating set S and the proper left invariant metric dS . The
corollary now follows immediately from Proposition 8.13.

9 Applications of relative quasiconvexity

The present section is a collection of various basic properties of relatively quasiconvex
subgroups. In particular, we prove Theorems 1.2 and 1.5 and Corollary 1.3. We also
briefly examine strongly relatively quasiconvex subgroups, which were introduced by
Osin in [27].

The following theorem states that relatively quasiconvex subgroups are relatively
hyperbolic, with the obvious peripheral structure.

Theorem 9.1 (Relatively quasiconvex) relatively hyperbolic) Let .G;P / be rela-
tively hyperbolic, and let H �G be a relatively quasiconvex subgroup. Consider the
following collection of subgroups of H :

xO WD fH \gPg�1
j g 2G , P 2 P , and H \gPg�1 is infiniteg:

Then the elements of xO lie in only finitely many conjugacy classes in H . Furthermore,
if O is a set of representatives of these conjugacy classes then .H;O/ is relatively
hyperbolic.

The peripheral structure O constructed above is referred to as an induced peripheral
structure on H coming from .G;P /. Note that the only ambiguity in the construction
of O is the choice of representatives of the conjugacy classes from xO .

Proof We give a dynamical proof based on geometrically finite convergence group
actions. Let .G;P / act geometrically finitely on a compactum M . Since H is (QC–1),
the induced action of H on ƒ.H /�M is geometrically finite.
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By a result of Tukia, a point cannot be both a conical limit point and a parabolic point
for the same convergence action [35, Theorem 3A]. Every conical limit point for H

acting on ƒ.H /�M is a conical limit point for H acting on M , and hence also a
conical limit point for G acting on M . On the other hand, every parabolic point for H

acting on ƒ.H / is clearly a parabolic point for G acting on M . Thus the parabolic
points of H are precisely the parabolic points of G that lie in ƒ.H /.

Consequently the set xO is the set of maximal parabolic subgroups for the action of H

on ƒ.H /. Tukia has shown that a geometrically finite group action has only finitely
many conjugacy classes of maximal parabolic subgroups [35, Theorem 1B]. Thus
.H;O/ satisfies (RH–1).

A group G is slender if every subgroup H �G is finitely generated. The following
corollary is an easy consequence of the preceding theorem.

Corollary 9.2 Let .G;P / be relatively hyperbolic. The following conditions are
equivalent:

(1) Every P 2 P is slender.

(2) Every relatively quasiconvex subgroup H of .G;P / is finitely generated.

Proof (1)) (2) If H is relatively quasiconvex, then it is relatively hyperbolic with
respect to subgroups of the P 2 P . If each such P is slender, then H is relatively
hyperbolic with respect to finitely generated groups. In particular H is finitely generated
relative to finitely many finitely generated subgroups. Thus H is finitely generated.

(2) ) (1) This holds since every subgroup H of a peripheral subgroup P 2 P is
relatively quasiconvex.

Since a relatively quasiconvex subgroup H of a relatively hyperbolic group G is itself
relatively hyperbolic, we could in principle consider nested sequences H0 � H1 �

� � � �H` DG such that Hi is relatively quasiconvex in HiC1 . The following corollary
shows that any subgroup H0 produced in this manner is relatively quasiconvex in the
original group G . Thus no new subgroups arise in this manner.

Corollary 9.3 (Nested relative quasiconvexity) Suppose .G;P / is relatively hy-
perbolic, and K � G is relatively quasiconvex in .G;P / with induced peripheral
structure O . Suppose H � K . Then H is relatively quasiconvex in .K;O/ if and
only if H is relatively quasiconvex in .G;P /.
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Proof Let .G;P / act geometrically finitely on a compactum M . Then the limit set
ƒ.H / for the action of H on M is the same as the limit set for the restricted action
of H on ƒ.K/. The property of geometrical finiteness of the action of H on ƒ.H /

is intrinsic to ƒ.H /. Thus H satisfies (QC–1) as a subgroup of .G;P / if and only if
H satisfies (QC–1) as a subgroup of .K;O/.

Using Lemma 8.8, the proof of Theorem 1.5 is straightforward.

Proof of Theorem 1.5 Since Cayley.H; T / is a geodesic space, it follows that each
pair of points in H is connected in Cayley.G;S/ by an �–quasigeodesic that lies in
the �–neighborhood of H . Let c be such a quasigeodesic. By Lemma 8.8, if yc is any
geodesic of Cayley.G;S [P/ with the same endpoints as c , then each vertex v of yc
lies within a dS –distance A0 of c , where A0 D A0.�/. Consequently, v is within
a dS –distance A0C � of some point of H , establishing that H satisfies definition
(QC–5) with respect to the generating set S and the proper, left invariant metric dS .

The following result roughly states that an element of a group that lies close to two
cosets xH and yK also lies near the intersection xHx�1\yKy�1 .

Proposition 9.4 Let G have a proper, left invariant metric d , and suppose xH and
yK are arbitrary left cosets of subgroups of G . For each constant L there is a constant
L0 DL0.G; d;xH;yK/ so that in the metric space .G; d/ we have

NL.xH /\NL.yK/�NL0.xHx�1
\yKy�1/:

Proof If there is no such L0 , then there is a sequence .zi/ in G so that zi is in the
L–neighborhood of both xH and yK , but i < d.zi ;xHx�1 \ yKy�1/ for each i .
It follows that zi D xhipi D ykiqi for some hi 2 H , ki 2 K and pi ; qi 2 G with
d.1;pi/ and d.1; qi/ both less than L. Since the ball of radius L in .G; d/ is finite,
we can pass to a subsequence in which pi and qi are constants p and q . Then for
each i we can express zi D xhip D ykiq . Therefore

ziz
�1
1 D xhih

�1
1 x�1

D ykik
�1
1 y�1

2 xHx�1
\yKy�1:

It follows that the distance between zi and xHx�1\yKy�1 is at most d.1; z1/ for
all i , contradicting our choice of .xi/.

Corollary 9.5 Let H and K be relatively quasiconvex subgroups of a relatively
hyperbolic group .G;P /. Then H \K is relatively quasiconvex in .G;P /.
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Proof Choose a finite relative generating set S for .G;P / and a proper, left invariant
metric d for G . Consider the Cayley graph x� WDCayley.G;S[P/. If c is a geodesic
in x� with both endpoints in H \K , then each vertex v of c lies within a uniformly
bounded d –distance of both H and K by (QC–5). Therefore, by Proposition 9.4 we
also have a uniform bound on the distance d.v;H \K/. Thus H \K satisfies (QC–5)
as well.

Theorem 9.1 and Corollary 9.5 together complete the proof of Theorem 1.2. The proof
of Corollary 1.3 is now immediate.

Proof of Corollary 1.3 Let H be a subgroup of a geometrically finite group G �

Isom.X /, where X is a finite volume manifold with pinched negative curvature. The
first assertion of the Corollary follows from Definition (QC–1) for relative quasiconvex-
ity. The second assertion is an immediate consequence of Corollary 9.5.

The notion of a strongly relatively quasiconvex subgroup was introduced by Osin in
[27, Section 4.2] in the special case that G is finitely generated. Osin’s results about
such subgroups extend easily to the general case. We give the definition and then list
several basic results about strongly relatively hyperbolic subgroups.

Definition 9.6 Let .G;P / be relatively hyperbolic. A subgroup H � G is strongly
relatively quasiconvex if H is relatively quasiconvex and the induced peripheral struc-
ture O on H is empty. In other words, the subgroup H \ gPg�1 is finite for all
g 2G and P 2 P .

Theorem 9.7 (See Theorem 4.16 of [27].) If H is strongly relatively quasiconvex in
.G;P / then H is finitely generated and word hyperbolic.

Proof The result is immediate, since .H;¿/ is relatively hyperbolic.

We also obtain the following result, proved by Osin in the case that G is finitely
generated [27, Proposition 4.18]. (We remark that Osin erroneously claims to have
proven Corollary 9.5, although his proof actually gives the result below.)

Theorem 9.8 Let H and K be subgroups of a relatively hyperbolic group .G;P /. If
H is strongly relatively quasiconvex and K is relatively quasiconvex, then H \K is
strongly relatively quasiconvex.

Proof Since H \K is a relatively quasiconvex subgroup of .H;¿/, its induced
peripheral structure must be empty.
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The following theorem characterizes strongly relatively quasiconvex subgroups in
several ways.

Theorem 9.9 Let .G;P / be a relatively hyperbolic group with finite relative generat-
ing set S . Choose a cusp uniform action of .G;P / on a ı–hyperbolic space .X; �/. If
H is a subgroup of G , then the following are equivalent.

(1) H is strongly relatively quasiconvex in .G;P /.

(2) H acts on ƒH � @X as a uniform convergence group; ie, the action of H on
the space of distinct triples of points of ƒH is proper and cocompact.

(3) The action of H on ƒH � @X is a convergence group action, and every point
of ƒH is a conical limit.

(4) Either H is finite, or the action of H on join.ƒX /�X is cocompact.

(5) For each basepoint x 2X the orbit Hx �X is quasiconvex.

(6) H is generated by a finite set T and for each basepoint x 2 X the orbit map
h 7! h.x/ induces a quasi-isometric embedding

Cayley.H; T /! .X; �/:

(7) H is generated by a finite set T and the inclusion H ,! G induces a quasi-
isometric embedding

Cayley.H; T /! Cayley.G;S [P/:

Proof The equivalence of (2) and (3) for convergence group actions has been proved by
Bowditch and also by Tukia [6; 35]. It is clear that (3) is simply definition (QC–1) with
no parabolic subgroups. Similarly, (4) is simply (QC–2) with no parabolic subgroups.
Thus the first four conditions are equivalent.

(4), (5) Suppose H acts cocompactly on join.ƒH /. Choose x 2 join.ƒH /. Since
join.ƒH / is quasiconvex, it is clear that any geodesic joining points of Hx lies
near Hx .

Conversely, suppose Hx is quasiconvex. As in the proof of Proposition 7.6, each
geodesic connecting points of Hx lies near Hx , so that same holds for bi-infinite
geodesics obtained as limits of such geodesics. Every point of ƒH is a limit point
of Hx by definition. Thus each pair in ƒH is joined by such a geodesic c . Any
other geodesic c0 joining the same pair is at a Hausdorff distance 2ı from c . The set
join.ƒH / is the union of all such lines c0 , so join.ƒH / lies in a uniformly bounded
neighborhood of Hx . In other words, H acts cocompactly on join.ƒH /.
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(5), (6) This equivalence is elementary and well-known for subgroups H of a word
hyperbolic group H 0 by work of Short. Replace H 0 with X to prove the desired result.

(1) , (7) This equivalence is proved by Osin in the case that S generates G [27,
Theorem 4.13]. However Osin’s proof never uses this hypothesis, so it extends without
change to the present setting once we replace dS with a proper, left invariant metric d

on G . (The forward implication also follows from Theorem 10.1 below.)

10 Geometric properties of subgroup inclusion

In this section, we examine the geometry of the inclusion H ,! G where H is
relatively quasiconvex in .G;P /. Theorem 10.1 shows that the relative Cayley graph
of H embeds quasi-isometrically into the relative Cayley graph of G . In Theorem
10.5 we compute the distortion of H in G in the case when H and G are both finitely
generated. We finish the section with a proof of Corollary 1.6.

If .G;P / is relatively hyperbolic, recall that P is the disjoint union

P WD
a

P2P

. zP �f1g/;

where zP is an abstract group isomorphic to P . If H is relatively quasiconvex in .G;P /
with induced peripheral structure O , then the set O is defined analogously to P .

Theorem 10.1 Let .G;P / be relatively hyperbolic, and let H be a relatively quasi-
convex subgroup with induced peripheral structure O . Choose finite relative generating
sets S and T for .G;P / and .H;O/ respectively. Then the inclusion H ,!G induces
a quasi-isometric embedding

f W .H; dT [O/! .G; dS[P/:

In principle, one could prove the theorem by modifying Short’s original proof that
quasiconvex subgroups of a hyperbolic group are finitely generated and undistorted [30].
However, it seems more direct to use electric geometry since in that setting the quasi-
isometric embedding is geometrically obvious.

Proof Let .G;P / have a cusp uniform action on .X; �/. Recall that Y 0 WD join.ƒH /�

X is �–quasiconvex for some � > 0. By (QC–2), we know that .H;O/ has a cusp
uniform action on a geodesic space Y that is H –equivariantly quasi-isometric to Y 0

endowed with the subspace metric � . By abuse of notation we will also use � to refer
to the metric on Y .
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Choose a truncated space X �U for G such that the only horoballs of U meeting Y 0

are those centered at parabolic points of H . Pull X �U back to Y to get an induced
truncated space Y �V for H . Suppose the horoballs of U and also of V are pairwise
separated by at least a distance r , where r is given by Lemma 6.8. Let y� denote the
electric metric associated to .X;U /, and also the electric metric associated to .Y;V /.

For any semipolygonal relative geodesic .; ˛/ in .X;U / connecting two points of
join.ƒH /, the path  is a quasigeodesic of .X; �/ by Lemma 6.8. Thus by the Morse
Lemma and the quasiconvexity of join.ƒH /, we see that  lies in the L–neighborhood
of join.ƒH / for some L depending only on � and the choice of U . It follows that
.Y; y�/ is quasi-isometric to join.ƒH / with the electric metric y� induced as a subspace
of X . Therefore the map Y !X induces an H –equivariant quasi-isometric embedding
.Y; y�/! .X; y�/.

Applying Proposition 7.9 to both Y and X , gives equivariant quasi-isometries

.H; dT [O/! .Y; y�/ and .G; dS[P/! .X; y�/:

Thus the inclusion H ,!G induces a quasi-isometric embedding

f W .H; dT [O/! .G; dS[P/;

completing the proof.

Two monotone functions f;gW Œ0;1/! Œ0;1/ are said to be ' equivalent if f � g

and g � f , where f � g means that there exists a constant C > 0 such that

f .r/� C g.C r CC /CC r CC

for all r � 0. One extends this equivalence to functions f W N! Œ0;1/ by extending f
to be constant on each interval Œn; nC 1/.

Definition 10.2 (Distortion) If G is a group with finite generating set S and H

is a subgroup with finite generating set T , the distortion of .H; T / in .G;S/ is the
function

�G
H .n/ WDmax

˚
jhjT

ˇ̌
h 2H and jhjS � n

	
:

Up to ' equivalence, this function does not depend on the choice of the finite generating
sets S and T . A subgroup H �G is undistorted if and only if �G

H
' n.

Definition 10.3 A function f W N!N is superadditive if

f .aC b/� f .a/Cf .b/ for all a; b 2N .
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The superadditive closure of a function f W N ! N is the smallest superadditive
function xf such that xf .n/� f .n/ for all n 2N . The superadditive closure is given
by the formula

xf .n/ WDmax
˚
f .n1/C � � �Cf .nr /

ˇ̌
r � 1 and n1C � � �C nr D n

	
:

See Brick [8] and Guba–Sapir [21] for more information about superadditive functions.

The following lemma is useful when passing from the peripheral subgroups of G to
the induced peripheral subgroups of H .

Lemma 10.4 Let .G;P / be relatively hyperbolic, and suppose H is a relatively
quasiconvex subgroup with induced peripheral structure O . Fix a proper, left invariant
metric d on G . For each constant L>0 there are constants DDD.L/ and L0DL0.L/

such that the following holds.

Let A be the finite collection of peripheral left cosets gP of .G;P / such that H \

gPg�1 2O . Let BL be the finite collection of peripheral left cosets gP that intersect
the ball B.1;L/ in .G; d/ such that H \gPg�1 is finite.

Suppose g0P is a peripheral left coset of .G;P / such that d.H;g0P / < L. Then
g0P D hgP for some h 2H and some gP 2A[BL , and

NL.H /\NL.g
0P /�NL0

�
h.H \gPg�1/

�
:

Furthermore, if gP 2 BL then

diam
�
NL.H /\NL.g

0P /
�
<D:

Proof Since d.H;g0P / < L, we can express g0P as h0gP for some h0 2H and
some coset gP intersecting B.1;L/ in .G; d/. If H \gPg�1 is finite, then gP 2BL .
In this case, we let h WD h0 .

On the other hand, if H \gPg�1 is infinite, then it is conjugate in H to a peripheral
subgroup of O . In other words, there is h1 2 H such that H \ h1gPg�1h�1

1
2O .

Therefore h1gP D .h1h�1
0
/g0P 2A. In this case, let h WD h1h�1

0
. In either case we

have g0P D hgP for some gP 2A[BL as desired.

Since A[BL is finite, Proposition 9.4 gives is a constant L0 DL0.L/ such that for
every gP 2A[BL we have

NL.H /\NL.gP /�NL0.H \gPg�1/:

Translating this statement by h gives

NL.H /\NL.g
0P /�NL0

�
h.H \gPg�1/

�
:
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Since BL is finite, there is some D0 <1 such that for each gP 2 BL we have

diam.H \gPg�1/ <D0:

If we let D WDD0C 2L0 , then

diam
�
NL.H /\NL.g

0P /
�
<D

whenever gP 2 BL .

Theorem 10.5 Let .G;P / be relatively hyperbolic with a finite generating set S . Let
H be a relatively quasiconvex subgroup with a finite generating set T . Let O denote
the induced peripheral structure on H . For each O DH \gPg�1 2O let ıO denote
the distortion of the finitely generated group O in the finitely generated group gPg�1 .
Then the distortion of H in G satisfies

f ��G
H �

xf ;

f .n/ WD max
O2O

ıO.n/where

and xf is the superadditive closure of f .

We remark that if O is empty (ie, H is strongly relatively quasiconvex) then f .n/
is considered to be identically zero, which is ' equivalent to a linear function. Thus
in the case of a strongly relatively quasiconvex subgroup H , the preceding theorem
implies that H is undistorted in G .

The outline of the proof is inspired by Short’s proof that quasiconvex subgroups of a
finitely generated group are finitely generated and undistorted [30].

Proof First let us see that f ��G
H

. If O is empty, there is nothing to show. Thus
it suffices to check that ıO ��G

H
for each O 2O . Choose finite generating sets A,

B , S and T for gPg�1 , O , G and H respectively such that A� S . Choose z 2O

such that
jzjA � n and jzjB D ıO.n/:

Since the distortion of O in H is linear, we have

jzjS � n and jzjT > .�
H
O /
�1
�
ıO.n/� 1

�
' ıO.n/:

Thus ıO ��G
H

.

We will now consider the less trivial inequality �G
H
� xf . Fix a finite generating set S

for G , and let �;R; � be the constants given by Corollary 8.16. Suppose jhjS � n, and
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let c be a geodesic in Cayley.G;S/ from 1 to h. Then the set of .�;R/–transition
points of c lies in the �–neighborhood of H in Cayley.G;S/.
The geodesic c is a concatenation of paths c0; c

0
1
; c1; : : : ; c

0
`
; c` such that each ci is a

component of the set of .�;R/–transition points of c , and each c0i is a component of
the set of .�;R/–deep points of c . Each path c0i is .�;R/–deep in a unique peripheral
left coset g0iPi by Lemma 8.10.

We will assume without loss of generality that each ci and each c0i is a sequence of
edges. Increasing R and � slightly, we can also assume that each ci contains at least
one edge, so that c has length at least `C 1; in other words, `C 1� n.

Lemma 10.4 gives constants L0 DL0.�C �/ and D DD.�C �/ and sets of cosets A
and B�C� such that for each i we have g0iPi D kigiPi for some ki 2H and some
giPi 2 A[B�C� . Furthermore, if we let Oi D H \ giPig

�1
i , then in .G; dS/ the

endpoints of c0i lie in N�.H /\N�.g0iPi/, which is a subset of NL0.kiOi/. If bi is
the label on the path c0i , then we can choose elements ui and vi in G such that jui jS
and jvi jS are less than L0 and such that oi WD uibiv

�1
i is an element of Oi as shown

in Figure 1.

1

H

k1g1P1

b1

u1 v1

o1 k1O1

k`g`P`

b`
u` v`

o` k`O`
h

Figure 1: The elements oi lie in the peripheral subgroup Oi of H .

Suppose the edges of ci are labelled by the sequence ai;1 � � � ai;ni
of elements of S .

Each vertex of ci lies within an S –distance � of a vertex of H . Let w0;0Dw`;n`
D 1,

and for each i D 1; : : : ; ` let wi�1;ni�1
WD ui , and wi;0 WD vi . Then for each j D

1; : : : ; ni�1 there exists wi;j 2G with jwi;j jS < � such that whenever j D 1; : : : ; ni

the element hi;j WD wi;j�1ai;jw
�1
i;j lies in H as illustrated in Figure 2.

We now have two decompositions of h. The first in G corresponds to the labels along
the geodesic c :

hD .a0;1 � � � a0;n0
/b1.a1;1 � � � a1;n1

/ � � � b`.a`;1 � � � a`;n`
/:

The second is a decomposition of h in H , that “tracks close” to c :

hD .h0;1 � � � h0;n0
/o1.h1;1 � � � h1;n1

/ � � � o`.h`;1 � � � h`;n`
/:

Algebraic & Geometric Topology, Volume 10 (2010)



Relative hyperbolicity and relative quasiconvexity for countable groups 1853

H

vi D wi;0 wi;1 wi;ni�1 wi;ni
D uiC1

ai;1 ai;ni

hi;1 hi;ni

Figure 2: The elements hi;j lie in H .

Since jwi;j jS < �CL0 , we have jhi;j jS < 2.�CL0/C1. If giPi 2 B�C� for some i ,
then jbi jS <D by Lemma 10.4, so that joi jS < 2L0CD . Let B denote the finite ball
in .H; dS/ centered at 1 with radius 2.�CL0/CDC1, and choose a finite generating
set T for H such that B � T . Then we have

jhjS D n0Cjb1jS C n1C � � �C jb`jS C n` � n;

jhjT � n0Cjo1jT C n1C � � �C jo`jT C n`:

If giPi 2 B�C� then joi jT � 1 by our choice of T . On the other hand, if giPi 2A,
then Oi 2O . Since the distortions of Oi in H and of giPig

�1
i in G are linear, there

is a constant C depending only on O such that

joi jT � C ıOi

�
C joi jS CC

�
CC

� C ıOi

�
C
�
jui jS Cjbi jS Cjvi jS

�
CC

�
CC

< C ıOi

�
C jbi jS C 2CL0CC

�
CC

� C xf
�
C jbi jS C 2CL0CC

�
CC:

Using the superadditivity of xf and the fact that ` < n, we see that

jhjT <
X̀
iD0

ni C

X̀
iD1

C xf
�
C jbi jS C 2CL0CC

�
CC

� nCC xf

�X̀
iD1

C jbi jS C 2CL0CC

�
CC `

� nCC xf
�
C nC .2CL0CC /`

�
CC `

� nCC xf
�
.2C C 2CL0/n

�
CC n:

Thus �G
H
� xf as desired.
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We will now use the previous theorem to complete the proof of Corollary 1.6.

Proof of Corollary 1.6 Properties (1) and (2) are equivalent by Corollary 1.3.

If H is undistorted in G , then it is relatively quasiconvex by Theorem 1.5. Recall that
since G is a geometrically finite Kleinian group its maximal parabolic subgroups P

are finitely generated and virtually abelian. Every subgroup O of such a group P is
finitely generated and undistorted. If H is relatively quasiconvex in G it follows from
Theorem 10.5 that H is undistorted in G . Thus (2) and (3) are equivalent.

A geometrically finite Kleinian group G acts properly discontinuously, cocompactly and
isometrically on a CAT.0/ space Y with isolated flats (see, for instance, Hruska [22]).
The author proves in [22] that a subgroup H of a CAT.0/ group G with isolated flats
is CAT.0/–quasiconvex if and only if H is finitely generated and undistorted in G .
Thus (3) is equivalent to (4).

References
[1] I Agol, D Groves, J F Manning, Residual finiteness, QCERF and fillings of hyperbolic

groups, Geom. Topol. 13 (2009) 1043–1073 MR2470970

[2] B N Apanasov, Geometrically finite hyperbolic structures on manifolds, Ann. Global
Anal. Geom. 1 (1983) 1–22 MR739901

[3] A F Beardon, B Maskit, Limit points of Kleinian groups and finite sided fundamental
polyhedra, Acta Math. 132 (1974) 1–12 MR0333164

[4] B H Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993)
245–317 MR1218098

[5] B H Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J.
77 (1995) 229–274 MR1317633

[6] B H Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math.
Soc. 11 (1998) 643–667 MR1602069

[7] B H Bowditch, Relatively hyperbolic groups, Preprint, University of Southampton
(1999) Available at http://eprints.soton.ac.uk/29769/1/bhb-relhyp.pdf

[8] S G Brick, On Dehn functions and products of groups, Trans. Amer. Math. Soc. 335
(1993) 369–384 MR1102884

[9] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grund. der Math.
Wissenschaften 319, Springer, Berlin (1999) MR1744486

[10] J W Cannon, D Cooper, A characterization of cocompact hyperbolic and finite-volume
hyperbolic groups in dimension three, Trans. Amer. Math. Soc. 330 (1992) 419–431
MR1036000

Algebraic & Geometric Topology, Volume 10 (2010)

http://dx.doi.org/10.2140/gt.2009.13.1043
http://dx.doi.org/10.2140/gt.2009.13.1043
http://www.ams.org/mathscinet-getitem?mr=2470970
http://dx.doi.org/10.1007/BF02329729
http://www.ams.org/mathscinet-getitem?mr=739901
http://www.ams.org/mathscinet-getitem?mr=0333164
http://dx.doi.org/10.1006/jfan.1993.1052
http://www.ams.org/mathscinet-getitem?mr=1218098
http://dx.doi.org/10.1215/S0012-7094-95-07709-6
http://www.ams.org/mathscinet-getitem?mr=1317633
http://dx.doi.org/10.1090/S0894-0347-98-00264-1
http://www.ams.org/mathscinet-getitem?mr=1602069
http://eprints.soton.ac.uk/29769/1/bhb-relhyp.pdf
http://dx.doi.org/10.2307/2154273
http://www.ams.org/mathscinet-getitem?mr=1102884
http://www.ams.org/mathscinet-getitem?mr=1744486
http://dx.doi.org/10.2307/2154172
http://dx.doi.org/10.2307/2154172
http://www.ams.org/mathscinet-getitem?mr=1036000


Relative hyperbolicity and relative quasiconvexity for countable groups 1855

[11] F Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933–963
MR2026551

[12] F Dahmani, Les groupes relativement hyperboliques et leurs bords, Thèse,
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