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Abstract  23 

How forest growth responds to climate change will impact the global carbon cycle. The 24 

sensitivity of tree growth and thus forest productivity to climate can be inferred from tree-ring 25 

increments, but individual tree responses may differ from the overall forest response.  Tree-ring 26 

data have also been used to estimate interannual variability in aboveground biomass, but a 27 

shortage of robust uncertainty estimates often limits comparisons with other measurements of 28 

the carbon cycle across variable ecological settings.  Here we identify and quantify four important 29 

sources of uncertainty that affect tree-ring based aboveground biomass estimates: subsampling, 30 

allometry, forest density (sampling), and mortality. In addition, we investigate whether 31 

transforming rings widths into biomass affects the underlying growth-climate relationships at two 32 

coniferous forests located in the Valles Caldera in northern New Mexico.   33 

Allometric and mortality sources of uncertainty contributed most (34-57% and 24-42%, 34 

respectively) and subsampling uncertainty least (7-8%) to the total uncertainty for cumulative 35 

biomass estimates.  Subsampling uncertainty, however, was the largest source of uncertainty for 36 

year-to-year variations in biomass estimates, and its large contribution indicates that between-37 

tree growth variability remains influential to changes in year-to-year biomass estimates for a 38 

stand.  The effect of the large contribution of the subsampling uncertainty is reflected by the 39 

different climate responses of large and small trees. Yet, the average influence of climate on tree 40 

growth persisted through the biomass transformation, and the biomass growth-climate 41 

relationship is comparable to that found in traditional climate reconstruction-oriented tree-ring 42 

chronologies.   Including the uncertainties in estimates of aboveground biomass will aid 43 
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comparisons of biomass increment across disparate forests, as well as further the use of these 44 

data in vegetation modeling frameworks.  45 

 46 

Keywords: Carbon Cycle, Aboveground biomass estimates, Uncertainty, Tree Rings, Growth-47 

climate Relationships 48 

  49 

Key Message  50 

Growth-climate relationships are preserved when transforming tree-ring data to aboveground 51 

biomass estimates, the uncertainties of which are dominated by choice of allometric equation and 52 

mortality accounting in cumulative calculations and by subsampling in year-to-year estimates. 53 

 54 

 55 

56 
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Introduction 57 

Whether the biosphere will act as a source or sink of carbon in the next century depends 58 

in part on how forest ecosystems respond to changing climate conditions (Friedlingstein et al. 59 

2006). Forests account for 30% of the terrestrial land area and store almost 45% of the terrestrial 60 

carbon (Bonan 2008).  Evaluation of the sensitivity of carbon uptake to climate, however, is 61 

challenging.  Direct manipulations of temperature and rainfall are typically limited to small 62 

stature ecosystems and short time scales (Shaver et al. 2000; Lu et al. 2012). In established forest 63 

ecosystems, we are limited to estimating carbon uptake in response to current or historical 64 

climate using methods such as forest inventories, eddy-covariance towers, or remote sensing. 65 

Estimates of forest carbon uptake from these sources are thus an important benchmark for land 66 

surface models (Beer et al 2010, Barr et al 2013).  However, these datasets are only available for 67 

a fraction of the lifespan of trees, and the variance in temperature and rainfall recorded in these 68 

relatively short-term records are typically a poor sample of long-term oscillations in the climate 69 

system. Furthermore, harmonized continental- or global-scale products often rely on simplifying 70 

assumptions such as the use of global, non-species or site-specific allometric equations that 71 

complicate comparisons with field data. 72 

Multi-century and even multi-millennial tree-ring chronologies detail the seasonal and 73 

annual climate variability experienced by temperate, boreal, and alpine trees over the course of 74 

their lifespan (Mann et al. 1998; Cook et al. 2004; Griffin et al. 2011; Williams et al. 2012; 75 

Belmecheri et al. 2015).  For example, winter precipitation and summer temperature are the 76 

most influential growth factors for trees in semi-arid regions (Touchan et al. 2011; Brice et al. 77 
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2013; St. George and Ault 2014; St. George 2014) whereas forests in more mesic environments 78 

are most strongly influenced by summer precipitation (St. George et al. 2010; St. George 2014).  79 

Furthermore, tree-ring data have been useful in developing stand-level biomass reconstructions 80 

to investigate long-term trends in aboveground productivity, and specifically the interannual 81 

fluctuations of this large carbon pool as a result of changing environmental conditions (Graumlich 82 

et al. 1989; Babst et al. 2014b; Babst et al. 2014a; Dye et al. 2016). 83 

There are, however, several limitations to using tree-ring records to infer climate 84 

sensitivities of carbon uptake. In most tree-ring analyses, the mean ring-width increment across 85 

multiple individuals is used to represent the growth at the site level (Hughes 2011).  However, 86 

this method can ignore the individual tree-level variability that is ecologically-relevant and 87 

contributes to the stand-level growth response in each year.  Factors such as tree size, 88 

competition, topography, and microclimate can cause different annual responses among 89 

individuals and may not be captured by sampling only the largest and oldest individuals at a site, 90 

as is common in many dendrochronological studies (Esper et al. 2008; Carnwath et al. 2012; 91 

Nehrbass-Ahles et al. 2014; Foster et al. 2016, Lenoir et al. 2017; Kovács et al. 2017).   92 

Furhtermore, increment cores are records of diameter growth and must be translated to carbon 93 

uptake through the use of derived allometric equations that translate linear growth to 94 

increments of stem volume and carbon content (Graumlich et al. 1989; Jenkins et al. 2004; Babst 95 

et al. 2014b; Babst et al. 2014a; Nehrbass-Ahles et al. 2014). Stand density can also affect 96 

biomass estimates.  Traditional dendroclimatology sampling methods greatly overestimate the 97 

potential biomass on the landscape by only sampling the oldest or largest individuals (Nehrbass-98 

Ahles et al. 2014). Not only does this potentially overestimate the biomass estimates, but it may 99 
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also influence our quantifications of how climate influences tree growth (Nehrbass-Ahles 2014). 100 

Therefore, ecological sampling designs where all individuals in a fixed plot or a random sub-101 

sample are included have been implemented to estimate forest productivity (e.g. Davis et al. 102 

2009; Babst et al. 2014b; Dye et al. 2016).  Finally, trees that are on the landscape today do not 103 

necessarily represent all trees that have contributed to biomass increment in the past.  This 104 

uncertainty increases as one goes further back in time, when less stand information is available 105 

(Swetnam et al. 1999; Babst et al. 2014a; Nehrbass-Ahles et al. 2014).  However, this fading 106 

record and mortality estimates can be estimated using repeat censuses, but extended, multi-107 

decadal census datasets are rare (Biondi 1999; van Mantgem et al. 2009; Dye et al. 2016). 108 

Without a proper accounting of these various sources of uncertainty surrounding biomass 109 

estimates, the applicability of tree-ring data to data assimilation and vegetation modeling efforts 110 

is restricted (Keenan et al. 2011).  Ecosystem models are used to forecast how forests will 111 

respond to future global changes and rely on empirical observations of biomass change for 112 

benchmarking and structural improvements (Richardson et al. 2010). Here, we aim to evaluate 113 

the climate sensitivity of tree growth and aboveground biomass increment in a semiarid forest in 114 

the Southwest USA while accounting for uncertainty in the biomass estimates. Forests in semi-115 

arid regions are particularly sensitive to climate change, with small changes in climate and 116 

growing conditions potentially resulting in large variability in carbon uptake (Poulter et al. 2014; 117 

Ahlström et al. 2015). We estimate the uncertainty in tree-ring-based estimates of living 118 

aboveground biomass increment for two semi-arid forests from 1980 through 2011 contributed 119 

by (1) the selection of allometric equations (allometric uncertainty), (2) ability of sampled trees to 120 

capture variability and patterns in annual growth increments of the forest (subsampling 121 
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uncertainty), (3) ability of sampling location to accurately capture overall mean forest density 122 

(sampling uncertainty), and (4) trends in tree mortality through time (mortality uncertainty). We 123 

then assess whether biomass transformations significantly alter the growth-climate relationship 124 

from that expressed by tree-ring chronologies. 125 

Methods 126 

Sampling design and site description 127 

Two sites were sampled in the Valles Caldera National Preserve, one upper elevation and 128 

one lower elevation site, located in the Jemez Mountains of northern New Mexico. This semi-arid 129 

continental region experiences dry conditions in May and June and frequent pulses of monsoon 130 

moisture in July and August (Coop and Givnish 2007).  The upper elevation site (Upper Site; 131 

35.89N, 106.53W) has an elevation of 3049 m.a.s.l. and is composed of 97% Engelmann spruce 132 

(Picea engelmanii Parry ex Engelm.; PIEN) with the scattered Douglas fir (Pseudotsuga menziesii 133 

(Mirb.); PSME; Anderson-Teixeira et al. 2011).  The Upper Site has a mean annual temperature of 134 

3.1˚C and a mean precipitation of 667 mm per year (Anderson-Teixeira et al. 2011).  The lower 135 

elevation site (Lower Site; 35.86N, 106.60W) is located at 2486 m.a.s.l., and is dominated by 136 

ponderosa pine (Pinus ponderosa Douglas ex C. Lawson; PIPO), with one Populus tremuloides 137 

Michx. individual.  The mean annual temperature at the Lower Site is 6.3˚C and it receives on 138 

average 550 mm of precipitation annually (Anderson-Teixeira et al. 2011).   139 

Previous, independent studies have generated aboveground biomass estimates for the 140 

Valles Caldera, but did not fully account for the different sources of uncertainty (Anderson-141 

Teixeira et al 2011).  Although our research is performed at the same site, we did not replicate 142 
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previously sampled locations and used a different sampling method. We established two plots of 143 

576 m2 at the Upper Site and one 576 m2 and one 624m2 at the Lower Site.  The second plot at 144 

the Lower Site was slightly larger to allow a similar number of stems to be sampled in both plots.  145 

In each plot, we counted stems greater than 6 cm in diameter and calculated stem densities of 146 

1900 stems ha-1 and 1100 stems ha-1 at the Upper Site and 1500 stems ha-1 and 900 stems ha-1 at 147 

the Lower Site.  148 

To reconstruct living biomass (hereafter referred to as biomass), two increment cores 149 

(180˚ from one another) were collected from a haphazard subsample of approximately 50 trees 150 

greater than 6 cm diameter at breast height (1.4 m above the ground; DBH; Supplemental Figure 151 

1) within each plot (Babst et al. 2014b).  A total of 201 trees were sampled across the four plots 152 

(100 trees at Lower Site; 101 trees at Upper Site; Table S1).  Increment cores were mounted, 153 

sanded, and analyzed using established dendrochronology techniques (Stokes and Smiley 1967; 154 

Speer 2010).  We used a combination of skeleton plotting (Douglass 1941; Stokes and Smiley 155 

1967) and the list method (Yamaguchi 2011) to crossdate (i.e. assign precise dates to individual 156 

tree rings).  Ring-width increments were then measured to the nearest 0.001mm and the 157 

assigned dates were validated using the program COFECHA (Holmes 1983; Grissino-Mayer 2001). 158 

The oldest sampled trees at all four plots were less than 100 years old (Table S2).  At the 159 

Upper Site, 76% of the trees were successfully crossdated (Table S1), resulting in a chronology 160 

composed of 77 trees with an interseries correlation of 0.708 and an EPS of 0.961 (Table S2).  Less 161 

than 3% of the trees at the Upper Site were not considered effectively dated, either visually or 162 

statistically, and 21% of the samples were unable to be analyzed due to complications during 163 

sample extraction (Table S1).  Cores from the upper site were often rotten, preventing a full 164 
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dendrochronological analysis.  Of the trees collected at the Lower Site, 86% were crossdated, 165 

leaving 11% that did not effectively crossdate, and only 3% unable to be analyzed (Table S1).  The 166 

chronology from this Lower Site was composed of 86 crossdated trees with an interseries 167 

correlation of 0.755 and an EPS of 0.975 (Table S2). 168 

We found signs of fire or insect damage at the time of sampling (i.e. large amounts of 169 

coarse woody debris) and detected no significant growth release events in the period 1980-2011 170 

(Supplemental Figure 2) or in records of management practices (Touchan et al. 1996; Anschueta 171 

and Merlan 2007; Allen et al. 2008).  Low intensity fire events precipitously decreased after 1900 172 

in this area  and no evidence of a large fire event was present at the time of sampling at either 173 

site (Touchan et al. 1996; Allen et al. 2008).  However, as with other proxy-based reconstructions, 174 

the ‘fading record’ can increasingly affect the accuracy of our biomass estimates back in time, as 175 

trees that were historically present at the sites may not have been present at the time of 176 

sampling and therefore could not be sampled (Swetnam et al. 1999; Babst et al. 2014a; Nehrbass-177 

Ahles et al. 2014).  We have taken two measures to account for this: 1) we have truncated the 178 

biomass reconstruction and analysis period at 1980, as this is the period of relatively little 179 

disturbance at these sites, and 2) we use reported broad-scale mortality rates for a comparable 180 

region in the western United States (van Mantgem et al. 2009; see Mortality Uncertainty section 181 

below). 182 

 183 

DBH reconstruction and Gap Filling Techniques 184 

         For each individual tree, annual DBH was reconstructed by subtracting ring-width 185 

increments from the DBH measured in the field in June 2011 (Davis et al. 2009; Dye et al. 2016) 186 
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and then truncated at 1980 for analysis.  Eccentricity in growth increment around the bole can be 187 

a confounding factor in DBH reconstructions, but a proportional method (Bakker 2005) resulted 188 

in minimal differences between the two techniques for our study period (r2 = 0.99, Supplemental 189 

Figure 3).  Minimal shrinkage due to drying is likely to occur, but was assumed negligible for this 190 

study (Cole 1977).  For the DBH reconstruction, individual cores from the same tree were 191 

averaged.  Cores that did not statistically crossdate were still used to estimate biomass after 192 

being visually checked for dating accuracy.  These cores were not used to develop the tree-ring 193 

chronologies but were included in the mean biomass estimates.  To reduce the potential size bias 194 

in the biomass estimate due to the high percentage of missing trees (25 trees at the Upper Site; 195 

13 trees at the Lower Site; Table S1; Supplemental Figure 4), we gap filled the missing cores for 196 

which we have DBH measurements, but no ring widths using a generalized additive mixed model 197 

and the R package mgcv (Yee and Mitchell 1991; Wood 2004; Wood 2011).  This model fit ring 198 

width (RW) as a function of fixed, interactive effects of species (SPECIES) and DBH at time of 199 

sampling (DBH) plus an additive a cubic smoothing spline through time for tree: s(YEARtree) (Eq. 200 

1). Nested random effects of site, plot, and were also included. Gapfilling and all data analyses 201 

were performed using the R programming language (v. 3.2.1, R Core Team 2015).  202 

 203 

[Equation 1] 𝑅𝑊𝑌𝐸𝐴𝑅,𝑇𝑅𝐸𝐸 = 𝑠(𝑌𝐸𝐴𝑅𝑇𝑅𝐸𝐸) +  𝑆𝑃𝐸𝐶𝐼𝐸𝑆 × 𝐷𝐵𝐻   204 

 205 

 206 

Allometric uncertainty 207 

Tree-level DBH reconstructions are transformed into biomass quantities through the use 208 

of allometric equations.  As is common for most forests, no site-specific equations existed for 209 

most of our species, so we relied upon the allometric equations curated by Jenkins et al. (2004) 210 
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and Chojnacky et al. (2013) for total aboveground biomass allometric equations (Component 2; 211 

Jenkins et al. 2004).  Our aim was to produce biomass estimates that reflect the upper limit of 212 

uncertainty possible, and we acknowledge that using site and species-specific equations based on 213 

expert opinion may produce more accurate and precise biomass estimates.   We used all 214 

available equations meeting the component and species criteria of our sample (Table S3).  215 

Species-level equations were used for PSME, POTR, and PIPO. There are not any aboveground 216 

biomass equations listed for Pinus ponderosa in the Jenkins database. Therefore, we used A 217 

species-level PIPO equation was produced from a reanalysis of the Jenkins et al. (2004) database 218 

(Chojnacky et al. 2013).  Genus-level Picea equations from Jenkins (2004) were used for PIEN 219 

because to total aboveground biomass equations were available. References for all equations 220 

used can be found in Supplemental Table 3.   221 

We calculated allometric uncertainty using the ‘allometry’ package within the Predictive 222 

Ecosystem Analyzer (PEcAn, LeBauer et al. 2013, www.pecanproject.org).  This package uses a 223 

Bayesian framework to combine multiple allometric relationships from Jenkins et al. (2004) into a 224 

single equation with corresponding parameter uncertainties.  Using the PEcAn module, we 225 

simulated a distribution of 10,000 allometric equations for each taxa, preserving covariance 226 

among parameters and sampled from the last 5,000 equations to allow for Markov chain Monte 227 

Carlo (MCMC) convergence. We randomly pulled 500 equations for each tree from the 228 

distribution for each species and used those to calculate tree-level biomass.  To preserve the 229 

allometric uncertainty at the tree level while scaling up to the site level, we averaged across all 230 

individuals at the site, randomly selecting a single biomass estimate for each tree.  This resulted 231 
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in 500 estimates of biomass for each site.  Allometric uncertainty was then described as the 95% 232 

confidence interval around the mean-centered distribution of cumulative biomass estimates.   233 

 234 

Subsampling Uncertainty 235 

Because tree rings and biomass estimates came from a subsample of 50 trees from each 236 

plot, our biomass calculations used the mean tree growth at the site level to characterize changes 237 

in biomass through time at the stand level.  This allowed us to not only present a mean estimate 238 

for biomass change, but also quantify the uncertainty present in forest-level biomass 239 

accumulation arising through the variability in individual tree growth.  This approach relies on the 240 

assumption that our haphazard sample of 50 trees accurately represents the size and species 241 

distribution of all individuals in the plot.  To calculate the subsampling uncertainty, we first 242 

calculated annual biomass increment for each tree using a first-difference approach and mean-243 

centered the increment distribution.  We describe the subsampling uncertainty using the 95% 244 

confidence interval around this observed distribution of values.  We used both dated and gap-245 

filled trees for this calculation, as it protects against a potential size bias of using only dated trees 246 

(Supplemental Figure 4).  247 

 248 

Sampling Uncertainty 249 

Sampling multiple locations in a site is the most common method of providing uncertainty 250 

in field-based biomass estimates.  This uncertainty arises from spatial heterogeneity resulting in 251 

variable densities among plots.  We characterized this location-based sampling uncertainty in 252 

forest density as the mean biomass for a tree at each site (kg per tree; averaged across both 253 

plots) times the density for each plot (trees per m2).  To robustly characterize sampling 254 
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uncertainty, ideally all individuals in a plot would be sampled, summed to the plot level, and then 255 

that total could be averaged across more than two plots, but this was not possible in our study.  256 

Thus, we describe the uncertainty in biomass estimates from sampling uncertainty in our study as 257 

the range based on the densities observed in our two plots.  258 

  259 

Mortality Uncertainty 260 

Long-term census data were not available for our study sites and therefore we have no 261 

records of how the loss of individuals to mortality affects biomass reconstructions at our site.  262 

Therefore, to account for the mortality-based biomass losses through time, we used regional 263 

mortality estimates from van Mantgem et al. (2009) to simulate background mortality processes 264 

and adjust the stand density applied to per-tree biomass estimates through time.  van Mantgem 265 

et al. (2009) reported a baseline mortality rate in 1979 of 0.4843 ± 0.0941% yr-1 (mean ± SE) with 266 

an annual increase in that rate of 0.024 ± 0.027% yr-1.  We calculated mortality uncertainty in our 267 

biomass estimates by using these reported values and error estimates to generate a distribution 268 

of modifications to our initial stem densities in time.  To do this, we assumed the values 269 

presented by van Mantgem et al. were normally distributed and converted standard error to 270 

standard deviation using the reported n=9.  We simulated a normal distribution of baseline 271 

mortality rates for 1979 that then compounded and increased in time to the present. Thus, the 272 

mortality rate in year t starting in 1980 can be described as the percent mortality rate (Mortality) 273 

in the previous year with in 1979 (normal, μ=0.4843, σ =0.2823) plus a fractional increase in that 274 

mortality rate (Eq. 2, van Mantgem 2009). The annual increase in mortality rate is described as a 275 

normal distribution (normal, μ = 0.024, σ = 0.081) times the previous year’s mortality rate.  276 
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Density in each year can then be simulated from the present into the past as a function of the 277 

initial density in time (t+1) plus the percentage of stems lost to mortality in that year (Eq. 3). 278 

 279 

Equation 2:  𝑀𝑜𝑟𝑡𝑎𝑙𝑡𝑖𝑦𝑡 = 𝑀𝑜𝑟𝑡𝑎𝑙𝑡𝑖𝑦𝑡−1 +  𝑀𝑜𝑟𝑡𝑎𝑙𝑡𝑖𝑦𝑡−1 ×  𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  280 

Equation 3: 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑡 = 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑡+1 +  𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑡+1 × 𝑀𝑜𝑟𝑡𝑖𝑎𝑙𝑖𝑡𝑦𝑡  281 

 282 

Using the errors reported by van Mantgem et al. (2009), we simulated 500 possible 283 

mortality-adjusted year-specific densities that were then multiplied with per-tree estimates of 284 

biomass. Negative simulated values that would represent recruitment were discarded in this 285 

process so that mortality would increase biomass estimates.  Mortality uncertainty is described 286 

as the 95% confidence interval in the difference between biomass estimates using mortality-287 

adjusted density relative to a static plot density using the stem density values observed in 2011. 288 

 289 

Total Uncertainty Calculation    290 

For both the cumulative and the interannual biomass reconstructions, the total 291 

uncertainty was calculated by first calculating the deviation of the upper and lower 95% 292 

confidence interval bound from the mean baseline biomass estimate: mean tree biomass 293 

estimate times mean plot density for each area of uncertainty.  The upper and lower bounds for 294 

each area were then added in quadrature to quantify the total uncertainty in field-based biomass 295 

estimates.  The percent contribution of each component was calculated as the component 296 

divided by the sum of all sources of uncertainty. 297 

  298 
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Climate Response Analyses 299 

We assessed the response of tree growth and above ground biomass increment to 300 

interannual variability in precipitation and temperature through a series of Pearson correlation 301 

analyses.  We compared the growth-climate relationships of four tree-ring width chronologies to 302 

that of the mean annual biomass increment (BM) time series per site.  Three tree-ring 303 

chronologies were calculated per site from our samples using 1) all crossdated trees, 2) the 304 

largest 10% of crossdated trees, and 3) the smallest 10% of crossdated trees (hereafter referred 305 

to as All, Large, and Small, respectively).  At the Upper and Lower Sites, respectively, the All 306 

chronologies represent diameter ranges of 6.8 – 53.6 cm and 10.2 – 40.5 cm, the Small 307 

chronologies are composed of diameters ranging from 6.8 – 10.0 cm (n = 11) at the Upper Site 308 

and 10.2 – 13.1 cm (n = 10) at the Lower Site.  The Large chronologies are composed of diameters 309 

from 34.8 – 53.6 cm (n = 11) at the Upper Site and 34.5 – 40.5 cm (n = 10) at the Lower Site.  We 310 

obtained additional tree-ring width chronologies that were specifically sampled for 311 

dendroclimatic purposes (‘ITRDB’) at Valles Caldera from the International Tree-Ring Data Bank 312 

that were built from similar species at similar elevations.  We used the chronology developed by 313 

Touchan et al. (PSME; 2011) and Brice et al. (PIPO; 2013) to evaluate the growth-climate 314 

responses at the Upper Site and Lower Site, respectively. Each chronology was generated using a 315 

30-yr cubic smoothing spline to detrend individual series and the biweight robust mean was 316 

calculated to create a site level chronology (Cook 1985; Cook and Peters 1997).  The BM time 317 

series was not detrended, because detrended data would not be used in land-surface model data 318 

assimilation, and detrending had little effect on the overall growth-climate response 319 

(Supplemental Figure 5).  We compared the BM time series and tree-ring width chronologies to 320 
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PRISM temperature and precipitation data (PRISM Climate Group 2004).  We extracted climate 321 

data for each of our sampled sites and aggregated to the following seasons: previous fall (pFall) = 322 

pSept, pOct, PNov; Winter = pDec, Jan, Feb; Spring = Mar, Apr, May; Summer = June, July, Aug).  323 

We then used a Pearson’s correlation analysis on the common overlapping period of all time 324 

series (1980-2007) to determine significant climate correlations with statistical significance 325 

defined as p < 0.05.  326 

To determine how the full range of uncertainties might affect the biomass growth-climate 327 

relationship, we bootstrapped 30,000 independent, random draws with replacement from the 328 

observed distribution of each area of uncertainty: allometry, sub-sampling, sampling, and 329 

mortality.  500 values from each source of uncertainty were independently drawn and added 330 

together in quadrature to generate 30,000 simulated BM time series. We then performed a 331 

similar correlation analysis as described above to assess the uncertainty in growth-climate 332 

relationships of the series.  We assessed the differences in climate response from the biomass 333 

increment responses of 1) all trees, 2) the largest 10% of trees, 3) the smallest 10% of trees at 334 

each site.  The size categories were based off the same DBH ranges as stated above for the tree-335 

ring width chronologies.  We identified relationships as significant if the 95% CI of the critical 336 

values did not encompass zero.  337 

  338 

Results 339 

The relative contribution of sources of uncertainty differed between cumulative biomass 340 

estimates and interannual biomass estimates.  The mean cumulative biomass at the time of 341 

sampling at the Lower Site (PIPO) was 20.95 kg m-2, with a lower 95% CI of 18.54 kg m-2 and an 342 

upper 95% CI of 23.54 kg m-2, and the mean biomass of the Upper Site (PSME/PIEN) was 24.47 kg 343 
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m-2, with a lower 95% CI of 16.96 kg m-2 and an upper 95% CI of 35.19 kg m-2 (Figure 1). With the 344 

exception of the allometric uncertainty, the ranges of uncertainty are comparable across both 345 

sites (Table S1).  At the Upper Site, allometric and mortality components account for over 75% of 346 

the total uncertainty in cumulative biomass, with uncertainty in the allometric equations 347 

accounting for 58 ± 9% (mean ± SD; 1980-2011) and mortality accounting for 24 ± 11% from 348 

1980-2011 (Figure 2; Table S1).  At the Lower Site, allometric uncertainty accounts for 34 ± 11% 349 

and mortality accounts for 42 ± 16% of the total uncertainty in cumulative biomass.  The 350 

subsampling uncertainty contributed the least to the overall cumulative biomass uncertainty at 351 

the upper and Lower Sites (7 ± 2% and 8 ± 3%, respectively; Figure 2; Table S1). 352 
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 353 

Figure 1. Site-level cumulative biomass estimates with total uncertainty ranges for an upper 

elevation Engelmann spruce dominated (Upper Site) and lower elevation ponderosa pine 

dominated forest (Lower Site) at the Valles Caldera, NM.  The dark black line represents the 

mean cumulative biomass estimate traditionally reported, and the shaded grey area is the 95% 

CI of biomass from adding all sources of uncertainty together in quadrature.  Points and error 

bars represent an independent assessment (Mean ± 1.96*SD; n = 4) of living biomass (assuming 

a 50% carbon content) from 2007 for both sites (Anderson-Teixeira et al. 2011 Table S2).  
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 354 

The mean interannual biomass increment at the Upper Site was 0.39 ± 0.16 kg BM m-2 yr-1 355 

with an upper 95% CI of 1.88 ± 0.76 kg BM m-2 yr-1 and a lower 95% CI of -0.08 ± 0.08 kg BM m-2 356 

yr-1.  The negative lower CI indicates the potential impact that the mortality uncertainty has on 357 

the overall biomass uncertainty from year to year.  At the Lower Site the mean annual biomass 358 

increment was 0.32 ± 0.3 kg BM m-2 yr-1 with an upper 95% CI of 1.02 BM m-2 yr-1 and a lower 359 

95% CI of -0.04 kg BM m-2 yr-1.  Subsampling uncertainty accounted on average for more than 360 

70% of the interannual biomass subsampling uncertainty at both the Upper and the Lower Sites 361 

(70 ± 10% and 71 ± 14%, respectively; Figure 3; Table S1).  Second to subsampling uncertainty, 362 

mortality uncertainty accounted for 21 ± 16% of the total annual biomass subsampling 363 

Figure 2.  Cumulative tree-ring derived biomass estimates for the Upper Site (left column) and 
the Lower Site (right column) at the Valles Caldera.  The black line represents the biomass 
calculated for the mean allometric equation for each site, and the shaded area is the 95% 
confidence interval for each source of uncertainty. 
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uncertainty at the Lower Site and 16 ± 13% at the Upper Site (Figure 3; Table S1).  At the Lower 364 

Site, sampling uncertainty contributed the least to the overall subsampling uncertainty (3 ± 2%), 365 

whereas allometric uncertainty composed 4 ± 1% (Figure 3).  Allometric uncertainty played a 366 

larger role at the Upper Site, contributing 8 ± 2%, and sampling uncertainty contributed the least 367 

with 5 ± 2% of the overall subsampling uncertainty.  368 

  369 
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 370 

The climate sensitivities of the BM time series at both sites were similar to that expressed 371 

by the four tree-ring width time series (Figure 4).  A signal typical of the Southwestern US can be 372 

seen at both sites and across all chronologies analyzed, with negative relationships with spring 373 

and summer temperatures and positive relationships with previous fall, winter, and spring 374 

precipitation (Figure 4).   At the Upper Site, the BM time series generally reflected the signal in 375 

the All chronology and the ITRDB chronology.  However, the BM time series showed a significant 376 

negative correlation with summer temperature and a significant positive correlation with 377 

summer precipitation, when neither the All chronology nor the ITRDB chronology do so (Figure 378 

4).  The Large chronology at the Upper Site showed similar summer correlations to those of the 379 

Figure 3.  Interannual tree-ring derived biomass estimates for the Upper Site (left column) and 
the Lower Site (right column) at the Valles Caldera.  The black line represents the mean 
interannual biomass increment calculated for each site, and the shaded area is the 95% 
confidence interval for each source of uncertainty. 
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BM time series, indicating that in the summer months the largest trees at the Upper Site are 380 

contributing more to this particular climate response (Figure 4).  The growth responses are 381 

relatively consistent between the Large chronology and the Small chronology, with notable 382 

differences in both the summer temperature and precipitation responses.  In both cases, the 383 

growth response of the Large chronology was stronger than that of the Small chronology.  At the 384 

Lower Site, the BM time series showed a significant negative relationship with temperature 385 

during the previous fall and the current summer, but not a significant relationship with spring 386 

temperatures.  This is different than any of the tree-ring chronologies from this site, which all 387 

show a significant negative response to spring temperature (Figure 4). 388 
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 389 

The general growth-climate relationships for the biomass increment time series using the 390 

full uncertainty distribution were similar to those for the mean BM and tree-ring chronology 391 

assessment, but illustrate the breadth of climate response upon translating tree-ring data into 392 

biomass (Figure 4 and Figure 5).  Across both sites, the smallest trees show a relatively narrow 393 

range of climate responses, compared to the largest trees (Figure 5).  Once transformed into 394 

biomass, the mean summer growth response of the Small trees is strengthened, whereas the 395 

Figure 4. Seasonal (previous Fall, Winter, Spring, Summer) growth-climate response of mean 

biomass increment estimates (dark green) and four tree-ring chronologies (Large, Small, All, 

ITRDB) with mean temperature and total precipitation at an upper (Upper Site) and a lower 

(Lower Site) elevation site in the Valles Caldera, NM.  The Large chronology (blue) is composed 

of the largest 10% of trees by DBH and the Small chronology (red) is composed of the smallest 

10%.  The ITRDB chronology (light blue) was gathered from ITRDB (Upper Site: Touchan et al. 

2011; Lower Site: Brice et al. 2013).  The mean biomass increment time series (light green) 

represents the mean annual biomass increment for each site.  Significant responses were 

identified as those values exceeding the (α = 0.05) significance criterion (dashed line). 
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mean response of the largest trees appears to be muted, likely due to the highly-varied climate 396 

response (Figs. 4 and 5).  397 

  398 
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 399 
  400 

Figure 5.  Distributions of growth-climate relationships for simulated biomass time series from 

an upper elevation (Upper Site; PIEN) and a lower elevation (Lower Site; PIPO) forest in the 

Valles Caldera, NM.  The Large time series is based on the largest 10% of trees, the Small time 

series is based on the smallest 10% of trees, and the All time series is composed of all trees 

sampled.  Distributions were generated by bootstrapping, with replacement, 30,000 time 

series meeting each of the three criteria and performing a Pearson’s correlation analysis.  
Solid bars refer to the mean r-value.  
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Table 1. Mean ± SD for cumulative and incremental living aboveground biomass uncertainty 401 

ranges (kg m-2) for 1980 – 2011 of major sources of variability at an upper elevation and a lower 402 

elevation forest in the Valles Caldera, NM.  Total uncertainty is calculated by adding the upper 403 

and lower 95% confidence intervals of each area of uncertainty in quadrature.  404 

Source Cumulative Range (kg BM m-2) Incremental Range (kg BM m-2y-1) 

  Upper Site Lower Site Upper Site Lower Site 

Allometric 14.88 ± 2.14 3.89 ± 0.47 0.20 ± 0.09 0.15 ± 0.06 

Subsampling 1.84 ± 0.76 0.98 ± 0.30 1.84 ± 0.76 3.19 ± 1.25 

Sampling 2.86 ± 1.35 1.78 ± 0.21 0.13 ± 0.07 0.85 ± 0.36 

Mortality 6.39 ± 2.82 5.39 ± 2.50 0.30 ± 0.19 0.61 ± 0.40 

Total 17.67 ± 0.93 8.15 ± 1.73 1.95 ± 0.70 1.06 ± 0.25 

 405 

 406 

Discussion 407 

The application of tree rings to aboveground biomass assessments provides time series of 408 

biomass change that are similar to, but more finely-resolved than estimates from periodic census 409 

data (Dye et al. 2016).  However, appropriate uncertainties must be reported alongside these 410 

estimates to facilitate comparisons among disparate locations and data types.  Without the 411 

accompanying uncertainties, comparisons between similar forest types can be misleading.  For 412 

example, our mean estimate of total aboveground biomass at the Lower (PIPO) site was 19.7 kg 413 

BM m-2 in 2007.  Without uncertainties or margins of error, this would appear high when 414 

compared to comparable values from similar regions and forest types. A study whose sites are 415 

proximal to our own estimated aboveground biomass at the Lower (PIPO) site to be 15.3 ± 4.2 kg 416 

BM m-2 (mean ± SD; Anderson-Teixeira 2011 Table S2) in 2007.  In other southwest PIPO forests, 417 

Kaye et al. (2005) estimated aboveground biomass has been estimated as 12.7 ± 2.2 kg BM m-2 in 418 
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1995, and Finkral et al. (2008) observed a range of biomass of 5.9—14.1 ± 3.0 kg BM m-2.   419 

However, when the full range of uncertainty is considered, our aboveground biomass estimate 420 

(17.3—23.0 kg BM m-2; 95% CI) is consistent with these previously reported values.   421 

We found that uncertainty due to the choice in the allometric equation is the largest 422 

contributor to the overall uncertainty in cumulative biomass estimates at our site (Figure 2).  423 

Choice of allometric equation has substantial influence over the initial value of biomass 424 

reconstructions (Chave et al. 2004), however, this area of uncertainty is seldom reported, despite 425 

both the plethora and dearth of equations that can exist for any one species (Jenkins et al. 2004, 426 

Chojnacky et al. 2013, Supplemental Table 3).  The most commonly reported uncertainty 427 

associated with biomass quantities is the variability among plots, what we term ‘sampling’ 428 

uncertainty. The spatial heterogeneity of biomass across the landscape can be quite large, with 429 

the 95% CI consisting of between 34% and 100% of the mean biomass estimates reported by 430 

other studies in similar forest types (Kaye et al. 2005, Finkral et al. 2008, Anderson-Teixeira et al. 431 

2011). The uncertainties that accompany tree-ring derived estimates of aboveground biomass are 432 

also influenced by a combination of temporally static factors such as allometric equation choice, 433 

and temporally dynamic factors such as annual increment and mortality rate.  Yet, despite the 434 

process involved in transforming tree-ring increments into estimates of aboveground biomass, 435 

the growth-climate relationships observed in our tree-ring chronologies persist (Figures 4 and 436 

Figure5).  This means that, at least in climate-sensitive regions such as the semi-arid, American 437 

Southwest (St. George and Ault 2014), the observed growth-climate relationships will be 438 

accurately represented in the aboveground biomass estimates that are subsequently 439 

incorporated into large-scale modeling frameworks.  440 
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Not all trees in the stand respond similarly to interannual variation in climate. 441 

Subsampling uncertainty accounts for at least 70% of the total interannual biomass increment 442 

uncertainty, and arises when extrapolating the observed, individual-level growth patterns to 443 

represent that of the entire stand.  However, the represented climate signal may change 444 

depending on the climate sensitivity of the species sampled and the manner in which those trees 445 

are selected (Nehrbass-Ahles et al. 2014; St. George and Ault 2014).  The crossdating process is 446 

integral to the proper quantification of this area of uncertainty to temporally align the annual 447 

growth of individual trees (Black et al. 2016).  The mean growth increment is often used in 448 

dendrochronology to characterize and understand the mechanisms that affect tree growth at the 449 

site level.  However, using the mean value in these analyses can overlook factors that influence 450 

tree growth, such as stand dynamics or size.  For example, Nehrbass-Ahles et al. (2014) found 451 

that sampling design had little influence on the climate signal that was expressed by the standard 452 

mean tree-ring chronology, as using the mean has a stabilizing effect on the expressed climate 453 

signal.  We found a similar result (Figure 4): the growth-climate responses of the mean tree-ring 454 

width chronologies and BM time series are similar.  However, we see differing strengths in the 455 

correlations with climate of Large and Small trees (Figure 4; Figure 5), which may indicate how 456 

asymmetric competition within the stand influences climate responses (Canham et al. 1994; 457 

Rollinson et al. 2016).  The mean forest response characterizes the general growth-climate 458 

relationship of the larger, more dominant trees (Figure 3; Figure 4), and by presenting the 459 

subsampling uncertainty alongside the mean biomass estimate we can gain a more nuanced view 460 

of the growth-climate relationships of non-dominant forest components (Rollinson et al. 2016).  461 

Tree-ring increments cannot provide a time series of interannual changes in bark thickness.  For 462 
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our calculations we have assumed a constant bark thickness with a changing ring-width 463 

increment, and recognize that this may not be an accurate depiction of allocation of resources to 464 

bark through time.  The subsampling uncertainty is present at both the cumulative and 465 

incremental time steps, but is a relatively minor component compared to other sources of 466 

uncertainty at the cumulative level (Figure 2).   467 

The choice of allometric equation strongly influences the cumulative biomass estimate 468 

(Figure 2), but had a minimal effect on the interannual biomass increment (Figure 3).  At the 469 

Upper Site, allometric uncertainty comprised 57 ± 8% of the total uncertainty around cumulative 470 

biomass, whereas at the Lower Site it only contributed 34 ± 11% to the overall cumulative 471 

uncertainty.  Chave et al. (2004) found that allometric uncertainty in tropical trees can dominate 472 

over sampling uncertainty.  We also see that allometric uncertainty dominates the cumulative 473 

biomass uncertainty at our sites.  However, at the incremental scale, its influence is less than that 474 

of the subsampling variability (Figure 2 and Figure 3).  Allometric equations allow for diameter 475 

reconstructions to be transformed into biomass estimates, but uncertainties exist within and 476 

among allometric equations (Chave et al. 2004; Nickless et al. 2011; Babst et al. 2014a).  Large 477 

syntheses and databases (Jenkins et al. 2004; Chojnacky et al. 2013) have made allometric 478 

equations more accessible, but the variability in equations among species, size classes, and across 479 

sites (Ketterings et al. 2001) make it difficult to identify the most appropriate equation for a given 480 

study.   481 

Ideally, any reconstruction of biomass would rely on site-specific allometric equations, but 482 

even site-specific equations will contain parameter uncertainties that should be reported to 483 

facilitate easier comparisons between sites and among equations. By using a Bayesian approach 484 
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(LeBauer et al. 2013) we generated parameter-based uncertainties that included all of the 485 

equations available for each species from the Jenkins et al (2004) database, and thus have 486 

illustrated the full range of biomass estimates possible from these equations.  Using all available 487 

equations has likely increased the uncertainty in our biomass estimates.  However, due to strong 488 

influences of fine-scale environmental variability and phenotypic plasticity in growth form 489 

(Weiner 2004), even locally-derived equations may not accurately represent all trees sampled in 490 

any one study (Chave et al. 2004).   491 

Sampling uncertainty is influenced by the forest structure and the chosen sampling 492 

design.  A sampling design that both accurately represents the variability among individuals 493 

within the forest, yet is feasible to implement, has always been a concern in ecological research 494 

(Botkin and Simpson 1990; Pacala et al. 1996; Mackenzie and Royle 2005).  Nehrbass-Ahles et al 495 

(2014) recently advocated for the use of 25m fixed radius plots as a practical means to estimate 496 

aboveground biomass in European forests.  However, in our least dense plot (0.09 trees m-2) this 497 

would have resulted in 176 trees per plot, whereas a mean of 57 trees were present in the 498 

Nehrbass-Ahles et al. (2014) plots.  The range of sampling uncertainties at the Upper and Lower 499 

sites was comparable to those reported for nearby sites within the Valles Caldera. In 2007, the 500 

living biomass at the site was reported as 26.6 ± 10.8 kg BM m-2 (mean ± 95% CI; assuming a 50% 501 

C content; Anderson-Teixeira et al. 2011 Table S2) and 15.2 ± 8.2 kg BM m-2 at the Upper and 502 

Lower sites, respectively (Figure 1).  The reported uncertainty overlaps with the full range of 503 

uncertainty observed at our sites (Figure 1), but is larger than the range of our reported sampling 504 

uncertainty (1.35 and 0.21 kg BM m-2 at the Upper and Lower Sites, respectively; Anderson-505 

Teixeira 2011 Table S2).  It is likely that the previous study analyzed a dataset with greater spatial 506 
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diversity, but the reported uncertainties facilitate comparisons between the two biomass 507 

estimates.   508 

Tree-ring investigations of mortality are traditionally focused on establishing the timing of 509 

an event (Foster 1988; Swetnam and Lynch 1989; Daniels et al. 1997), but quantifying the extent 510 

of a past mortality events is highly situational (Rubino and McCarthy 2004).  Our sites were 511 

relatively even-aged and no major anthropogenic or natural disturbances were recorded over the 512 

lifespan of most trees (Touchan et al. 1996; Anschueta and Merlan 2007; Allen et al. 2008; 513 

Supplemental Figure 2), but we have limited our analysis to the period 1980-2011 to overcome 514 

the challenges associated determining a representative mortality rate.  Long-term census data 515 

have been used to determine timing of individual mortality events, but these datasets are sparse 516 

and time consuming to generate (Eisen and Plotkin 2015).  However, when these data are 517 

available, tree-ring estimates of aboveground biomass at the same site fall within the 95% 518 

confidence interval of the permanent plots, suggesting that, to a point, tree rings can be used to 519 

accurately depict aboveground carbon dynamics (Dye et al. 2016).  We chose to use generalized 520 

mortality values from the interior western US (van Mantgem et al. 2009) to estimate changing 521 

stand densities and thus biomass load back through time, but localized mortality rates or detrital 522 

biomass loads would increase the accuracy of this source of uncertainty.  We acknowledge that 523 

mortality is more episodic than is indicated by our continuous mortality rate, and often occurs as 524 

sudden die-off events (Allen et al. 2010) or gap dynamics (Pederson et al. 2014) rather than a 525 

constant self-thinning rate that we describe in this paper.  These die-off events would manifest 526 

themselves in the existing tree-ring record as synchronous increases in the growth (release 527 

events) of nearby surviving trees, and thereby affecting the mortality uncertainty of the biomass 528 
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reconstruction (Lorimer and Frelich 1989). There is no evidence that such an event occurred at 529 

the sites we studied from 1980 through 2011 (Supplemental Figure 2). Mortality is a difficult 530 

process to constrain, both in the lab (Fisher et al. 2010) and in the field (Allen et al. 2010), but 531 

continued measurement efforts across diverse sites will greatly improve the accuracy of mortality 532 

estimates from isolated stands to landscape-level processes. 533 

The climate response patterns in both our chronologies and biomass estimates adhere to 534 

what is known about forests in this region: they are strongly influenced by winter precipitation 535 

and spring temperatures, prior to the hot pre-monsoon summer conditions (St George et al. 536 

2010; Touchan et al. 2011; Griffin et al. 2013; St George and Ault 2014). In general, growth-537 

climate relationships of the BM time series are similar to that of the mean tree-ring chronology 538 

based on all trees, with the exception of the increased summer precipitation response (Figure 4). 539 

Detrending the biomass data did little to change the growth-climate relationship (Supplemental 540 

Figure 5).  The effect of the large contribution of the incremental upscaling uncertainty (Figure 3) 541 

can be seen in the different climate responses of large and small trees (Figure 4).  Using only the 542 

growth-climate response of the largest trees does change the observed pattern at both sites 543 

(Figure 3 and Figure 4).  On a per-stem basis, large trees disproportionately contribute more to 544 

the total forest biomass estimate than smaller trees.  Therefore, it is not unreasonable that the 545 

growth signal of the largest trees most closely resemble the forest-level response (Lutz et al. 546 

2012; Slik et al. 2013).  The differences between responses of Large and Small trees could indicate 547 

the impacts assymetric competition or access to water sources may have on climate respons 548 

(Rollinson et al. 2016, Kerhoulas et al. 2013).  Both forests had relatively simple canopy 549 

structures, but the broad response of the Large trees suggests that they are still experiencing 550 
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varied environmental and ecological conditions that affects their sensitivity to climate (Carnwath 551 

et al. 2012).  552 

Accurately projecting future changes to the terrestrial carbon cycle depend in part on 553 

characterizing the long term response of ecosystems to climate (Friedlingstein et al. 2006).  To 554 

this end, tree rings are useful in estimating aboveground biomass for various forest ecosystems 555 

over longer time periods (Graumlich et al. 1989; Babst et al. 2014b; Babst et al. 2014a; Nehrbass-556 

Ahles et al. 2014; Dye et al. 2016), but we must continue to develop this technique to better 557 

understand the terrestrial carbon cycle. Individual trees compose the forest and it is the growth 558 

response of these individuals that affects the concerted ecosystem response.  As tree rings are 559 

increasingly used in studies of carbon dynamics (Babst et al. 2014a, Nehrbass-Ahles et al. 2014, 560 

Dye et al. 2016), the methods must continue adapt to understand the growth-climate 561 

relationships at multiple scales.  In the case of terrestrial carbon and biomass studies, our study 562 

suggests that both climate and ecological variables such as stand density and competition have 563 

strong effects on tree growth and that the ecosystem response to climate can be more variable 564 

than what is represented by a subsample trees in a particular age or size class.  Tree rings provide 565 

a means to generate both cumulative and interannual increment estimates of aboveground 566 

biomass, but the lack of uncertainty estimates limits the inferences and comparisons that can be 567 

made (Keenan et al. 2011). Uncertainty estimates will facilitate the creation of large-scale 568 

biomass networks, providing an empirical basis from which to model carbon cycle dynamics.       569 
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Supplemental Material 761 

Table S1.  Sample size and dating success at both the plot- and the site-level for an upper 762 

elevation spruce dominated forest (Upper Site) and a lower elevation ponderosa pine dominated 763 

forest (Lower Site) in the Valles Caldera, NM.  Gap filled trees were simulated with generalized 764 

additive mixed model to reduce any potential bias from missing trees.   765 

Site Plot # Cored trees Crossdated Undated Gap filled 

Upper Site  101 77 2 22 

 Plot A 50 35 0 15 

 Plot B 51 42 2 7 

Lower Site  100 86 11 3 

 Plot A 50 41 6 3 

  Plot B 50 45 5 0 

  766 

  767 

  768 

Table S2.  Tree-ring chronology statistics for dated cores at both the Upper and Lower Sites in the 769 

Valles Caldera, NM.  Start date refers to the oldest tree in the chronology, and End Date indicates 770 

the year of sampling.  Rbar corresponds to the mean between-tree correlation, and the 771 

Interseries correlation is based upon all core samples.  The Expressed Population Signal (EPS) is a 772 

measure of how well the signal recorded in the sampled trees reflects the population signal 773 

(Wigley et al. 1984).    774 

Site Plot Start Date 

End 

Date 

Length 

(yrs) Rbar 

Interseries 

Correlation EPS 

Upper Site  1923 2011 88 0.574 0.708 0.961 

 Plot A 1924 2011 87 0.581 0.713 0.923 

 Plot B 1923 2011 88 0.591 0.720 0.934 

Lower Site  1929 2011 82 0.666 0.755 0.975 

 Plot A 1935 2011 76 0.713 0.788 0.959 

  Plot B 1929 2011 82 0.642 0.735 0.949 
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 Table S3.  References for allometric equations that were used to calculate the ‘allometric 775 

uncertainty’.  Jenkins et al. (2004) and Chojnacky et al. (2013) publications house specific 776 

parameter values and equation forms for allometric equations used in this analysis. 777 

Site Common Name Reference 

Lower Site Pinus ponderosa modified Chojnacky et al 2013* 
Lower Site Populus tremuloides Campbell et al. 1985 
Lower Site Populus tremuloides Campbell et al. 1985 
Lower Site Populus tremuloides Campbell et al. 1985 
Lower Site Populus tremuloides Campbell et al. 1985 
Lower Site Populus tremuloides Freedman et al. 1982 
Lower Site Populus tremuloides Johnston and Bartos 1977 
Lower Site Populus tremuloides Ker 1980 
Lower Site Populus tremuloides Ker 1984 
Lower Site Populus tremuloides Lieffers and Campbell 1984 
Lower Site Populus tremuloides Maclean and Wein 1976 
Lower Site Populus tremuloides Pastor et al. 1984 
Lower Site Populus tremuloides Pastor and Bockheim 1981 
Lower Site Populus tremuloides Peterson et al. 1970 
Lower Site Populus tremuloides Pollard 1972 
Lower Site Populus tremuloides Pollard 1972 
Lower Site Populus tremuloides Pollard 1972 
Lower Site Populus tremuloides Ruark and Bockheim 1988 
Lower Site Populus tremuloides Singh 1984 
Lower Site Populus tremuloides Singh 1984 
Lower Site Populus tremuloides Young et al. 1980 
Lower Site Populus tremuloides Young et al. 1980 

Upper Site Picea sp. Chojnacky et al. 2013 
Upper Site Picea sp. Young et al. 1980 
Upper Site Pseudotsuga menzesii Barclay et al. 1986 
Upper Site Pseudotsuga menzesii Barclay et al. 1986 
Upper Site Pseudotsuga menzesii Barclay et al. 1986 
Upper Site Pseudotsuga menzesii Barclay et al. 1986 

*Equation derived from Chojnacky et al. 2013, Personal comm. Chojnacky Feb 2015 778 

Equation form 3 Jenkins et al. 2004: ln(biomass) = -3.5185 + 2.6909* ln(DBH)  779 

 780 

 781 

 782 



 41 

 783 

Supplemental Figure 1.  Histograms of diameters (DBH) of trees from two sites in the Valles 784 
Caldera that were sampled in this study and used to reconstruct biomass at these sites. 785 
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 787 

Supplemental Figure 2. Major and minor release analysis events for both the Upper and Lower Sites at the 788 

Valles Caldera, NM.  Definitions of major and minor events adheres to criteria proposed in Lorimer and 789 

Frelich (1989), and no significant, synchronous, major release events are detected for the period of 1980-790 

2011 at either the Upper Site (<3% of sampled trees) or Lower Site (0% of sampled trees) in this study. 791 

  792 
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 793 

Supplemental Figure 3.  Comparison between the diameter reconstruction (DBH) that we 794 
employed in our study (Davis et al. 2009; Dye et al. 2016) with the proportional diameter 795 
reconstruction methodology outlined in (Bakker 2005).  The Solid red line is the 1:1 line and the 796 
dashed blue line is the best fit line through the data.  For the period of 1980-2011 the two 797 
methods produce similar results, producing an R2 value of 0.99, and a y-intercept of 0.32 cm. 798 
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 800 
 801 

Supplemental Figure 4.  Two time series for samples collected at the Valles Caldera, NM.  The 802 

‘Dated’ time series (orange) is composed of only trees that met visual and statistical crossdating 803 

standards.  The ‘All Trees’ time series (blue) contains both dated samples and gap filled samples.  804 

The mean ring width (mm; line) for each site is accompanied by the 95% CI (shaded area). 805 

 806 

807 
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 808 

Supplemental Figure 5. Seasonal (pFall = previous Sept., Oct., Nov.; Winter = previous Dec., 809 

current Jan, Feb.; Spring = Mar., Apr., May; Summer = Jun, July, Aug.) growth-climate response of 810 

the raw mean biomass estimate (BM) and the detrended mean biomass estimate with mean 811 

temperature and precipitation (sum; PRISM Climate Group 2004) at an upper elevation (Upper) 812 

and a lower elevation (Lower) site in the Valles Caldera, NM.  Bold colors indicate a significant (α 813 

= 0.05) relationship.  The growth-climate response is similar between the two time series, and 814 

therefore only the BM time series is used in the manuscript.   815 

 816 

 817 



 

Figure 1. Site-level cumulative biomass estimates with total uncertainty ranges for an upper 

elevation Engelmann spruce dominated (Upper Site) and lower elevation ponderosa pine 

dominated forest (Lower Site) at the Valles Caldera, NM.  The dark black line represents the mean 

cumulative biomass estimate traditionally reported, and the shaded grey area is the 95% CI of 

biomass from adding all sources of uncertainty together in quadrature.  Points and error bars 

represent an independent assessment (Mean ± 1.96*SD; n = 4) of living biomass (assuming a 50% 

carbon content) from 2007 for both sites (Anderson-Teixeira et al. 2011).  

 

Figure 1



 

Figure 2.  Cumulative tree-ring derived biomass estimates for the Upper Site (left column) and 

the Lower Site (right column) at the Valles Caldera.  The black line represents the biomass 

calculated for the mean allometric equation for each site, and the shaded area is the 95% 

confidence interval for each source of uncertainty. 

Figure 2



 

Figure 3.  Interannual tree-ring derived biomass estimates for the Upper Site (left column) and 

the Lower Site (right column) at the Valles Caldera.  The black line represents the mean 

interannual biomass increment calculated for each site, and the shaded area is the 95% 

confidence interval for each source of uncertainty. 

Figure 3



 

Figure 4. Seasonal (previous Fall, Winter, Spring, Summer) growth-climate response of mean 

biomass increment estimates (dark green) and four tree-ring chronologies (Large, Small, All, 

ITRDB) with mean temperature and total precipitation at an upper (Upper Site) and a lower 

(Lower Site) elevation site in the Valles Caldera, NM.  The Large chronology (blue) is composed 

of the largest 10% of trees by DBH and the Small chronology (red) is composed of the smallest 

10%.  The ITRDB chronology (light blue) was gathered from ITRDB (Upper Site: Touchan et al. 

2011; Lower Site: Brice et al. 2013).  The mean biomass increment time series (light green) 

represents the mean annual biomass increment for each site.  Significant responses were 

identified as those values exceeding the (α = 0.05) significance criterion (dashed line). 
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Figure 5.  Distributions of growth-climate relationships for simulated biomass time series from 

an upper elevation (Upper Site; PIEN) and a lower elevation (Lower Site; PIPO) forest in the 

Valles Caldera, NM.  The Large time series is based on the largest 10% of trees, the Small time 

series is based on the smallest 10% of trees, and the All time series is composed of all trees 

sampled.  Distributions were generated by bootstrapping, with replacement, 30,000 time series 

meeting each of the three criteria and performing a Pearson’s correlation analysis.  Solid bars 
refer to the mean r-value.  

Figure 5



Table 1. Mean ± SD for cumulative and incremental living aboveground biomass uncertainty 

ranges (kg m-2) for 1980 – 2011 of major sources of variability at an upper elevation and a lower 

elevation forest in the Valles Caldera, NM.  Total uncertainty is calculated by adding the upper 

and lower 95% confidence intervals of each area of uncertainty in quadrature.  

Source Cumulative Range (kg BM m-2) Incremental Range (kg BM m-2y-1) 

  Upper Site Lower Site Upper Site Lower Site 

Allometric 14.88 ± 2.14 3.89 ± 0.47 0.20 ± 0.09 0.15 ± 0.06 

Subsampling 1.84 ± 0.76 0.98 ± 0.30 1.84 ± 0.76 3.19 ± 1.25 

Sampling 2.86 ± 1.35 1.78 ± 0.21 0.13 ± 0.07 0.85 ± 0.36 

Mortality 6.39 ± 2.82 5.39 ± 2.50 0.30 ± 0.19 0.61 ± 0.40 

Total 17.67 ± 0.93 8.15 ± 1.73 1.95 ± 0.70 1.06 ± 0.25 
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