

Edinburgh Research Explorer

Relative information completeness

Citation for published version:
Fan, W & Geerts, F 2010, 'Relative information completeness', ACM Transactions on Database Systems,
vol. 35, no. 4, 27, pp. 1-44. https://doi.org/10.1145/1862919.1862924

Digital Object Identifier (DOI):
10.1145/1862919.1862924

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
ACM Transactions on Database Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1145/1862919.1862924
https://doi.org/10.1145/1862919.1862924
https://www.research.ed.ac.uk/en/publications/f82334be-ecf2-494b-ad02-ac774e5ac9c5

27

Relative Information Completeness

WENFEI FAN
University of Edinburgh and Harbin Institute of Technology
and
FLORIS GEERTS
University of Edinburgh

This article investigates the question of whether a partially closed database has complete informa-
tion to answer a query. In practice an enterprise often maintains master data Dm, a closed-world
database. We say that a database D is partially closed if it satisfies a set V of containment con-
straints of the form q(D) ⊆ p(Dm), where q is a query in a language LC and p is a projection
query. The part of D not constrained by (Dm, V) is open, from which some tuples may be missing.
The database D is said to be complete for a query Q relative to (Dm, V) if for all partially closed
extensions D′ of D, Q(D′) = Q(D), i.e., adding tuples to D either violates some constraints in V or
does not change the answer to Q.

We first show that the proposed model can also capture the consistency of data, in addition to its
relative completeness. Indeed, integrity constraints studied for data consistency can be expressed
as containment constraints. We then study two problems. One is to decide, given Dm, V, a query
Q in a language LQ, and a partially closed database D, whether D is complete for Q relative to
(Dm, V). The other is to determine, given Dm, V and Q, whether there exists a partially closed
database that is complete for Q relative to (Dm, V). We establish matching lower and upper bounds
on these problems for a variety of languages LQ and LC . We also provide characterizations for a
database to be relatively complete, and for a query to allow a relatively complete database, when
LQ and LC are conjunctive queries.

Categories and Subject Descriptors: H.1.1 [Models and Principles]: Systems and Information
Theory—Value of information; H.2.1 [Database Management]: Logical Design—Data models

General Terms: Design, Languages, Reliability, Theory

Additional Key Words and Phrases: Incomplete information, relative completeness, master data
management, partially closed databases, complexity

1. INTRODUCTION

One of the issues central to data quality concerns incomplete information.
Given a database D and a query Q, we want to know whether Q can be an-
swered by using the data in D. If the information in D is incomplete, one can
hardly expect its answer to Q to be accurate. Incomplete information introduces
serious problems to enterprises: it routinely leads to misleading analytical re-
sults and biased decisions, and accounts for loss of revenues, credibility, and
customers. Worse still, records missing from, for example, financial, medical,
and administrative databases, may have disastrous consequences [Herzog et al.
2007].

The study of incomplete information is almost as old as the relational model
itself. There has been a host of work on missing values in tuples, under the
Closed World Assumption (CWA). That is, all the tuples representing real-world
entities are assumed already in place, but the values of some fields in these
tuples are missing. As a result, facts that are not in the database are assumed
to be false. To this end, a number of approaches have been proposed, notably
representation systems for a set of possible worlds (e.g., v-tables, c-tables, OR-
object databases; see e.g., Grahne [1991], Imieliński and Lipski [1984]) and
disjunctive logic programming (see van der Meyden [1998] for a comprehensive
survey).

Equally important to data quality is how to handle missing tuples, under
the Open World Assumption (OWA). That is, a database may only be a proper
subset of the set of tuples that represent real-world entities. While there has
also been work on missing tuples (e.g., Gottlob and Zicari [1988], Levy [1996],
Motro [1989], and Vardi [1986]), this issue has received relatively less attention.
Under OWA, one can often expect few sensible queries to find complete answers.

In several emerging applications, however, neither CWA nor OWA is quite
appropriate. This is evident in, for example, Master Data Management
(MDM [Dreibelbis et al. 2007; Radcliffe and White 2008; Loshin 2008]), one of
the fastest growing software markets. An enterprise nowadays typically main-
tains master data (a.k.a. reference data), a single repository of high-quality
data that provides various applications with a synchronized, consistent view of
the core business entities of the enterprise. The master data contains complete
information about the enterprise in certain categories, for example, employees,
departments, projects, and equipment.

Master data can be regarded as a closed-world database. Meanwhile a num-
ber of other databases may be in use in the enterprise for, for example, sales,
project control, and customer support. On one hand, these databases may not
be complete, for example, some sale transactions may be missing. On the other
hand, certain parts of the databases are constrained by the master data, for
example, employees and projects. In other words, these databases are neither
entirely closed-world, nor entirely open-world. It becomes more interesting to
decide whether the information available in these databases is complete to
answer a query.

Example 1.1. Consider a company that maintains DCust(cid, name, ac, phn),
a master data relation consisting of all its domestic customers, in which a tuple

(c, n, a, p) specifies the id c, name n, area code a, and phone number p of a cus-
tomer. In addition, the company also has databases (a) Cust(cid, name, cc, ac, phn)
of all customers of the company, domestic (with country code cc = 01),
or international; and (b) Supt(eid, dept, cid), indicating that employee eid in
dept supports customer cid. Neither Cust nor Supt is part of the master
data.

Consider a query Q1 posed on Supt to find all the customers in NJ with
ac = 908 who are supported by the employee with eid = e0. The query may not
get a complete answer since some tuples may be missing from Supt. However, if
Q1 returns all NJ customers with ac = 908 found in the master relation DCust,
then we can safely conclude that query Q1 can find a complete answer from
Supt. That is, there is no need to add more tuples to Supt in order to answer Q1.

Now consider a query Q2 to find all customers supported by employee e0. Note
that the international customers of Cust are not constrained by master data; in
other words, the company may not maintain a complete list of its customers.
As a result, we are not able to tell whether any Supt tuples in connection with
e0 are missing. Worse still, we do not even know what tuples should be added
to Supt such that the answer to Q2 in Supt is complete.

Not all is lost; if we know that eid → dept, cid is a functional dependency (FD)
on Supt, then we can also conclude that the answer to Q2 in Supt is complete as
long as it is nonempty. More generally, suppose that there is a constraint that
asserts that an employee supports at most, k customers. Then if the answer to
Q2 in Supt returns k customers, we know that the seemingly incomplete relation
Supt is actually complete for Q2. That is, adding more tuples to Supt does not
change the answer to Q2 in Supt. Even when Q2 returns k′ tuples, where k′ < k,
we know that we need to add at most k − k′ tuples to Supt to make it complete
for Q2.

As another example, consider a master relation Managem(eid1, eid2),
which indicates that employee eid2 directly reports to eid1. Suppose that
Manage(eid1, eid2) is a relation that is not part of master data, but it contains
all tuples in Managem. Consider query Q3 on Manage to find all the people above
e0 in the management hierarchy, the people to whom e0 reports directly or in-
directly. Note that if Q3 is in, for example, datalog, then we may expect the
answer to Q3 to be complete. In contrast, if Q3 is a conjunctive query, then
the answer to Q3 is incomplete unless Manage contains the transitive closure
of Managem. In the latter case, the seemingly complete Manage relation turns
out to be incomplete. This tells us that the completeness of information is also
relative to the query language in use.

Several natural questions have to be answered. Given a query Q posed on
a database D that is partially constrained by master data Dm, can we find
complete information from D to answer Q? Does there exist a database D at
all that is partially constrained by Dm and has the complete information to
answer Q (is there a finite D such that adding tuples to D will not change the
answer to Q in D)? These questions are not only of theoretical interest, but
are also important in practice. Indeed, the ability to answer these questions
not only helps us determine whether a query can find a complete answer from

a particular database, but also provides guidance for what data should be
collected in order to answer a query. The increasing demand for MDM highlights
the need for a full treatment of the completeness of information relative to
master data and user queries.

Relative completeness. In response to the need, we propose a notion of rela-
tive information completeness. To characterize databases D that are partially
constrained by master data Dm, we specify a set V of containment constraints.
A containment constraint is of the form q(D) ⊆ p(Dm), where q is a query in a
language LC posed on D, and p is a simple projection query on Dm. Intuitively,
the part of D that is constrained by V is bounded by Dm, while the rest is
open-world.

We refer to a database D that satisfies V as a partially closed database with
respect to (Dm, V). A database D′ is referred to as a partially closed extension
of D if D ⊆ D′ and D′ is partially closed with respect to (Dm, V) itself.

For a query Q in a language LQ, a partially closed database D is said to
be complete with respect to (Dm, V) if for all partially closed extensions D′ of
D with respect to (Dm, V), Q(D′) = Q(D). That is, there is no need for adding
new tuples to D, since they either violate the containment constraints, or do
not change the answer to Q. In other words, D already contains complete
information necessary for answering Q.

To simplify the discussion, we focus on missing tuples in this article. As
will be addressed in Section 5, the notion of relatively complete information
can be extended to accommodate missing values as well, by capitalizing on
representation systems for possible worlds [Grahne 1991; Imieliński and Lipski
1984].

Completeness and consistency. Another critical issue to data quality is the
consistency of the data. To answer a query using a database D, one naturally
wants the information in D to be both complete and consistent.

To capture inconsistencies, one typically use integrity constraints (e.g.,
Arenas et al. [1999], Bravo et al. [2007], Cali et al. [2003], and Fan et al.
[2008]; see Chomicki [2007], and Fan [2008] for recent surveys). That is, con-
flicts and errors in the data are detected as violations of the constraints. In light
of this, one might be tempted to extend the notion of partially closed databases
by incorporating integrity constraints.

The good news is that there is no need to overburden the notion with a set of
integrity constraints. We show that constraints studied for ensuring data con-
sistency, such as denial constraints [Arenas et al. 1999], conditional functional
dependencies [Fan et al. 2008] and conditional inclusion dependencies [Bravo
et al. 2007], are expressible as simple containment constraints. As a result, we
can assure that only consistent and partially closed databases are considered,
by enforcing containment constraints. That is, in a uniform framework we can
deal with both relative information completeness and data consistency.

Main results. We investigate two important decision problems associated
with the relative completeness of information, and establish their complexity
bounds. We also provide characterizations for a database to be relatively com-
plete and for a query to allow a relatively complete database, in certain cases
when the decision problems are decidable.

Determining relatively complete databases. One of the two problems, referred
to as the relatively complete database problem, is to determine, given a query
Q, master data Dm, a set V of containment constraints, and a partially closed
database D with respect to (Dm, V), whether or not D is complete for Q relatively
to (Dm, V). That is to decide, when Q is posed on D, whether the answer of D
to Q is complete.

We parameterize the problem with various LQ and LC, the query languages
in which the queries are expressed and in which the containment constraints
are defined, respectively. We consider the following LQ and LC, all with equality,
=, and inequality, �=:

—conjunctive queries (CQ);
—union of conjunctive queries (UCQ);
—positive existential FO queries (∃FO+);
—first-order queries (FO); and
—datalog (FP).

We establish lower and upper bounds for the problem with respect to all these
languages, all matching, either �

p
2 -complete or undecidable. The complexity

bounds are rather robust: the lower bounds remain intact even when Dm and
V are predefined and fixed. The problem is already �

p
2 -complete for CQ queries

and containment constraints defined as inclusion dependencies (INDs), when
Dm and V are fixed.

Determining relatively complete queries. The other problem, referred to as the
relatively complete query problem, is to determine, given Q, Dm, and V, whether
there exists a partially closed database D that is complete for Q relatively to
(Dm, V), i.e., adding more tuples to D would not change answers to Q in D. It is
to decide for Q whether it is possible to find a relatively complete database D
at all. If such a D exists, Q is said to be a query relatively complete with respect
to (Dm, V).

We present complexity bounds for the problem when LQ and LC range over
CQ, UCQ, ∃FO+, FO, and FP. The lower and upper bounds are again all matching:
coNP-complete, NEXPTIME-complete, or undecidable. In contrast to its counterpart
for relative complete databases, fixed Dm and V make our lives easier: the
problem becomes �

p
3 -complete as opposed to NEXPTIME-complete in certain cases.

Characterizations. When LQ and LC are CQ, we present sufficient and neces-
sary conditions for (a) a partially closed database D to be complete for a query
Q relative to (Dm, V), and (b) a query to be relatively complete with respect to
(Dm, V). As remarked earlier, the characterizations tell us what data should
be collected in D in order to answer a query, and whether a query can find
a complete answer at all. The characterizations can be extended to UCQ and
∃FO+.

To the best of our knowledge, this work is among the first efforts to study the
completeness of information in emerging applications such as MDM. Our results
provide a comprehensive picture of complexity bounds for important problems
associated with relatively complete information, and moreover, guidance for
how to make a database relatively complete. A variety of techniques are used

to prove the results, including a wide range of reductions and constructive
proofs with algorithms.

Related work. Several approaches have been proposed to represent or query
databases with missing tuples. In Vardi [1986], a complete and consistent ex-
tension of an incomplete database D is defined to be a database Dc such that
D ⊆ πL(Dc) and Dc |= �, where π is the projection operator, L is the set of
attributes in D, and � is a set of integrity constraints. Complexity bounds for
computing the set of complete and consistent extensions of D with respect to �

are established there. A notion of open null is introduced in Gottlob and Zicari
[1988] to model locally controlled open-world databases. Parts of a database D,
values or tuples, can be marked with open null and are assumed open-world,
while the rest is closed. Relational operators are extended to tables with open
null. In contrast to Gottlob and Zicari [1988], this work aims to model databases
partially constrained by master data Dm and consistency specifications, both
via containment constraints. In addition, we study decision problems that are
not considered in Gottlob and Zicari [1988].

Partially complete databases D have also been studied in Motro [1989],
which assumes a virtual database Dc with complete information, and assumes
that part of D is known as a view of Dc. It investigates the query answer com-
pleteness problem, the problem for determining whether a query posed on Dc

can be answered by an equivalent query on D. In this setting, the problem can
be reduced to query answering using views. Along the same lines, Levy [1996]
assumes that D contains some CQ views of Dc. It reduces the query answer
completeness problem to the independence problem for deciding the indepen-
dence of queries from updates [Levy and Sagiv 1993]. As opposed to Levy [1996]
and Motro [1989], we assume neither Dc with complete information, nor that
an incomplete database D contains some views of Dc. Instead, we consider Dm

as an upper bound of certain information in D. Moreover, the decision problems
studied here can be reduced to neither the query answering problem nor the
independence problem (see below).

There has also been work on modeling negative information via logic pro-
gramming (see van der Meyden [1998]), which considers neither partially com-
plete databases nor the decision problems studied in this work.

We now clarify the difference between our decision problems and the inde-
pendence problem (e.g., Elkan [1990] and Levy and Sagiv [1993]). The latter
is to determine whether a query Q is independent of updates generated by
another query Qu, such that for all databases D, Q(D) = Q(D ⊕ �), where �

denotes updates generated by Qu. In contrast, we consider relatively complete
queries Q, such that there exists a database D complete for Q relative to mas-
ter data Dm and containment constraints V, where D and Dm satisfy V. We
want to decide, (a) whether for a query Q there exists a relatively complete
database D, and (b) whether a given D that satisfies V is a witness for Q to
be relatively complete. Due to the difference between the problems, results for
the independence problem do not straightforwardly carry over to ours, and vice
versa.

One may think of an incomplete database as a view of a database with
complete information. There has been a large body of work on answering

queries using views (for example, Abiteboul and Duschka [1998], Calvanese
et al. [2007], Li [2003], and Segoufin and Vianu [2005]), to determine certain
answers [Abiteboul and Duschka 1998], compute complete answers from views
with limited access patterns [Deutsch et al. 2007; Li 2003], or to decide whether
views determine queries [Segoufin and Vianu 2005] or are lossless [Calvanese
et al. 2007]. This work differs from that line of research in that one may not
find a view definable in a query language to characterize a relatively complete
database D in terms of the database with complete information. Indeed, D is
only partially constrained by master data Dm, while Dm itself may not contain
the complete information that D intends to represent.

There has also been recent work on consistent query answering (e.g., Arenas
et al. [1999], Cali et al. [2003], and Chomicki [2007]). That is to decide whether
a tuple is in the answer to a query in every repair of a database D, where
a repair is a database that satisfies a given set of integrity constraints and
moreover, minimally differs from the original D with respect to some repair
model. Master data Dm is not considered there, and we do not consider repairs
in this article. Note that most containment constraints are not expressible as
integrity constraints studied for consistency.

This article is an extension of Fan and Geerts [2009].
Organization. In Section 2 we define relatively complete databases and

queries, state the decision problems, and show that integrity constraints for
capturing inconsistencies can be expressed as containment constraints. We
provide complexity bounds and characterizations for determining relatively
complete databases in Section 3, and for deciding relatively complete queries
in Section 4. Section 5 summarizes the main results of the article and identifies
open problems. We refer some proofs to the electronic appendix.

2. RELATIVELY COMPLETE DATABASES AND QUERIES

We first present the notion of relative completeness of data, and then show that
the consistency of the data can be characterized in the uniform framework.
Finally, we demonstrate the benefits of master data and the usage of relative
completeness in assessing the quality of data and the quality of query answers.

2.1 Relative Completeness

We start with specifications of databases and master data.
Databases and master data. A database is specified by a relational schema

R, which consists of a collection of relation schemas (R1, . . . , Rn). Each schema
Ri is defined over a fixed set of attributes. For each attribute A, its domain
is specified in R, denoted by dom(A). To simplify the discussion we consider
two domains: a countably infinite set d and a finite set d f with at least two
elements. We assume that dom(A) is either infinite (d) or finite (d f).

We say that an instance D = (I1, . . . , In) of R is contained in another instance
D′ = (I′

1, . . . , I′
n) of R, denoted by D ⊆ D′, if Ij ⊆ I′

j for all j ∈ [1, n]. If D ⊆ D′

then we also say that D′ is an extension of D.
Master data (reference data) is a closed-world database Dm, specified by a

relational schema Rm. As remarked earlier, an enterprise typically maintains

master data that is assumed consistent and complete about certain information
of the enterprise [Dreibelbis et al. 2007; Radcliffe and White 2008; Loshin 2008].
We do not impose any restriction on the relational schemas R and Rm.

Containment constraints. Let LC be a query language. A containment con-
straint (CC) φv in LC is of the form qv(R) ⊆ p(Rm), where qv is a query in LC

defined over schema R, and p is a projection query over schema Rm. That is, p
is a query of the form ∃x̄ Rm

i (x̄, ȳ) for some relation Rm
i in Rm.

An instance D of R and master data instance Dm of Rm satisfy φv, denoted
by (D, Dm) |= φv, if qv(D) ⊆ p(Dm).

We say that D and Dm satisfy a set V of CCs, denoted by (D, Dm) |= V, if for
each φv ∈ V, (D, Dm) |= φv.

Intuitively, φv assures that Dm is an upper bound of the information extracted
by qv(D). In other words, CWA is asserted for Dm, which constrains the part of
the data identified by qv(D) from D. That is, while this part of D can be extended,
the expansion cannot go beyond the information already in Dm. On the other
hand, OWA is assumed for the part of D that is not constrained by φv.

We write qv(R) ⊆ p(Rm) as qv ⊆ p when R and Rm are clear from the context.
We write qv ⊆ p as qv ⊆ ∅ if p is a projection on an empty master relation.

Example 2.1. Recall Cust, Supt and DCust from Example 1.1. We can write
a CC φ0 = q(Cust,Supt) ⊆ πcid(DCust) in the language of conjunctive queries,
where

q(c) = ∃n, cc, a, p, e, d (Cust(c, n, cc, a, p) ∧ Supt(e, d, c) ∧ cc = 01),

asserting that all domestic customers are constrained by master relation DCust.
Here πcid(DCust) denotes the projection of DCust on the cid attribute.

Another CC φ1 in the language of conjunctive queries is q ⊆ ∅, where

q(e) = ∃c1, d1, . . . , ck+1, dk+1
(∧

i∈[1,k+1] Supt(e, di, ci) ∧ ∧
i, j∈[1,k+1],i �= j(ci �= c j)

)
.

It asserts that each employee supports at most k customers.

A database D is called a partially closed database with respect to (Dm, V) if
(D, Dm) |= V.

Observe that a CC qv(R) ⊆ p(Rm) is an inclusion dependency (IND) when qv

is also a projection query. In the sequel we simply refer to such CCs as INDs.
Relative completeness. Let LQ be a query language, not necessarily the same

as LC. Let Q be a query in LQ.
Consider a partially closed database D with respect to master data Dm and

a set V of CCs. We say that D is complete for query Q relative to (Dm, V) if for
all instances D′ of R, if D ⊆ D′ and (D′, Dm) |= V, then Q(D) = Q(D′).

That is, D is complete for Q relative to (Dm, V) if (a) D is partially closed
with respect to (Dm, V), and (b) for each partially closed extension D′ of D,
Q(D) = Q(D′). In other words, no matter how D is expanded by including new
tuples, as long as the extension does not violate V, the answer to query Q
remains unchanged. Intuitively, D has complete information for answering Q.
The notion is relative to the master data Dm and CCs in V: the extensions of
D should not violate the CCs in V, i.e., (D′, Dm) |= V. That is, CWA for Dm is
observed.

Given Dm, V and a query Q in LQ, we define the set of complete databases
for Q with respect to (Dm, V), denoted by RCQ(Q, Dm, V), to be the set of all
complete databases for Q relative to (Dm, V).

When RCQ(Q, Dm, V) is nonempty, Q is called a relatively complete query
with respect to (Dm, V). Intuitively, Q is relatively complete if it is possible to
find a database D such that the answer to Q in D is complete.

Example 2.2. As described in Example 1.1, relations Cust and Supt are com-
plete for query Q1 with respect to DCust and the CC φ0 of Example 2.1, provided
that the query result contains all domestic customers in DCust. In this case, the
database consisting of the Cust and Supt relations is in RCQ(Q1,DCust, {φ0}),
and hence, Q1 is relatively complete with respect to (DCust, {φ0}).

When the CC φ1 of Example 2.1 is in place, Supt is already complete for
query Q2 of Example 1.1 with respect to (∅, {φ1}), as soon as the query result is
nonempty. Hence, Q2 is complete with respect to (∅, {φ1}).

On the other hand, relation Manage of Example 1.1 is not complete for the CQ
query Q3. However, Q3 is relatively complete with respect to Managem: one can
make Manage complete for Q3 by including the transitive closure of Managem.

Decision problems. We study two decision problems. One is the relatively
complete database problem for LQ and LC, denoted by RCDP(LQ,LC) and stated
as:

PROBLEM: RCDP(LQ,LC)
INPUT: A query Q ∈ LQ, master data Dm, a set V of CCs in LC, and

a partially closed database D with respect to (Dm, V).

QUESTION: Is D in RCQ(Q, Dm, V)? That is, is D complete for Q relative
to (Dm, V)?

The other one is the relatively complete query problem for LQ and LC, denoted
by RCQP(LQ,LC) and stated as follows.

PROBLEM: RCQP(LQ,LC)
INPUT: A query Q ∈ LQ, master data Dm, and a set V of CCs in LC.

QUESTION: Is RCQ(Q, Dm, V) nonempty? That is, does there exist a
database that is complete for Q relative to (Dm, V)?

Intuitively, RCDP is to decide whether a particular database has complete
information to answer a query, and RCQP is to decide whether there exists a
database at all that is relatively complete for a query.

Query languages. We consider LQ and LC ranging over:
(a) conjunctive queries (CQ), built up from atomic formulas with constants

and variables, i.e., relation atoms in database schema R, equality (=) and
inequality (�=), by closing under conjunction ∧ and existential quantification ∃;

(b) union of conjunctive queries (UCQ) of the form Q1 ∪ · · · ∪ Qk, where for
each i ∈ [1, k], Qi is in CQ;

(c) positive existential FO queries (∃FO+), built from atomic formulas by
closing under ∧, disjunction ∨ and ∃;

(d) first-order logic queries (FO) built from atomic formulas using ∧, ∨, nega-
tion ¬, ∃ and universal quantification ∀; and

(f) datalog queries (FP), defined as a collection of rules p(x̄) ←
p1(x̄1), . . . , pn(x̄n), where each pi is either an atomic formula (a relation atom
in R, =, �=) or an IDB predicate. That is, FP is an extension of ∃FO+with an
inflational fixpoint operator. See for example, [Abiteboul et al. 1995] about the
details of these languages.

2.2 Relative Completeness and Consistency

Real life data often contains errors and conflicts (see e.g., Batini and Scanna-
pieco [2006]). To capture inconsistencies in the data, it is typical to use integrity
constraints. That is, a set � of integrity constraints is imposed on a database
D such that errors in D are detected as violations of one or more constraints
in �.

Several classes of integrity constraints have been proposed for capturing
inconsistencies in relational data (see, e.g., Chomicki [2007] and Fan [2008]
for recent surveys). Below we review three classes recently studied for the
consistency of data.

(a) Denial constraints [Arenas et al. 1999; Chomicki 2007] are universally
quantified FO sentences of the form:

ϕd = ∀x̄1 . . . x̄k ¬(
R1(x̄1) ∧ · · · ∧ Rk(x̄k) ∧ ϕ(x̄1, . . . , x̄k)

)
,

where Ri is a relation atom for i ∈ [1, k], and ϕ is a conjunction of built-in
predicates = and �=.

(b) Conditional functional dependencies (CFDs) [Fan et al. 2008] are an
extension of functional dependencies (FDs) of the form:

ϕcfd = ∀x̄1 x̄2 ȳ1 ȳ2 z̄1z̄2
(
R(x̄1, z̄1, ȳ1) ∧ R(x̄2, z̄2, ȳ2) ∧ φ(x̄1) ∧ φ(x̄2) ∧ x̄1 = x̄2

→ ȳ1 = ȳ2 ∧ ψ(ȳ1) ∧ ψ(ȳ2)
)
,

where R is a relation atom, and φ(x̄) is a conjunction of the form xi1 = c1 ∧
· · · ∧ xik = ck; here {xij | j ∈ [1, k]} is a subset of x̄, and c j is a constant. The
expression ψ(ȳ) is defined similarly.

Intuitively, a CFD extends a traditional FD X → Y by incorporating patterns
of semantically related constants, where X and Y are the attributes denoted
by x̄ and ȳ in R(x̄, z̄, ȳ), respectively. That is, for each R tuple t1 and t2, if
t1[X] = t2[X] and in addition, t1[X] and t2[X] have a certain constant pattern
specified by φ(x̄), then t1[Y] = t2[Y], and moreover, t1[Y] and t2[Y] have the
constant pattern specified by ψ(ȳ). Note that in the absence of φ(x̄) and ψ(ȳ),
the CFD is a traditional FD.

As an example, suppose that each employee in the BU department supports
at most one customer at a time. This can be expressed as a CFD on the Supt
relation of Example 1.1: dept = “BU”, eid → cid. This asserts that eid is a key
of those Supt tuples in connection with employees in BU, rather than a key of
entire relation.

(c) Conditional inclusion dependencies (CINDs) [Bravo et al. 2007] are an
extension of inclusion dependencies (INDs) of the form:

ϕcind = ∀x̄ ȳ1z̄1
(
R1(x̄, ȳ1, z̄1) ∧ φ(ȳ1) → ∃ȳ2z̄2 (R2(x̄, ȳ2, z̄2) ∧ ψ(ȳ2))

)
,

where R1, R2 are relation atoms; φ(z̄) and ψ(z̄) are defined as in the preceding.
Similarly to CFDs, a CIND extends an IND R1[X] ⊆ R2[Y] by incorporating
constant patterns specified by φ(ȳ1) and ψ(ȳ2), for constraining R1 tuples and
R2 tuples, respectively. Traditional INDs are a special case of CINDs, in the
absence of φ(ȳ1) and ψ(ȳ2).

We remark that integrity constraints are posed on databases D regardless of
master data Dm. In contrast, containment constraints are defined on (D, Dm).

From the following proposition it can be seen that by using containment
constraints we can enforce both the relative completeness and the consistency
of the data.

PROPOSITION 2.1. (a) Denial constraints, and (b) CFDs can be expressed as
containment constraints (CCs) in CQ, (c) CINDs can be expressed as CCs in FO.
In all three cases only an empty master data relation is required.

PROOF. Consider arbitrary master data Dm that contains an empty
relation ∅.

(a) A denial constraint ϕd of the form given in the preceding can be expressed
as a single CC q(x̄1, . . . , x̄k) ⊆ ∅ in CQ, where q is R1(x̄1)∧· · ·∧Rk(x̄k)∧ϕ(x̄1, . . . , x̄k).
Obviously for each database D, D satisfies ϕd if and only if D and Dm satisfy
the CC.

(b) A CFD ϕcfd is equivalent to two sets of CCs in CQ. For each pair (y1, y2) of
variables in (ȳ1, ȳ2), the first set contains q(x̄1, z̄1, ȳ1, x̄2, z̄2, ȳ2) ⊆ ∅, where q is:

R(x̄1, z̄1, ȳ1)∧ R(x̄2, z̄2, ȳ2) ∧ φ(x̄1) ∧ φ(x̄2) ∧ x̄1 = x̄2 ∧ y1 �= y2.

This CC assures that the CFD is not violated by two distinct tuples.
The second set contains a CC of the form q′(x̄, z̄, ȳ) ⊆ ∅ for each variable y in

ȳ1 (respectively ȳ2) such that y = c is in ψ1(ȳ1) (respectively ψ2(ȳ2)), where q′ is:

R(x̄, z̄, ȳ) ∧ φ(x̄) ∧ y �= c.

These CCs ensure that ϕcfd is not violated by a single tuple that does not observe
the constant patterns. It is easy to verify that for each database D, D satisfies
ϕcfd if and only if D and Dm satisfy these two sets of CCs.

(c) Given a CIND ϕcind of the given form, we define a single CC q(x̄, ȳ1, z̄1) ⊆ ∅
in FO, where q is R1(x̄, ȳ1, z̄1) ∧ φ(ȳ1) ∧ ∀ȳ2z̄2 (¬R2(x̄, ȳ2, z̄2) ∨ ¬ψ(ȳ2)). Then for
each database D, D satisfies ϕcind if and only if D and Dm satisfy this CC. �

2.3 Relative Completeness Paradigms

Before we study the complexity and characterizations for deciding relatively
complete databases, we first demonstrate how relative completeness and its
associated decision problems (RCDP,RCQP) can help in assessing the qual-
ity of data and the quality of query answers. We illustrate this by using the

application described in Example 1.1, which is a simplified instance of
Customer Relationship Management (CRM), a typical usage scenario of
MDM [Loshin 2008]. We should remark that relative completeness also finds
similar applications in Enterprise Resource Planning (ERP), Supply Chain
Management (SCM), and practical scenarios studied in, for example, Levy
[1996], Grahne [1991], Imieliński and Lipski [1984], and Motro [1989].

Consider, (a) a master relation Dm of the schema DCust, which maintains a
complete list of domestic customers of a company, and (b) a database D with
two relations Cust and Supt, which contain information about customers of the
company (domestic or international) and about employees of the company for
customer support, respectively (see Example 1.1). Consider a set V consisting
of the CC φ0 given in Example 2.1, assuring that Dm imposes an upper bound
on domestic customers in the relations Cust and Supt.

(1) Assessing the completeness of the data in a database. Let us first consider
a query Q0 posed on the database D, which is to find all the customers of
the company based in NJ with ac = 908. In the absence of master data, one
cannot decide whether Q0(D) returns the complete list of customers we want
to find. Indeed, as observed in Loshin [2008], it is typical to find information
missing from a transitional database in an enterprise; hence, one could only
assume the OWA for D, and there is not much we can do about it. In contrast,
provided the availability of the master data Dm, we can determine whether
D has complete information to answer Q0. More specifically, we can invoke a
static analysis procedure for RCDP and decide whether D is in RCQ(Q0, Dm, V).
If the procedure returns an affirmative answer, we know that we can trust the
query answer Q0(D).

(2) Guidance for what data should be collected in a database. Suppose that
the decision procedure for RCDP returns a negative answer D is not complete
for Q0. The next question is whether D can be expanded at all to be complete for
Q0? To this end we capitalize on a decision procedure for RCQP, to determine
whether RCQ(Q0, Dm, V) is empty—whether there exists a complete database
for Q0, relative to the master data available. As will be seen in Section 4, the
characterizations of relatively complete queries assure that there indeed exists
a database complete for Q0 relative to (Dm, V). This suggests that we should
expand D to make it complete for Q0. Furthermore, the characterizations to
be given in Section 3 tell us how to extend D. We can make D complete for
Q0 by including the information about domestic customers that is in Dm but is
missing from D.

(3) A guideline for how master data should be expanded. Now consider a
query Q′

0 to find all the customers of the company, domestic or international.
In this case the RCDP analysis shows that D is not complete for Q′

0 in the
presence of Dm. Worse still, the RCQP analysis tells us that there exists no
database complete for Q0 relative to the current master data Dm. This suggests
that to find a complete answer for Q′

0, we need to expand the master data.
As pointed out in Loshin [2008], a practical challenge for MDM is to identify
what data should be maintained as master data. The study of RCQP provides
a guidance on how to identify master data such that one can find complete
answers for queries commonly used in practice.

Similar RCDP and RCQP analyses can be carried out for the queries Q1 and
Q2 of Example 1.1, to decide whether the database is complete for these queries
and if not, whether we have to expand the database or the master data. We
remark that the traditional OWA does not allow these analyses in the absence
of master data.

3. DECIDING RELATIVELY COMPLETE DATABASES

In this section we study RCDP(LQ,LC), the relatively complete database prob-
lem. Given a query Q in LQ, master data Dm, a set V of containment constraints
(CCs) in LC, and a partially closed database D with respect to (Dm, V), it is to
determine whether D ∈ RCQ(Q, Dm, V), whether D has complete information
to answer Q.

We first show that RCDP(LQ,LC) is undecidable when LQ or LC is either
FO or FP. We then focus on RCDP(LQ,LC) when LQ and LC supports neither
negation nor recursion. To provide insight into what makes a database rela-
tively complete, we present characterizations of databases in RCQ(Q, Dm, V)
when CCs and queries are in CQ. The characterizations readily extend to the
settings where CCs are INDs or CQ, and where queries are in CQ or UCQ. We
then establish matching lower and upper bounds for RCDP(LQ,LC) when LQ

and LC range over CQ, UCQ and ∃FO+, as well as for a special case where LC is
the class of INDs.

3.1 The Undecidability of RCDP for FO and FP

We start with negative results: when either LQ or LC is FO or FP, it is infeasible
to determine whether a database D is relatively complete for a query Q with
respect to (Dm, V). This tells us that both LQ and LC may impact the complexity
of RCDP(LQ,LC). Worse still, the undecidability remains intact even when Dm

and V are predefined.

THEOREM 3.1. RCDP(LQ,LC) is undecidable when:

(1) LQ is FO and LC is CQ;
(2) LC is FO and LQ is CQ;
(3) LQ is FP and LC is CQ; or
(4) LC is FP and LQ consists of a fixed query in FP.

If LQ is FO or FP, the problem remains undecidable for fixed master data and
fixed containment constraints.

PROOF. We first show that RCDP(LQ,LC) is undecidable for cases (1) and
(2). Both proofs are by reduction from the satisfiability problem for FO queries,
which is to determine, given an FO query Q over a relational schemaR, whether
there exists a nonempty database instance D of R, such that Q(D) �= ∅. This
problem is known to be undecidable [Abiteboul et al. 1995].

Unless specified otherwise, we use R = (R1, . . . , Rn) and Rm = (Rm
1 , . . . , Rm

k)
to denote the schemas of the database and master data, respectively. We write
D = (I1, . . . , In) for instances of R and Dm = (Im

1 , . . . , Im
k) for instances of Rm.

(1) When LQ is FO and LC is CQ. Given an FO query Q over a relational
schema R = (R1, . . . , Rn), we define the schema of the input database and the
master data to be R and Rm = (Rm

1), respectively, where Rm
1 is a unary relation.

Let D = (I1 = ∅, . . . , In = ∅), Dm = (I1
m = ∅) and furthermore, V = ∅, i.e.,

no CCs are specified. Assume without loss of generality that Q(D) = ∅ since
otherwise one could consider the query Q\ Q(D) instead. We define Q′ to be the
FO query derived from Q such that Q′(D) = {()} when Q(D) �= ∅, and Q′(D) = ∅
otherwise.

We show that D is complete for Q′ relative to Dm and V if and only if Q is
unsatisfiable. Indeed, Q′ is complete if and only if Q′(D) = ∅ = Q′(D′) for each
partially closed extension D′ of D (recall that D is empty and V = ∅). However,
the latter holds if and only if Q(D′) = ∅ for all nonempty D′. Hence deciding
relative completeness is undecidable when LQ is FO, even in the absence of
containment constraints and for fixed D and Dm.

(2) When LC is FO and LQ is CQ. Given an FO query q over a relational
schema R = (R1, . . . , Rn), we define the same Rm, D, and Dm as previously.
Let q′ be the Boolean query derived from q and defined as follows: q′(D) = {()}
if q(D) �= ∅ or D = (∅, . . . ,∅), and q′(D) = ∅ otherwise. We define V to be a
singleton set consisting of CC: {()} \ q′ ⊆ Rm

1 . Clearly, for each instance D′ of
R we have that (D′, Dm) |= V if and only if either q(D′) �= ∅ or D′ is empty.
Finally, we define a query Q over R such that Q(D) = {(0)} if D is nonempty
and Q(D) = ∅ otherwise.

We show that D is complete for Q relative to Dm and V if and only if q
is unsatisfiable. First assume that q is satisfiable: there exists a nonempty
instance D′ of R such that q(D′) �= ∅. Then (D′, Dm) |= V but Q(D) �= Q(D′).
Hence D is not in RCQ(Q, Dm, V). Conversely, if q is unsatisfiable, then for
all nonempty instances D′, (D′, Dm) �|= V. As a result, D is in RCQ(Q, Dm, V).
Hence deciding relative completeness is undecidable when LC is FO and the
query language LQ can test for nonemptiness. Observe that the undecidability
holds for fixed D and Dm.

We next show that RCDP(LQ,LC) is undecidable for cases (3) and (4). Both
proofs are by reduction from the emptiness problem for deterministic finite
2-head automata, which is known to be undecidable [Spielmann 2000].

(3) When LQ is FP and LC is CQ. Our reduction closely follows the reduction
presented in Spielmann [2000, Theorem 3.3.1], which shows that the satisfia-
bility of the existential fragment of transitive-closure logic, E+TC, is undecidable
over a schema having at least two non-nullary relation schemas, one of them be-
ing a function symbol. Although E+TC allows the negation of atomic expression
as opposed to FP, the undecidability proof only uses a very restricted form of
negation, which we can simulate using �= and containment constraints. Recall
from Section 2.1 that CQ and FP allow for equality (=) and inequality (�=).

For the readers’ convenience we present the necessary definitions taken
from Spielmann [2000]. A deterministic finite 2-head automaton (or 2-head
DFA for short) is a quintuple, A = (Q, �,�, q0, qacc), consisting of a finite set of
states Q, an input alphabet � = {0, 1}, an initial state q0, an accepting state
qacc, and a transition function � : Q × �ε × �ε → Q × {0,+1} × {0,+1}, where
�ε = � ∪ {ε}.

A configuration of A is a triple, (q, w1, w2) ∈ Q × �∗ × �∗, representing that
A is in state q, and the first and second heads of A are positioned on the first
symbol of w1 and w2, respectively. On an input string w ∈ �∗, A starts from the
initial configuration (q0, w,w); the successor configuration is defined as usual.
The 2-head DFA, A, accepts w if it can reach a configuration (qacc, w1, w2) from
the initial configuration for w; otherwise A rejects w. The language accepted by
A is denoted by L(A). The emptiness problem for 2-head DFA’s is to determine,
given a 2-head DFA A, whether L(A) is empty or not.

Given a 2-head DFA, A = (Q, �, δ, q0, qacc), we define schemas R and Rm, a
database instance D of R, and master data instance Dm of Rm, containment
constraints V expressed in LC and a query Q ∈ LQ. We show that D is complete
for Q relative to Dm and V if and only if L(A) is nonempty.

(a) The relational schema R consists of two unary relations, P(A), P̄(A), and
a binary relation F(A1, A2). Intuitively, an instance I = (IP, IP̄, IF) of R is to
represent a string w ∈ �∗ such that elements in IP represent the positions
in w where a 1 occurs; similarly, IP̄ records those positions in w that are 0.
The instance IF encodes a successor relation over these positions. The relation
schema Rm consists of a single unary relation Rm

1 .
(b) We define fixed instances: D = (I1 = ∅, I2 = ∅, I3 = ∅) and Dm = (Im

1 = ∅).
(c) We use containment constraints to assure that we only consider well-

formed instances of P, P̄ and F. That is, (1) instances IP and IP̄ of P and P̄ are
disjoint; and each instance IF of F must, (2) be a function, and (3) contain a
unique tuple of the form (k, k) for some constant k indicating the final position.
We additionally require that each instance IF of F contains a tuple of the form
(0, i), where 0 represents the initial position and i is some constant. The latter
requirement will be assured by the query Q to be defined shortly.

More specifically, the set V of CCs consists of the following:

—V1 : ∃x (P(x) ∧ P̄(x)) ⊆ ∅, enforcing that for each instance D′ = (I′
1, I′

2, I′
3) of

R such that (D′, Dm) |= V, I′
1 ∩ I′

2 = ∅;
—V2 : ∃x, y, z (F(x, y)∧F(x, z)∧y �= z) ⊆ ∅, ensuring that the relation I′

3 encodes
a function; and finally,

—V3 : ∃x, y (F(x, x)∧ F(y, y)∧x �= y) ⊆ ∅, asserting that the relation I′
3 contains

at most one tuple of the form (k, k).

In short, for each instance D′ = (I′
1, I′

2, I′
3) of R that satisfies V, D′ is well-

formed, with the exception that we still need to check for the existence of
initial and final positions in the instance I′

3 of F in D′.
(d) Before we define the query Q, we show, following Spielmann [2000], how

the nonemptiness of L(A) can be expressed in terms of an E+TC-formula over
R. Consider a transition δ ∈ � of the form δ = (q, in1, in2) → (q′,move1,move2).
This can be encoded by means of the conjunctive query:

ϕδ(x, y, z, x′, y′, z′) = (
x = q ∧ x′ = q′ ∧ α1(y) ∧ α2(z) ∧ β1(y, y′) ∧ β2(z, z′)

)
.

Here αi(x) = ∃y(F(x, y) ∧ x �= y ∧ P(x)) if ini = 1; αi(x) = ∃y(F(x, y) ∧ x �=
y ∧ P(x)) if ini = 0; and αi(x) = F(x, x) if ini = ε. Moreover, βi(x, y) = F(x, y)
if movei = +1 and βi(x, y) = (x = y) if movei = 0. Intuitively, αi(x) enforces
x to be a position in the string coded by P or P̄ that has a successor, unless

x is the final position where αi(x) demands F(x, x). Moreover, βi(x, y) ensures
that x and y are consecutive positions when A makes a move (with head i)
and x = y otherwise. Then
 = ∃y1∃y2[TCx,y,z;x′,y′,z′

∨
δ∈� ϕδ](q0, 0, 0, qacc, y1, y2)

is satisfiable if and only if L(A) �= ∅.
Clearly, we can compute
 using a query Q′ in FP (DATALOG). Recall that

we still need to assure the existence of an initial and a final position in the
instance of F in D′. We therefore define Boolean query Q = Q′ ∧ Qini ∧ Q f in,
where Qini = ∃xF(0, x) and Q f in = ∃xF(x, x).

This concludes the construction of R, Rm, D, Dm, V, and Q.
We now show that D is complete for Q relative to Dm and V if and only if

L(A) = ∅. Because D is empty, we have that Q(D) = ∅.
Suppose that L(A) = ∅. Then there does not exist any well-formed instance

that makes Q true. Hence, D is complete as required. Conversely, suppose that
Q(D′) = ∅ for all instances D′ = (I′

1, I′
2, I′

3) of R such that (D′, Dm) |= V. Then
either Qini ∧ Q f in is not satisfied in D′, or Q′ is not satisfied in D′. In other
words, there does not exist any well-formed instance D′ of R that makes Q′

true. That is, L(A) = ∅ as desired.
Observe that the CCs of V are expressed in CQ and are predefined, i.e. they

are independent of the 2-head DFA. Similarly, both D and Dm are fixed.
(4) When LC is FP and LQ is a fixed query in FP. We show that RCDP(LQ,LC)

is undecidable by reduction from the emptiness problem of deterministic finite
2-head DFA. The proof is referred to the Appendix.

We remark that when LQ is FO or FP, it remains undecidable if Dm and V
are fixed, as verified in these proofs. �

3.2 Characterizations of Relatively Complete Databases for CQ

In light of the undecidability results, in the rest of the section we focus on query
languages that support neither negation nor recursion, namely, CQ, UCQ, and
∃FO+. To understand what it takes to make a database D complete for a query
Q relative to master data Dm and a set V of CCs, we identify sufficient and
necessary conditions for D to be included in RCQ(Q, Dm, V). These conditions
provide guidance for what data should be collected by D in order to accurately
answer query Q.

To simplify the discussion we assume in the rest of the section that LQ and
LC are the same language, unless explicitly stated otherwise. In practice, if
users are allowed to define CCs in a query language, there is no reason for not
allowing them to issue queries in the same language.

Nevertheless, we also consider a special case where CCs are INDs: CCs of
the form qv ⊆ p when both qv and p are projection queries on D and Dm,
respectively. We consider V consisting of INDs, as commonly found in practice,
while the user queries are expressed in CQ, UCQ, or ∃FO+.

We first present characterizations when LQ and LC are CQ. We then adjust
the conditions to characterize relatively complete databases when LQ is CQ and
LC is the class of INDs, and when LQ and LC are UCQ. It should be remarked
that along the same lines, conditions can be developed when LQ and LC are
∃FO+.

3.2.1 When LQ and LC are CQ . We start with notations to express the
conditions.

Tableau queries and valuations. To simplify the discussion, we consider CQ
queries over a single relation. It does not lose generality due to the lemma
below. For a relational schema R, we denote by inst(R) the set of all database
instances of R.

LEMMA 3.2. For each relational schema R = (R1, . . . , Rn), there exists a sin-
gle relation schema R, a linear-time computable function fD from inst(R) to the
set inst(R) of instances of R, and a linear-time function fQ: CQ → CQ such that
for each instance D of R and each CQ query Q over R, Q(D) = fQ(Q)(fD(D)).

PROOF. We assume without loss of generality that all Ris in R have the same
set of attributes, since one can make the Ri ’s uniform by renaming attributes
and adding dummy attributes. We denote this uniform set of attributes by
R′. Consider a distinct attribute AR that takes values from dom(A) = [1, n].
Define R to be the schema consisting of the attributes in R′ augmented
with the attribute (AR : dom(A)). Define fD such that for each instance
D = (I1, . . . , In) of R, fD(D) =

⋃
j∈[1,n] Ij × (AR = j). Furthermore, define fQ

such that for each CQ query Q defined on R, fQ(Q) replaces every occurrence of
Rj with a project-select expression πR′

(
σAR= j(R)

)
. Then it is easy to verify that

Q(D) = fQ(Q)(fD(D)). Furthermore, fD and fQ can be constructed in linear
time. �

In light of this, we represent a CQ query Q as a tableau query (TQ, uQ), where
TQ denotes formulas in Q and uQ is the output summary (see e.g., Abiteboul
et al. [1995] for details). For each variable x in Q, we use eq(x) to denote the
set of variables y in Q such that x = y is induced from equality in Q. In TQ,
we represent atomic formula x = y by assigning the same distinct variable to
all variables in eq(x), and x = ‘c’ by substituting constant ‘c’ for each occurrence
of y in eq(x). This is well defined when Q is satisfiable; when there exists
a database D such that Q(D) is nonempty. Note that the size of TQ and the
number of variables in TQ are bounded by the size of Q.

Consider a CQ query Q, master database Dm, a set V of CCs in CQ, and a
partially closed database D with respect to (Dm, V). Assume without loss of
generality that Q is satisfiable, since otherwise D is trivially complete for Q
with respect to any (Dm, V) as long as (D, Dm) |= V.

We denote by Adom the set consisting of, (a) all constants that appear in
D, Dm, Q, or V, and (b) a set, New, of distinct values not in D, Dm, Q, and V, one
for each variable that is in either TQ or in the tableau representations of the
queries in V; when there are more variables with finite domain than values in
d f (recall d f from Section 2), d f ⊆ Adom.

For each variable y in TQ, we define its active domain, denoted by adom(y). If
y appears in some column A in TQ such that dom(A) is finite d f , then adom(y)
is d f ∩ Adom. Otherwise adom(y) is Adom.

A valuation μ for variables in TQ is said to be valid if, (a) for each variable y
in TQ, μ(y) is a value from adom(y), and (b) Q(μ(TQ)) is nonempty: μ observes
inequality formulas x �= y and x �= ‘b’ specified in Q.

Characterizations. To illustrate the conditions for D to be in RCQ(Q, Dm, V),
let us first examine some examples of relatively (in)complete databases.

Example 3.1. Recall query Q2 from Example 1.1 and CC φ1 from
Example 2.1, both defined over schema Supt. The query is to find all customers
supported by employee e0, all Supt tuples t with t[eid] = ‘e0’, and can be expressed
in CQ. The CC ensures that no employee supports more than k customers. Con-
sider an instance D1 of Supt such that Q2(D1) returns k distinct tuples. Then
adding any new tuple to D1 violates φ1 if the new tuple is in connection with
e0, and it does not change the answer to Q2 in D1 otherwise. That is, there
already exist k witnesses for the completeness of Q2 for D1 relative to Dm and
φ1, which block further additions of tuples in connection with e0. Thus D1 is in
RCQ(Q2, Dm, {φ1}).

As another example, recall from Example 1.1 the FD eid → dept, cid on Supt.
By Proposition 2.1, we can express the FD as two CCs in CQ, denoted by �2,
using Dm, which has an empty relation. Consider an instance D2 of Supt in
which there exists no tuple t such that t[eid] = ‘e0’. Then D2 is not complete
for Q2 relative to (Dm, �2). Indeed, Q2(D2) = ∅, but one can add a tuple t with
t[eid] = ‘e0’ that leads to a nonempty answer to Q2 in the updated D2.

These examples tell us that there are intriguing interactions among Q, V,
and the data already in D. While it is hard to characterize the interactions
syntactically, we provide sufficient and necessary conditions for D to be in
RCQ(Q, Dm, V). These conditions are expressed in terms of a notion of bounded
databases given as follows.

A database D is said to be bounded by (Dm, V) for Q if for each valid valuation
μ for variables in TQ, either (D ∪ μ(TQ), Dm) �|= V or μ(uQ) ∈ Q(D).

More specifically, D is bounded if for each valid valuation μ,

(C1) when Q(D) = ∅, then (D ∪ μ(TQ), Dm) �|= V;
(C2) when Q(D) �= ∅, if (D ∪ μ(TQ), Dm) |= V, then μ(uQ) ∈ Q(D).

The following proposition tells us that bounded databases characterize rel-
atively complete databases: D is bounded if and only if for each set � of tuples,
if Q(D) �= Q(D ∪ �), then (D ∪ �, Dm) �|= V. In other words, adding tuples to D
either violates V or does not change Q(D). Furthermore, the notion of bounded
databases reveals the small model property for checking relative completeness:
while there may exist infinitely many �s, it suffices to inspect � constructed
with values in Adom only.

In Section 3.3, we shall develop algorithms (in �
p
2) for checking conditions

C1 and C2 (and for checking analogous conditions when LQ is UCQ and ∃FO+).
By the following propositions, these algorithms effectively decide RCDP.

PROPOSITION 3.3. For each query Q in CQ, master data Dm, each set V of CCs
in CQ, and each partially closed D with respect to (Dm, V), D is in RCQ(Q, Dm, V)
iff D is bounded by (Dm, V) for Q, i.e., D satisfies the conditions C1 and C2.

PROOF. We show that C1 and C2 are sufficient and necessary conditions for
relative completeness. We first consider C1, followed by C2.

We show that C1 is a sufficient and necessary condition for the relative
completeness of D when Q(D) = ∅. Let (TQ, uQ) be the tableau representation
of Q. Suppose that D is complete. Assume by contradiction that there exists a
valid valuation μ of TQ such that (D∪μ(TQ), Dm) |= V. Let D′ = D∪μ(TQ). Then
(D′, Dm) |= V and moreover, μ(TQ) is nonempty by the definition of valid valu-
ations. Hence, Q(μ(TQ)) �= ∅ and Q(D′) �= ∅ by the monotonicity of CQ queries.
Therefore, Q(D) �= Q(D′), which contradicts the assumption that D is complete.

Conversely, suppose D is not complete. Then there exists an extension D′ of
D such that (D′, Dm) |= V, and Q(D′) is nonempty. Then there exists a valuation
μ′ for variables in TQ that draws values from D′ such that (D∪μ′(TQ), Dm) |= V,
by the monotonicity of CQ queries, and moreover, μ′(uQ) is nonempty. Define a
valuation μ such that for each variable x in TQ, μ(x) is a distinct value in New
if μ′(x) is not in Adom, and μ(x) = μ′(x) otherwise. Then (D ∪ μ(TQ), Dm) |= V
and μ(uQ) is nonempty, by the choice of the values in New. That is, μ is a valid
valuation violating condition C1.

Similarly, we show that the condition C2 is a sufficient and necessary
condition for the relative completeness of D when Q(D) �= ∅. Suppose that D is
complete. Then for each extension D′ of D, if (D′, Dm) |= V then Q(D) = Q(D′).
As a result, for each valid valuation μ for variables in TQ, if (D∪μ(TQ), Dm) |= V
then Q(D) must include μ(uQ) by the definition of relatively complete databases.

Conversely, suppose that D is not complete. We show that condition C2
does not hold. Since D is not complete, there exists an extension D′ of D such
that (D′, Dm) |= V and Q(D) �= Q(D′). Then there must exist a valuation μ′

for variables in TQ that draws values from D′ such that (D ∪ μ′(TQ), Dm) |= V
by the monotonicity of CQ queries, and moreover, μ′(uQ) �∈ Q(D). Define a
valuation μ such that for each variable x in TQ, μ(x) is a distinct value in New
if μ′(x) is not in Adom, and μ(x) = μ′(x) otherwise. Then (D ∪ μ(TQ), Dm) |= V
and μ(uQ) �∈ Q(D), by the choice of the values in New. Thus condition C2 does
not hold since μ is a valid valuation, (D ∪ μ(TQ), Dm) |= V, but μ(uQ) �∈ Q(D). �

3.2.2 When LC is the class of INDs . If V is a set of INDs, the notion of
bounded databases is simpler: a database D is said to be bounded by (Dm, V)
for Q if

(C3) for each valid valuation μ of TQ, either (μ(TQ), Dm) �|= V or μ(uQ) ∈ Q(D).

The result of Proposition 3.3 holds for the revised notion of bounded
databases.

COROLLARY 3.4. For each query Q in CQ, master data Dm, each set V of INDs,
and each partially closed D with respect to (Dm, V), D is in RCQ(Q, Dm, V) if
and only if D is bounded by (Dm, V) for Q, i.e., the condition C3 holds.

PROOF. We show that when Q(D) �= ∅, D is in RCQ(Q, Dm, V) if and only
if for each valid valuation μ of TQ, if (μ(TQ), Dm) |= V, then μ(uQ) ∈ Q(D).
The proof for Proposition 3.3 tells us that D is in RCQ(Q, Dm, V) if and only
if for each valid valuation μ of TQ, if (D ∪ μ(TQ), Dm) |= V, then μ(uQ) ∈ Q(D).
Since V is a set of INDs, (D ∪ μ(TQ), Dm) |= V if and only if (D, Dm) |= V

and (μ(TQ), Dm) |= V. Since D is partially closed with respect to (Dm, V),
(D, Dm) |= V. Thus (D ∪ μ(TQ), Dm) |= V if and only if (μ(TQ), Dm) |= V. From
this and Proposition 3.3, Corollary 3.4 follows.

The proof for Q(D) = ∅ is similar as indicated in the proof of Proposition 3.3. �

3.2.3 When LQ and LC are UCQ. Consider a query in UCQ: Q = Q1

∪ · · · ∪ Qk, where Qi is in CQ for each i ∈ [1, k]. We represent Qi as a tableau
query (Ti, ui). Then a valuation μ for Q is (μ1, . . . , μk) such that for each
i ∈ [1, k], μi is a valuation for variables in Ti and moreover, for each variable
y in Ti, μi(y) ∈ adom(y). The valuation is valid if there exists some j ∈ [1, k]
such that Qj

(
μi(Tj)

)
is nonempty.

A database D is said to be bounded by (Dm, V) for Q if,

(C4) for each valid valuation μ = (μ1, . . . , μk) for Q, either (D ∪ �, Dm) �|= V,
or for each i ∈ [1, k], μi(ui) ∈ Q(D), where � denotes μ1(T1) ∪ · · · ∪ μk(Tk).

Using this revised notion, the result of Proposition 3.3 also remains intact
when LQ and LC are UCQ.

COROLLARY 3.5. For each query Q in UCQ, master data Dm, each set V of CCs
in UCQ, and each partially closed database D with respect to (Dm, Q), D is in
RCQ(Q, Dm, V) iff D is bounded by (Dm, V) for Q, i.e., the condition C4 holds.

PROOF. We show that when Q(D) �= ∅, D is in RCQ(Q, Dm, V) if and only
if the condition C4 holds, i.e., for each valid valuation μ = (μ1, . . . , μk) for Q,
if (D ∪ �, Dm) |= V, then for each i ∈ [1, k], μ(ui) ∈ Q(D), where � denotes
μ1(T1) ∪ · · · ∪ μk(Tk). The proof for Q(D) = ∅ is similar.

First, suppose that D is complete. Then for each extension D′ of D, if
(D′, Dm) |= V then Q(D) = Q(D′). Hence for each valid valuation μ for Q, if
(D ∪ �, Dm) |= V then there exists no i ∈ [1, k] such that μ(ui) �∈ Q(D). Thus
condition C4 holds.

Conversely, suppose that D is not complete. We show that condition C4 does
not hold. Since D is not complete, there exists an extension D′ of D such that
(D′, Dm) |= V and Q(D) �= Q(D′). Then there exists a valuation μ′ = (μ′

1, . . . , μ
′
k)

for variables in (T1, . . . , Tn) that draws values from D′ such that (D∪�′, Dm) |= V
and moreover, there exists i ∈ [1, k] such that μ′

i(ui) �∈ Q(D), where �′ is μ′
1(T1)∪

· · ·∪μ′
k(Tk). Define a valuation μ = (μ1, . . . , μk) such that each μ j is defined in the

same way as in the proof for Proposition 3.3. Then the argument given there suf-
fices to show the following: (a) (D∪�, Dm) |= V, where � = μ1(T1)∪ · · · ∪μk(Tk),
and (b) μi(ui) �∈ Q(D). That is, μ is a valid valuation, (D ∪ �, Dm) |= V, but
there exists i ∈ [1, k] such that μ(ui) �∈ Q(D). Hence condition C4 does not
hold.

Along the same lines as the proof of Proposition 3.3 one can readily verify
the result for Q(D) = ∅. �

3.3 The Complexity of RCDP for CQ, UCQ and ∃FO+

Capitalizing on these characterizations, we next provide complexity bounds on
RCDP(LQ,LC) for CQ, UCQ and ∃FO+. We show that the absence of negation

and recursion makes our lives easier: RCDP(LQ,LC) is in the polynomial
hierarchy for these query languages. Furthermore, the complexity bounds are
rather robust: the problem is �

p
2 -complete when LQ and LC are ∃FO+, and it

remains �
p
2 -complete when LQ is CQ and LC is the class of INDs.

THEOREM 3.6. RCDP(LQ,LC) is �
p
2 -complete when

(1) LC is the class of INDs and LQ is CQ, UCQ or ∃FO+,
(2) LQ and LC are CQ,
(3) LQ and LC are UCQ, or
(4) LQ and LC are ∃FO+.

PROOF. It suffices to show the following complexity bounds. (1) Lower
bound: RCDP(LQ,LC) is �

p
2 -hard when LC is the class of INDs and LQ is CQ.

(2) Upper bound: RCDP(LQ,LC) is in �
p
2 when LC and LQ are both ∃FO+. For

if these hold, then the complexity bounds remain the same for cases (1)–(4).
Lower bound. We show that RCDP(LQ,LC) is �

p
2 -hard when LC is the class

of INDs and LQ is CQ (case (1)), by reduction from the ∀∗∃∗-3SAT-problem. The
latter is to determine, given ϕ = ∀X∃YC1∧· · ·∧Cr, whether or not ϕ evaluates to
true. Here X = {x1, . . . , xn} and Y = {y1, . . . , ym}, which are sets of variables; and
C1 ∧ · · · ∧ Cr is an instance of 3SAT, i.e., each clause Ci is of the form �i

1 ∨ �i
2 ∨ �i

3,
where for k ∈ [1, 3] and i ∈ [1, r], �i

k is either a variable or the negation of a
variable in X ∪ Y. This problem is known to be �

p
2 -complete (cf. Papadimitriou

[1994]). We construct relational schemas R and Rm, instances D and Dm

over R and Rm, respectively, a set V of INDs as CCs, and a query Q in CQ
such that D is complete for Q relative to (Dm, V) if and only if ϕ evaluates to
true.

(a) The relational schema R consists of six relation schemas: R1(x),
R2(x1, x2, x3), R3(x1, x2, x3), R4(x, x̄), R5(x1, x2, , x3), and R6(x). We say that
instances I = (I1, I2, I3, I4, I5, I6) of R are well-formed if and only if:

— I1 = I01 = {(0), (1)}, encoding the Boolean domain {0, 1};
— I2 = I∨ = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)}, encoding the truth table of

disjunction, i.e., I∨(x, y, z) if and only if x ∨ y = z;
— I3 = I∧ = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}, encoding conjunction;
— I4 = I¬ = {(0, 1), (1, 0)}, encoding negation, i.e., I¬(x, y) if and only if x = ȳ;
— I5 = Ic = {(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 1)}; here Ic is a truth table such

that Ic(x, y, 1) if and only if x = 0 or x = 1 and y = 1; and finally,
—{(1)} ⊆ I6 ⊆ {(0), (1)}, which states that I6 should contain at least (1) and at

most (0) and (1).

The schema Rm is the same as R, i.e., Rm = (Rm
1 = R1, Rm

2 = R2, Rm
3 =

R3, Rm
4 = R4, Rm

5 = R5, Rm
6 = R6).

(b) We define D = (I01, I∨, I∧, I¬, Ic, I6 = {(1)}), and Dm = (Im
1 = I01, Im

2 =
I∨, Im

3 = I∧, Im
4 = I¬, Im

5 = Ic, Im
6 = {(0), (1)}).

(c) The set V of CCs consists of the following INDs: Ri ⊆ Rm
i , for i ∈ [1, 6]. For

each instance D′ = (I′
1, I′

2, I′
3, I′

4, I′
5, I′

6) of R such that D ⊆ D′ and (D′, Dm) |= V,
it is easily verified that D′ is necessarily well-formed.

(d) The query Q is constructed in several steps. Let D′ = (I′
1, I′

2, I′
3, I′

4, I′
5, I′

6)
be an instance of R such that D ⊆ D′ and (D′, Dm) |= V. First, we encode
truth assignments for the ∀∗∃∗-3SAT-instance ϕ. Since D′ is assured to be
wellformed by V, I′

1 = I01; hence one can construct all n+ m-ary binary vectors
by means of the Cartesian product R1 × · · · × R1 (n + m times). Furthermore,
we encode the 3SAT-instance in ϕ, by leveraging instances of R2, R3, and R4,
which correspond to the Boolean truth table of disjunction, conjunction and
negation, respectively. More specifically, we construct an n+ m+ 1-ary relation
T, with attributes x1, . . . , xn, y1, . . . , ym, z such that for each tuple t in that
relation, t[z] is 1 if C1 ∧ · · · ∧ Cr evaluates to true for the truth assignment of
X ∪ Y given by t[x1, . . . , xn, y1, . . . , ym], and t[z] is 0 otherwise. Note that I∨ and
I¬ are required since CQ has neither disjunction nor negation. We included I∧
just for convenience.

We next select certain truth assignments for X, by making use of the
relations R6 and R5. We take the product R6 × T, and denote the first attribute
in R6 × T by z′. When evaluated on D′, the result of this query is {1} × T(D′)
when I′

6 only contains (1), and it is {1}×T(D′)∪{0}×T(D′) otherwise. Finally, we
use relation R5 to select certain tuples s from I′

6 × T(D′). More specifically, the
query Q is:

Q(x̄) = πx̄
(
R6(z′) × T(x̄, ȳ, z) × R5(z′, z, 1)

)
.

When I′
6 = {(1)}, we only want to retrieve those truth assignments for X for

which there exists a truth assignment for Y that makes C1 ∧ · · · ∧ Cr true. In
other words, we select those tuples s from I′

6 × T(D′) for which I′
5(s[z′], s[z], 1)

exists. Indeed, in this case s[z] must be 1 to be selected. When I′
6 = {(0), (1)},

we simply want to find all possible truth assignments for X. Again, we select
those tuples s from I′

6 × T(D′) for which I′
5(s[z′], s[z], 1) exists. In this case s[z]

can be either 0 or 1 to be selected. This completes the construction of R, Rm, D,
Dm, V and Q.

We now show that D is complete for Q relative to (Dm, V) if and only if ϕ is
true. If ϕ is true then Q(D) will return all truth assignments for X, and so will
Q(D′) for each partially closed extension D′. Conversely, if D is complete for
Q relative to (Dm, V), then in particular we must have that Q(D) = Q(D′) with
D′ = (I′

1 = I01, I′
2 = I∨, I′

3 = I∧, I′
4 = I¬, I′

5 = Ic, I′
6 = {(0), (1)}). However, since

I6 = {(1)}, Q(D) only returns the truth assignments for X for which there exists
a truth assignment for Y that makes C1 ∧ · · · ∧ Cr true. Since I′

6 = {(0), (1)},
Q(D′) will return all truth assignments for X. As consequence, ϕ must be true.

This completes the proof for the �
p
2 lower bound. It should be remarked

that in the proof, Dm and V are fixed.
Upper bound. We next establish the �

p
2 upper bound. To illustrate the main

idea, we first provide a �
p
2 algorithm for testing relative completeness for the

case when both LC and LQ are UCQ (case (3)). We then show how the algorithm
can be modified for the case when both LC and LQ are ∃FO+(case (4)).

When LQ and LC are UCQ. Let V be a set of CCs expressed in UCQ, D a
database, and Dm a master data instance of schema Rm. Let Q be a UCQ
query Q = Q1 ∪ · · · ∪ Qp, where Qi is in CQ. By Lemma 3.2, we assume that
the tableau representation of Q consists of p tableaux (Ti, ui), one for each

CQ query Qi. Recall the definitions of Adom, adom(y) and valid valuations
from Section 3.2. We assume that the set New now consists of distinct values,
one for each variable in (Ti, ui) or V. Similarly, the notion of valid valuations
generalizes to a set of tableaux in a straightforward manner.

We now present a �
p
2 algorithm for testing the relative completeness of a

database, based on Corollary 3.5. The algorithm is in fact a �
p
2 algorithm for

the complement of our problem: given D, Dm, V, and Q, it returns “yes” if there
exists a tuple s such that s �∈ Q(D), but s ∈ Q(D′) for some D′ ⊇ D such that D
and Dm satisfy V, and returns “no” otherwise. More specifically, the algorithm
does the following.

(1) Guess the following:
(a) a component query Qi (from i ∈ [1, p]); and
(b) a valuation ν for Ti such that for each variable y, ν(y) ∈ adom(y).

(2) If ν is invalid then reject the current guess. Note that the validity of a
valuation can be verified in PTIME. Otherwise, let s = ν(ui). Observe that
this is well-defined since we assume that ui solely consists of variables.
Furthermore, assume that Ti consists of � tuples ti

j . Then s ∈ Q(�) since μ

is valid, where � = {ν(ti
j) | j ∈ [1, �]}.

(3) We next make two calls to an NP oracle:
(a) We test whether s ∈ Q(D). If it is, then we reject the current guess.

Otherwise we continue. Testing whether a tuple belongs to the query
result of a UCQ query on a given instance is known to be in NP [Chandra
and Merlin 1977].

(b) Let D′ = D ∪ �. We check whether D′ and Dm do not satisfy one of the
CCs in V, a check that can also be done in NP. If D′ indeed violates one
of the CCs, then the current guess is again rejected. Otherwise, D′ is
a counterexample for the completeness of D for Q relative to (Dm, V),
and the algorithm returns “yes”.

We next verify the correctness of the algorithm. Clearly, the algorithm
returns “yes” if a counterexample for the completeness of D for Q has been
found. Indeed, the counterexample is D ∪ �, where � = ν(Ti), and ν and Ti

are the guesses that lead to a successful run of the algorithm. Conversely,
we show that if D is incomplete for Q relative to (Dm, V), then the algorithm
returns “yes”. Indeed, by Corollary 3.5, if D is incomplete, then there exist a
valid valuation μ = (μ1, . . . , μk) and i ∈ [1, k], such that (D ∪ �, Dm) |= V and
μi(ui) �∈ Q(D). Such a valuation μi is indeed one that can be guessed by the
algorithm. That is, the algorithm is able to find a counterexample, as desired.

(4) When LQ and LC are ∃FO+. The �
p
2 algorithm can be easily modified for

this case. A query Q in ∃FO+is equivalent to a possibly exponentially long union
of CQ queries. Therefore, an unfolding of the query will bring us beyond �

p
2 .

However, we can avoid unfolding Q by, (1) first guessing the disjunctions in Q;
and (2) running the �

p
2 algorithm for the tableau corresponding the CQ query

that results from this choice of disjunctions. Along the same lines, testing
whether a tuple is in the answer to a query in a database can be conducted in
NP when the query is in ∃FO+(step (2) in the algorithm). Putting these together,
we have a �

p
2 algorithm for checking RCDP(LQ,LC) when LQ and LC are ∃FO+.

This completes the proof for the �
p
2 upper bound for cases (1)–(4). �

In practice, master data Dm and containment constraints V are often
predefined and fixed, and only databases and user queries vary.

One might be tempted to think that fixed Dm and V would lower the
complexity bounds. Unfortunately, the next result tells us that the lower bound
of Theorem 3.6 remains unchanged when Dm and V are fixed, even when V is
a fixed set of INDs.

COROLLARY 3.7. RCDP(LQ,LC) remains �
p
2 -complete when master data Dm

and the set V of containment constraints are fixed, and when, (a) LC is the class
of INDs and LQ is CQ, UCQ or ∃FO+; (b) LQ and LC are CQ; (c) LQ and LC are
UCQ; or (d) LQ and LC are ∃FO+.

PROOF. We show that RCDP(LQ,LC) remains �
p
2 -complete for all the cases

considered in Theorem 3.6 when V and Dm are fixed. Indeed, the upper bound
of Theorem 3.6 carries over to fixed Dm and V. For the lower bound, it suffices
to observe that the �

p
2 -hardness proof of Theorem 3.6 only uses a fixed set V

of INDs and fixed master data Dm, when Q is a CQ query. �

We have also seen from Theorem 3.1 that the problem remains undecidable
for queries in FO or FP when Dm and V are fixed. Putting these together, we
can conclude that fixed Dm and V do not lower the complexity of RCDP(LQ,LC).
In contrast, as will be seen in the next section, fixed Dm and V simplify
the analysis of RCQP(LQ,LC), the problem for deciding whether a query is
relatively complete.

4. DETERMINING RELATIVELY COMPLETE QUERIES

In this section we investigate RCQP(LQ,LC), the relatively complete query
problem. Given a query Q in LQ, master data Dm, and a set V of CCs in LC,
we want to decide whether there exists a database D that is complete for Q
relative to (Dm, V): whether RCQ(Q, Dm, V) is nonempty.

We first show the undecidability of RCQ(Q, Dm, V) for FO and FP. We then
characterize relatively complete queries in CQ or UCQ, when LC ranges from
INDs to UCQ. Based on the characterization, we provide matching lower and
upper bounds for RCDP(LQ,LC) when LQ and LC range over CQ, UCQ and
∃FO+. Compared to RCDP(LQ,LC), the complexity bounds of RCDP(LQ,LC)
are relatively more diverse; moreover, fixed master data and containment
constraints simplify the analysis of relatively complete queries, to some extent.

4.1 The Undecidability of RCQP for FO and FP

Recall from Theorem 3.1 that it is undecidable to determine whether a
database is in RCQ(Q, Dm, V) when either LQ or LC is FO or FP. It is no better
for RCQP(LQ,LC): in these settings RCQP(LQ,LC) is also undecidable. More-
over, the undecidability is rather robust: the problem is already beyond reach
in practice when master data and containment constraints are predefined and
fixed.

THEOREM 4.1. RCQP(LQ,LC) is undecidable when:

(1) LQ is FO and LC consists of fixed queries in FO;
(2) LC is FO and LQ is CQ;
(3) LQ is FP and LC consists of fixed queries in FP; or
(4) LC is FP and LQ is CQ.

When LQ is FO or FP, it remains undecidable for fixed master data and fixed
containment constraints.

PROOF. When LQ is FO, the proof is not as simple as one might have
expected. The undecidability for case (1) is verified by reduction from the
emptiness problem for 2-head DFA. Along the same lines we also show the
undecidability when LQ is FP (case (3)) and when LC is FP (case (4)). The proof
is easier for case (2), when LC is FO; it is by reduction from the satisfiability
problem for FO queries.

(1) When LQ is FO and LC consists of fixed FO queries. Recall the emptiness
problem for 2-head DFAs from the proof of Theorem 3.1. Given a 2-head DFA
A, we define relational schemas R and Rm, master data instance Dm of Rm, a
set V of fixed CCs, and an FO query Q over R such that RCQ(Q, Dm, V) �= ∅ if
and only if L(A) �= ∅.

(a) The relational schema R consists of five relation schemas. We have seen
four of them in the proof Theorem 3.1 (4), namely, two unary relations, P(A)
and P̄(A), a binary relation, F(A1, A2), and a 6-ary relation, R�(x, y, z, x′, y′, z′).
Intuitively, an instance D = (IP, IP̄, IF) of (P, P̄, F) is to represent a string w

such that elements in IP denote the positions in w where a “1” occurs, and
IP̄ keeps track of those positions in w that are “0”. The relation IF encodes a
successor relation over these positions. We use instances I� of R� to encode all
valid transitions δ ∈ � of the transition function � of A. In addition to these,
we use another 6-ary relation, R�∗ (x, y, z, x′, y′, z′), whose instances I�∗ are
to encode the transitive closure of the instance of R�. We define Rm = (Rm

1),
where Rm

1 is a unary relation.
(b) We define the master data instance as Dm = (Im

1 = ∅).
(c) The set V consists of the following CCs, all expressible as fixed CQ or FO

queries.

—V1; ∃x(P(x)∧ P̄(x)) ⊆ ∅, ensuring that no 0 and 1 appear in the same positions
in the input string;

—V2; ∃x∃y∃z(F(x, y) ∧ F(x, z) ∧ y �= z) ⊆ ∅, assuring that instances of F are
functions;

—V3; ∃x∃y(F(x, x) ∧ F(y, y) ∧ x �= y) ⊆ ∅, asserting that there exists at most
one tuple of the form (k, k) in an instance of F;

—V4 states that the first three attributes in R� are a key for the relation.
Let ū = (x, y, z), v̄ = (x′, y′, z′) and w̄ = (x′′, y′′, z′′). Then,

—V5; (R�(ū, v̄) ∨ ∃w̄(R�(ū, w̄) ∧ R�∗ (w̄, v̄))) ∧ ¬R�∗ (ū, v̄) ⊆ ∅; and
—V6; (R�∗ (ū, v̄) ∧ ¬(R�(ū, v̄) ∨ ∃w̄(R�(ū, w̄) ∧ R�∗ (w̄, v̄))) ⊆ ∅.

Intuitively, V5 and V6 enforce I�∗ to be the transitive closure of I�.

(d) The FO query Q expresses the following. Let D = (IP, IP̄, IF, I�, I�∗) be
an instance of R. Then Q(D) = I� or Q(D) = true depending on the following
conditions.

(i) If D �|= ∃xF(0, x), then Q(D) = I�.
(ii) If D �|= ∃xF(x, x), then Q(D) = I�.

(iii) If there exists a δ ∈ �, δ = (q, in1, in2) → (q′,move1,move2) such that
D �|= ϕδ(x, y, z, x′, y′, z′), then Q(D) = I�, where ϕδ is

(
x = q ∧ x′ =

q′ ∧α1(y)∧α2(z)∧β1(y, y′)∧β2(z, z′)
)
. Here αi(x) = ∃y(F(x, y)∧ x �= y∧ P(x))

if ini = 1; αi(x) = ∃y(F(x, y) ∧ x �= y ∧ P(x)) if ini = 0; and αi(x) = F(x, x) if
ini = ε. Moreover, βi(x, y) = F(x, y) if movei = +1 and βi(x, y) = (x = y) if
movei = 0.

(iv) Finally, if there does not exist a tuple (q, 0, 0, qacc, x, y) in I�∗ , then
Q(D) = I�, otherwise Q(D) = true.

We now show that L(A) �= ∅ if and only if there exists a database complete for
Q relative to (Dm, V). First suppose that L(A) �= ∅. We show that RCQ(Q, Dm, V)
is nonempty by constructing an instance D of R that is complete for Q relative
to (Dm, V). Let IP, IP̄, and IF be an encoding of an input string that A accepts.
Furthermore, let I� consist of all given ϕδs, and let I�∗ be the transitive closure
of I�. We define D = (IP, IP̄, IF, I�, I�∗). Since the run of A on input IP, IP̄ and
IF is accepting, there exists a tuple (q, 0, 0, qacc, x, y) in I�∗ . Hence Q(D) = true.
Consider any D′ = (I′

P, I′
P̄, I′

F, I′
�, I′

�∗) such that D ⊆ D′ and (D′, Dm) |= V. From
this and the definition of Q, it readily follows that Q(D′) = true as well. Hence
D is indeed complete for Q relative to (Dm, V).

Conversely, suppose that L(A) = ∅. We show that there cannot exist a
D = (IP, IP̄, IF, I�, I�∗) that is complete for Q relative to (Dm, V). Clearly,
the only scenario that can lead to a complete instance is when Q(D) = true.
However, this happens only when, (1) IP, IP̄, and IF correctly encode an input,
(2) I� contains all valid transitions in � of A, and (3) the transitive closure I�∗

of I� contains a tuple of the form (q, 0, 0, qacc, x, y). Observe that the first three
attributes of R� are a key for the relation R�, and that I�∗ is the transitive
closure of I�. Taken together, these assure the existence of a successful run
of A, contradicting our assumption. Indeed, given (q, 0, 0, qacc, x, y) we know
that there exists a unique (q1, x1, y1) such that (q, 0, 0, q1, x1, y1) ∈ I� and
(q1, x1, y,qacc, x, y) ∈ I�∗ . Furthermore, since I� contains the valid transitions of
� and by the key constraint, (q, 0, 0, q1, x1, y1) corresponds to a valid transition
in � as well. We can therefore keep unfolding (q1, x1, y,qacc, x, y), which leads to
a sequence of valid transitions of A from (q, 0, 0) to (qacc, x, y). This contradicts
the assumption that L(A) = ∅.

(2) When LC is FO and LQ is CQ. We show that RCQP(LQ,LC) is undecidable
by reduction from the satisfiability problem for FO. Given an FO query q over
a relational schema R = (R1, . . . , Rn), we derive a Boolean query q′ from q,
defined by q′(D) = {()} if q(D) �= ∅ or D is empty, and q′(D) = ∅ otherwise. The
schema of the input database and master data are defined to be, respectively,
R′ = (R, Ru) and Rm = (Rm

1) for some unary relation schemas Ru and Rm
1 .

Moreover, let Dm = (Im
1 = ∅). We define V to consist of a single CC: {()} \ q′ ⊆ ∅.

Clearly, for each instance D′ = (I′
1, . . . , I′

n, I′
u) of R′ we have that (D′, Dm) |= V

if and only if q(I′
1, . . . , I′

n) is nonempty or (I′
1, . . . , I′

n) = (∅, . . . ,∅). Finally,
we define a query Q over R′ as Q(I′

1, . . . , I′
n, I′

u) = Q1(I′
1, . . . , I′

n) × I′
u, where

Q1(I′
1, . . . , I′

n) = {(1)} if (I′
1, . . . , I′

n) �= (∅, . . . ,∅), and Q1(I′
1, . . . , I′

n) = ∅ otherwise.
We show that RCQ(Q, Dm, V) is nonempty if and only if q is not satisfiable.

Suppose first that q is not satisfiable. Then (D′ = (I′
1, . . . , I′

n, I′
u), Dm) |= V if and

only if (I′
1, . . . , I′

n) = (∅, . . . ,∅). We define D = (∅, . . . ,∅, Iu) for an arbitrary in-
stance Iu of Ru. Then Q(D) = ∅. Clearly D is complete for Q relative to (Dm, V).
Conversely, if q is satisfiable then there exists a D = (I1, . . . , In, Iu) such that
q(I1, . . . , In) �= ∅. Observe that it suffices to consider only such Ds since those are
the only ones that satisfy V together with Dm. However, Q(D) = {(1)}× Iu, which
shows that D cannot be complete for Q. Indeed, for each D′ = (I1, . . . , In, I′

u) with
Iu ⊂ I′

u, D and Dm satisfy V, but Q(D) �= Q(D′). Hence RCQ(Q, Dm, V) is empty.
(3) When LQ is FP and LC consists of fixed FP queries. We show the

undecidability of RCQP(LQ,LC) by reduction from the emptiness problem for
2-head DFAs. The proof is referred to the Appendix.

(4) When LC is FP and LQ is CQ. We show that RCQP(LQ,LC) is undecidable
again by reduction from the emptiness problem for 2-head DFAs. The proof is
referred to the Appendix.

The proofs only use fixed (Dm, V) when LQ is FO or FP, and thus verify the
undecidability for fixed Dm and V. �

4.2 Characterizations of Relatively Complete Queries in CQ

The undecidability results suggest that we consider CQ, UCQ, and ∃FO+for
LQ and LC. To understand what makes a query Q allow a relatively complete
database for given master data Dm and a set V of CCs, we provide sufficient
and necessary conditions for RCQ(Q, Dm, V) to be nonempty.

We first present conditions for Q and V in CQ. We then give a syntactic
characterization for relative complete CQ queries Q when LC consists of INDs.
Finally, we extend the conditions for CQ to characterize relatively complete
UCQ queries when LC is UCQ. The conditions can be extended to queries and
CCs in ∃FO+.

4.2.1 When LQ and LC are CQ . To get insight into the conditions, let us
first look at some example queries, complete or incomplete.

Example 4.1. Consider the schema Supt(eid, dept, cid) of Example 1.1. An
FD on Supt is eid → dept, i.e., each employee works in at most one department.
The FD can be expressed as a CC φ3 in CQ. Consider a query Q4 in CQ that is
to find all Supt tuples t such that t[eid] = ‘e0’ and t[dept] = ‘d0’. Let master data
Dm be an empty relation. Then Q4 is relatively complete. Indeed, there exists
a database D− complete for Q4 relative to (Dm, {φ3}), where D− consists of a
single tuple t− = (e0, d′, c), d′ �= d0. Note that Q4(D−) = ∅. Furthermore, for
each set � of tuples such that Q4(�) is nonempty, D− prevents � from being
added to it, since otherwise D− ∪ � violates the CC φ3.

Now consider the query Q2 of Example 1.1, which is to find all Supt tuples
t with t[eid] = ‘e0’. Assume that dom(cid) is infinite. Then Q2 is not complete

with respect to Dm and φ3. Indeed, no matter which database D we consider,
we can always add a new tuple t′ to D such that t′[cid] is a value not in D,
and Q3(D) �= Q3(D ∪ {t′}). In contrast, if the FD eid → dept, cid of Example 3.1
(expressed as a set �2 of CCs) is in place, then Q2 is relatively complete.
Indeed, a database complete for Q3 is D+, which consists of t+ = (e0, d0, c0). For
each set � of tuples, if Q2(�) �= ∅ and (D+ ∪ �, Dm) |= �2, then for each t′ in
�, D+ enforces t′[eid] to take ‘c0’ as its value. That is, the values of t′[eid] are
bounded, and Q2(D+ ∪ �) = Q2(D+) = {t+}.

As suggested by the example, a query Q is relatively complete if and only
if one of the following two conditions holds. (a) There exists a set D− of tuples
such that (D−, Dm) |= V, Q(D−) = ∅ and moreover, D− prevents those tuples
� from being added to D− if Q(�) is nonempty. That is, there exist no tuples
� such that both (D− ∪ �, Dm) |= V and Q(�) �= ∅. (b) There exists a set D+ of
tuples such that Q(D+) �= ∅, (D+, Dm) |= V, and moreover, D+ bounds all those
variables y in Q with an infinite domain, via Dm and V. That is, for each such
y and each set of tuples �, if Q(�) is nonempty, then either (D+ ∪ �, Dm) �|= V
or Q(�) ⊆ Q(D+), where y is instantiated with a value that is in Dm, D+ or is
a constant in Q.

To formalize the intuition, we use the following notations.
(a) We revise the notion of Adom given in Section 3.2 such that it consists of

all the constants that are in Dm, V, Q or New. As in Section 3.2, we represent
CQ query Q as a tableau query (TQ, uQ), and define valid valuations of TQ.

The domain of a variable y in TQ, denoted by dom(y), is said to be finite if
y appears in some column A in TQ such that dom(A) is d f , and it is infinite
otherwise.

(b) Consider a set V consisting of CCs qi ⊆ pi for i ∈ [1, n], where qi is a
CQ query. We represent qi as a tableau query (Ti, ui). A valuation ν of V is
(ν1, . . . , νn), where νi is a valuation of variables in a subset of tuple templates
in Ti.

In contrast to valuations of TQ, a valuation νi is partial: it instantiates a
subset of Ti in CCs. To see the need for this, observe that the FD eid → dept,
when expressed as CC φ3 : q ⊆ ∅ with q = (T, u), T consists of two tuple tem-
plates (see, for example φ1 of Example 2.1). As we have seen in Example 4.1,
it is sufficient to instantiate one of the two tuple templates to make D−. This
is also necessary; if both templates are instantiated then these tuples warrant
violating CC φ3.

We use Dν to denote
⋃

i∈[1,n] νi(Ti). For a set V of valuations of V, we use DV
to denote

⋃
ν∈V Dν . In particular, when V is empty, so is DV .

(c) A variable y in uQ is said to be bounded by V with respect to a valuation
μ of TQ if there exist ν ∈ V and j ∈ [1, n] such that μ(y) appears in ν j(uj),
i.e., μ(y) = ν j(z) for some z in uj .

We next identify conditions for RCQ(Q, Dm, V) to be nonempty, based on a
notion of bounded queries.

A CQ query Q = (TQ, uQ) is said to be bounded by (Dm, V) if and only if either,

(E1) all variables in uQ have a finite domain, or

(E2) there exists a set V of valuations of V such that (DV , Dm) |= V, and
moreover, for each valid valuation μ of TQ, if (DV ∪ μ(TQ), Dm) |= V
then each variable y with an infinite domain in uQ is bounded by V
with respect to μ.

Intuitively, when all the variables in uQ have a finite domain (condition E1),
Q is trivially relatively complete with respect to (Dm, V). Suppose that some
variables have an infinite domain, then condition E2 allows us to determine
the existence of a set D− or D+ with these properties. More specifically, when
there exists a set V of valuations of V satisfying the condition E2, then D−

(resp. D+) can be constructed from DV when Q(DV) = ∅ (resp. Q(DV) �= ∅).
Bounded queries indeed characterize relatively complete queries in CQ.

PROPOSITION 4.2. For each CQ query Q, master data Dm, and each set V of
CCs in CQ, RCQ(Q, Dm, V) is nonempty if and only if Q is bounded by (Dm, V),
i.e., Q satisfies either the condition E1 or E2.

PROOF. We first show that if the condition E1 or E2 holds, then
RCQ(Q, Dm, V) is nonempty. We consider two cases: (a) when E1 holds,
and (b) when E2 holds.

(a) When E1 holds. Consider a maximal collection � of valuations of TQ,
not necessarily drawing values from Adom, such that (D, Dm) |= V, where
D = ⋃

μ∈� μ(TQ). Obviously database D is finite since there are finitely many
valuations of TQ given the condition E1. Furthermore, D is relatively complete:
for each valuation μ′ of TQ, either μ′ ∈ � or (D ∪ μ′(TQ), Dm) �|= V. Thus
RCQ(Q, Dm, V) is nonempty.

(b) When E2 holds, i.e., there exists a set DV of tuples as specified by E2. We
expand it with all constant tuples in TQ: tuple templates in TQ that do not con-
tain any variable. We denote the extended set also by DV . We show that DV is rel-
atively complete. Assume by contradiction that there exists a valuation μ′ of TQ

such that Q(μ′(TQ)) �= ∅ and (DV ∪μ′(TQ), Dm) |= V, but Q(μ′(TQ)) �∈ Q(DV). Then
there exists a variable y in uQ such that dom(y) is infinite and μ′(y) �∈ Adom, by
the definition of Adom and DV . Define a valid valuation μ of TQ such that for each
variable x of Q, μ(x) = μ′(x) if μ′(x) ∈ Adom and μ(x) is a distinct value in New
otherwise. By the choice of values in New, we have that (DV ∪ μ(TQ), Dm) |= V.
By E2, there must exist a CC qi ⊆ pi in V, where qi = (Ti, ui), and a
valuation νi of Ti in some valuation ν of V, such that μ(y) appears in νi(ui).
By the definition of New, the values of y must be constrained by the values
in Dm. In other words, if μ′(y) �∈ Adom then either (DV ∪ μ′(TQ), Dm) �|= V
or Q(μ′(TQ)) ∈ Q(DV). contradicting the assumption. Hence DV is in
RCQ(Q, Dm, V).

Conversely, suppose that RCQ(Q, Dm, V) contains a database D. We consider
two cases: (1) when V = ∅, and (2) when V �= ∅.

(1) When V = ∅. We show that condition E1 must hold. Assume by contra-
diction that there exists a variable y in uQ such that dom(y) is infinite. Since
we consider satisfiable CQ queries, there exists a valuation μ′ of TQ such that
Q(μ′(TQ)) is nonempty. Let c be a value in dom(y) such that c is in none of
D, Dm, Q and V. Define μ′ such that μ(y) = c and μ(x) = μ′(x) for x �= y. Then

(D ∪ μ(TQ), Dm) |= V since V is empty. Furthermore, Q(μ(TQ)) ∈ Q(D ∪ μ(TQ))
by the monotonicity of CQ queries, but Q(μ(TQ)) �∈ Q(D). That is, Q(D) �=
Q(D ∪ μ(TQ)), contradicting the assumption that D is relatively complete.

(2) When V �= ∅. Assume that neither condition E1 nor E2 holds. Define V to
be a maximal set of valuations of V such that (D∪ DV , Dm) |= V. Then there is a
valid valuation μ of TQ such that (DV ∪ μ(TQ), Dm) |= V, but some variable y in
uQ with an infinite domain is not bounded by V with respect to μ. It suffices to
show that (D ∪ μ(TQ), Dm) |= V. For if it holds, one can pick a value c ∈ dom(y)
that is in none of D, Dm, Q, and V. Define μ′(y) = c and μ′(x) = μ(x) for x �= y.
Then (D ∪ μ′(TQ), Dm) |= V since y is not bounded by V and Dm, but Q(D) �=
Q(D ∪ μ′(TQ)). This contradicts the assumption that D is relatively complete.

Assume by contradiction that (D ∪ μ(TQ), Dm) �|= φ, where φi is a CC qi ⊆ pi

in V. Let qi be represented as (Ti, ui). Since (DV ∪μ(TQ), Dm) |= V, by the mono-
tonicity of CQ queries we have that (μ(TQ), Dm) |= V. In addition, (D, Dm) |= V
since D is assumed to be in RCQ(Q, Dm, V). Thus there must exist a nonempty
subset �1 of D, a nonempty subset �2 of μ(TQ), and a valuation ρ ′ of variables
in Ti such that ρ ′(Ti) = �1 ∪ �2, (�1 ∪ �2, Dm) �|= φ, but (�1 ∪ D, Dm) |= V. In
addition, since μ draws values from Adom and (D ∪ DV , Dm) |= V, one can get
�′

1 from �1 such that all values in �′
1 are in Adom, (�′

1 ∪ �2, Dm) �|= φ, but
(�1 ∪ D, Dm) |= V. From �′

1 and νφ one can readily induce a subset T′
i of Ti

and a mapping ρ from variables in T′
i to Adom such that ρ(T′

i) = �′
1. Define a

valuation ν = (ν1, . . . , un) of V such that νi is ρ and uj is an empty mapping
for j �= i. Let V ′ = V ∪ {ν}. Then (D ∪ DV ′, Dm) |= V. This contradicts the
assumption that V is maximal. Thus (D ∪ μ(TQ), Dm) |= φ. �

Observe that the size of each set V of valuations of V is at most exponential
in the sizes of Q, V, and Dm, and that each valid valuation μ of TQ is no larger
than Q. It is based on this small model property that we give the complexity
bounds for RCQP(CQ, CQ) in Section 4.3.

The characterization can be equivalently expressed as follows. For a
database D and a variable y in uQ, let val(D, y) denote the set of μ(y)s when μ

ranges over all valuations of TQ such that Q(μ(TQ)) �= ∅ and (D∪μ(TQ), Dm) |= V
(μ(y) is not necessarily in Adom). Then RCQ(Q, Dm, V) is nonempty if and only
if there exists a set V of valuations of V such that (DV , Dm) |= V and val(DV , y)
is finite for all y in uQ.

4.2.2 When LC is the class of INDs . In this setting, there is a syntactic
characterization for relatively complete queries.

A CQ query Q = (TQ, uQ) is bounded by (Dm, V) if for all variables y in uQ,

(E3) either dom(y) is finite; or
(E4) there exists an IND π(A,...) ⊆ p in V such that y appears in column A in

TQ, where π is the projection operator.

PROPOSITION 4.3. For each CQ query Q = (TQ, uQ), master data Dm, and
each set V of INDs, RCQ(Q, Dm, V) is nonempty iff either Q is bounded by
(Dm, V), i.e., Q satisfies the condition E3 or E4, or there exists no valid valuation
μ of TQ such that (μ(TQ), Dm) |= V.

PROOF. First assume that Q is bounded by (Dm, V). We construct a rela-
tively complete database D. If for all valid valuations μ of TQ, (μ(TQ), Dm) �|= V,
then obviously the empty database D is in RCQ(Q, Dm, V). In the following we
assume that there exists a valid valuation μ of TQ such that (μ(TQ), Dm) |= V.
We define D to be a minimal collection of tuples such that for each variable y
in uQ and each c ∈ adom(y), if there exists a valid valuation μ of TQ such that
μ(y) = c and (μ(TQ), Dm) |= V, then D includes one of such μ(TQ)s. Observe
the following. (1) D is finite since it is defined using valid valuations of TQ

only; (2) (D, Dm) |= V since V is a set of INDs and (μ(TQ), Dm) |= V for each
μ(TQ) that is included in D; and (3) for each partially closed extension D′ of D,
Q(D) = Q(D′); indeed, by the definition of D, for each s ∈ Q(D′), there exists
a valid valuation μ of TQ such that s ∈ Q(μ(TQ)) and μ(TQ) ⊆ D. Thus D is in
RCQ(Q, Dm, V) and RCQ(Q, Dm, V) is nonempty.

Conversely, suppose that there exists a database D in RCQ(Q, Dm, V).
Assume by contradiction that there is a valid valuation μ of TQ such that
(μ(TQ), Dm) |= V, and that Q is not bounded by (Dm, V), i.e., there exists a
variable y in TQ such that dom(y) is infinite and y is not constrained by any
INDs in V. Then we can find a constant c ∈ adom(y) that appears in none of
D, Dm, Q and V. Define a valuation μ′ of TQ such that μ′(y) = c and μ′(x) = μ(x)
for all variables x �= y in TQ. Then it is easy to see that Q(μ′(TQ)) �⊆ Q(D′) and
moreover, (D∪μ(TQ), Dm) |= V since y is not constrained by V. This contradicts
the assumption that D is complete, since D′ = D ∪ μ(TQ) is an extension of of
D, (D′, Dm) |= V, but Q(D) �= Q(D′). �

4.2.3 When LQ and LC are UCQ . A containment constraint in UCQ is of
the form (q1 ∪ · · · ∪ qm) ⊆ p, and is equivalent to a set of CCs in CQ, consisting
of qj ⊆ p for each j ∈ [1, m]. Thus the notions of valuations of V and DV for a
set V of valuations of V are also well defined in this setting.

Consider a query Q = Q1 ∪ · · · ∪ Qk in UCQ, where Qi is represented as
a tableau query (Ti, ui). We use the notion of valid valuations of Q given
in Section 3.2. We also define bounded UCQ queries, similar to their CQ
counterparts.

A UCQ query Q is said to be bounded by (Dm, V) if and only if for all i ∈ [1, k],
either:

(E5) all variables in ui have a finite domain; or
(E6) there exists a set V of valuations of V such that (DV , Dm) |= V, and for

each valid valuation μ = (μ1, . . . , μk) of Q, if (DV ∪⋃
i∈[1,k] μi(Ti), Dm) |= V,

then for each variable y with an infinite domain in ui, y is bounded by V
with respect to μ.

COROLLARY 4.4. For each UCQ query Q, master data Dm, and each set V of
CCs in UCQ, RCQ(Q, Dm, V) is nonempty if and only if Q is bounded by (Dm, V),
i.e., Q satisfies either condition E5 or condition E6.

PROOF. Consider a UCQ query Q = Q1 ∪ · · · ∪ Qk, where Qi is represented
as (Ti, ui). We first show that if condition E5 or E6 holds, then RCQ(Q, Dm, V)
is nonempty. When E5 holds, we can define a database complete for Q relative

to (Dm, V) along the same lines as in the proof of Proposition 4.2. Suppose now,
that E6 holds, i.e., there exists DV , as specified by E6. We expand it by including
constant tuples in Ti for all i ∈ [1, k], and also denote it as DV . We show that
DV is in RCQ(Q, Dm, V). Assume by contradiction that there exists a valuation
μ′ = (μ′

1, . . . , μ
′
k) such that (DV ∪⋃

i∈[1,k] μ
′
i(Ti), Dm) |= V, but Qi(μ′

i(TQ)) �∈ Q(DV)
for some i ∈ [1, k]. Then there exists a variable y in ui such that dom(y) is
infinite and μ′

i(y) �∈ Adom. Define a valid valuation μ = (μ1, . . . , μk) of TQ

such that for each j ∈ [1, k] and each variable x of Tj , μ j(x) = μ′
j(x) if

μ′
j(x) ∈ Adom and μ j(x) is a distinct value in New otherwise. Then similar to

the proof of Proposition 4.2, it can be verified that (DV ∪⋃
i∈[1,k] μi(Ti), Dm) |= V.

In addition, by E6, y is bounded by V with respect to μ. By the definition
of New, the values of y must be bounded by Dm via V. This leads to ei-
ther Qi(μ′

i(TQ)) ∈ Q(DV) or (DV ∪ ⋃
i∈[1,k] μ

′
i(Ti), Dm) �|= V, contradicting the

assumption. Hence RCQ(Q, Dm, V) contains DV and is nonempty.
Conversely, suppose that there exists a database D in RCQ(Q, Dm, V). We

show that either E5 or E6 must hold. When V = ∅, the argument for Proposi-
tion 4.2 suffices to show that E5 must hold, i.e., all variables in ui have a finite
domain for all i ∈ [1, k]. When V �= ∅, define V to be a maximal set of valuations
of V such that (D ∪ DV , Dm) |= V. Assume by contradiction that there is a
valid valuation μ = (μ1, . . . , μk) of TQ such that (DV ∪ ⋃

i∈[1,k] μi(Ti), Dm) |= V,
but some variable y in ui with an infinite domain is not bounded by V with
respect to μ. Then along the same lines as Proposition 4.2, it can be verified
that (D ∪ ⋃

i∈[1,k] μi(Ti), Dm) |= V. Since adom(y) is infinite, there exists a value
c that is in none of D, Dm, Q, and V. Define a valuation μ′ = (μ′

1, . . . , μ
′
k)

such that μ′
i(y) = c and μ′

i(x) = μi(x) for all variable x �= y, and for all j �= i.
μ′

j is μ j . Then similar to the proof of Proposition 4.2, one can verify that
(D ∪ ⋃

i∈[1,k] μi(Ti), Dm) |= V but Q(D) �= Q(D ∪ ⋃
i∈[1,k] μi(Ti)). This contradicts

the assumption that D is relatively complete. �

4.3 The Complexity of RCQP for CQ, UCQ and ∃FO+

We have seen from Theorem 3.6 that the absence of negation and recursion in
LQ and LC simplifies the analysis of RCDP(LQ,LC). In the following we show
that this is also the case for RCQP(LQ,LC), which is settled in the positive in
these settings.

In contrast to Theorem 3.6, the complexity bounds for RCQP(LQ,LC) are no
longer the same when LC is ∃FO+and when LC is the class of INDs. In addition,
when LQ and LC are CQ, RCQP(LQ,LC) becomes NEXPTIME-complete, i.e., the
analysis is harder than its RCDP(LQ,LC) counterpart. On the other hand,
when LQ is the class of INDs, the complexity is down to coNP-complete, better
than its �

p
2 -complete counterpart for RCDP(LQ,LC). The following proofs

for the upper bounds make use of the previously given characterizations of
relatively complete queries.

THEOREM 4.5. RCQP(LQ,LC) is:

(1) coNP-complete when LC is the class of INDs and LQ is CQ, UCQ or ∃FO+; and
(2) NEXPTIME-complete when:

(a) LQ and LC are CQ;
(b) LQ and LC are UCQ; or
(c) LQ and LC are ∃FO+.

PROOF. We prove the complexity for cases (1) and (2.a)–(2.c) one by one.
(1) When LC is the class of INDs. We show that RCQP(LQ,LC) is coNP-complete

when LC consists of INDs and when LQ is CQ, UCQ or ∃FO+.
Lower bound. It suffices to show that the problem is coNP-hard when LQ is

CQ, since the lower bound readily carries over to the case when LQ is UCQ or
∃FO+. The coNP-hardness is verified by reduction from 3SAT to the complement
of RCQP(CQ, INDs), where 3SAT is known to be NP-complete (cf. Garey and
Johnson [1979]).

Given a 3SAT instance φ = C1 ∧ · · · ∧ Cr, we define relational schemas R and
Rm, fixed master data Dm, a set V of fixed INDs, and a CQ query Q. We show
that φ is satisfiable if and only if RCQ(Q, Dm, V) is empty. This suffices to show
that RCQP(LQ,LC) is coNP-hard.

Let X = {x1, . . . , xn} be the set of variables in φ.
(a) The database schema R consists of three relation schemas: two fixed

schemas Rt and R∨, and a schema R. More specifically,

— Rt = (x, x̄), which is used to encode Boolean values;
— R∨ = (l1, l2, l3), to encode disjunction; and
— R = (A, x1, x̄1, . . . , xn, x̄n), to encode truth assignments. Here dom(A) is

infinite.

(b) We define a fixed master data schema Rm = (Rm
t , Rm

∨). We use fixed
master data instance Dm = (Im

t , Im
∨) of Rm given as follows:

—the instance Im
t of schema Rm

t = (z, z̄) consists of (0, 1) and (1, 0); intuitively,
Im
t is to enforce valid truth assignments for propositional variables;

—the instance Im
∨ of schema Rm

∨ (l1, l2, l3) consists of the seven truth assignments
that satisfy l1 ∨ l2 ∨ l3.

(c) We define a set V of CCs consisting of two fixed INDs, given as follows:

— Rt(x, x̄) ⊆ Rm
t (z, z̄), to ensure that only valid truth assignments are

considered for variables;
— R∨(l1, l2, l3) ⊆ Rm

∨ (l1, l2, l3), to encode disjunction.

(d) Based on the 3SAT instance φ, we define the CQ query Q as

Q(z) = ∃x1 . . . xn x̄1 . . . x̄n (R(z, x1, x̄1, . . . , xn, x̄n) ∧
Rt(x1, x̄1) ∧ · · · ∧ Rt(xn, x̄n) ∧ q1 ∧ · · · ∧ qr),

where for each clause Ci = l1 ∨ l2 ∨ l3, for i ∈ [1, r], the expression qi is
R∨(l1, l2, l3), which encodes Ci.

We now verify that φ is satisfiable if and only if RCQ(Q, Dm, V) is empty.
Suppose that φ is satisfiable. Then there exists a truth assignment μ0 of X such
that φ is true. Assume by contradiction that there exists D in RCQ(Q, Dm, V).
Then we construct a tuple t such that t[X] is μ0(X) and t[A] is a distinct value
not in D. This is possible since dom(A) is infinite. Let D′ be the database

obtained by adding t to the instance of R in D. Then obviously Q(D) �= Q(D′),
while (D′, Dm) |= V. This contradicts the assumption that D is complete.
Conversely, suppose that φ is not satisfiable. Then for each truth assignment
of X, φ is false. In other words, for each database instance D of R, Q(D) is
always empty. Let D0 consist of empty instances of R, Rt and R∨. Then D0 is
complete for Q relative to Dm and V. That is, RCQ(Q, Dm, V) is nonempty.

As a result, φ is not satisfiable if and only if RCQ(Q, Dm, V) is nonempty.
Therefore, RCQP(LQ,LC) is coNP-hard when LQ is CQ and LC is the class of
INDs.

Upper bound. Based on Proposition 4.3, we first develop an NP algorithm
that, given a CQ query Q, master data Dm, and a set V of INDs, determines
whether RCQ(Q, Dm, V) is empty. This suffices to show that RCQP(LQ,LC) is in
coNP. We then show that the algorithm can be readily extended to UCQ and ∃FO+

queries.
Given Q, Dm and V, the algorithm first constructs the tableau representation

(TQ, uQ) of Q. Then it takes two steps.

(1) First, it tests whether there exists a valid valuation μ of TQ. This step can
be done by in NP as follows:
(a) Guess a valuation μ of the variables in TQ using values in Adom.
(b) Test whether μ is valid, i.e., Q(μ(TQ)) �= ∅ and (μ(TQ), Dm) |= V. All

these steps can be done in PTIME since the CCs are simple INDs.
If it is not the case then the algorithm returns “no”.

(2) Otherwise, it tests whether Q is not bounded. For all variables y in uQ, if
dom(y) is infinite, then it checks whether there exists an IND π(A,...) ⊆ p
in V such that y appears in column A in TQ. This can obviously be done
in PTIME in the size of Q and V. If such a variable exists, it returns “yes”;
otherwise it returns “no”.

It is clear that the algorithm is in NP. As a result, one can decide whether
RCQ(Q, Dm, V) is nonempty in coNP.

We next extend the algorithm to deal with UCQ and ∃FO+queries.
UCQ. Consider a UCQ query Q = Q1 ∪ · · · ∪ Qk, where Qi is in CQ for each

i ∈ [1, k]. The proof of Proposition 4.3 can be readily extended to verify that
RCQ(Q, Dm, V) is nonempty if and only if either each Qi is bounded, or there
exists no valid valuation of Q.

From this, a coNP algorithm follows immediately: for each i ∈ [1, k], it checks
whether there exists a valid valuation for variables in Qi. If not, it returns “no”.
Otherwise for each i ∈ [1, k], it checks whether every Qi is bounded. It returns
“yes” if there exists a Qi that is not bounded, and “no” otherwise. The first
step is in NP, and the second step can be done in PTIME. Thus we can conclude
that it is in coNP to decide whether RCQ(Q, Dm, V) is nonempty when Q
is in UCQ.

∃FO+. We next consider the case when Q is a query in ∃FO+. Observe that
Q is equivalent to a possibly exponentially large UCQ query Q′. Based on this
and the previous discussion for UCQ queries, we know that RCQ(Q, Dm, V) is
nonempty if and only if either the UCQ query Q′ is bounded, or there exists no
valid valuation for Q′.

We show that it is in coNP to decide whether RCQ(Q, Dm, V) is nonempty
when Q is in ∃FO+. We develop an NP algorithm for its complement, for deciding
whether RCQ(Q, Dm, V) is empty, by extending the CQ counterpart. We augment
both steps (1) and (2) with an additional guess of disjuncts (which branch to
take at each union) in Q. This yields a CQ query Qc, which is obtained by unfold-
ing Q only for the guessed branches, and is of polynomial size. More specifically,
in each of steps (1) and (2), we first guess a Qc, and then check whether there
exists a valid valuation of Qc and whether Qc is bounded, respectively. Both
steps can be done in NP. Thus the algorithm and the problem are in coNP.

(2) When LQ and LC are CQ. We now show that it is NEXPTIME-complete to
determine, given a CQ query Q, master data Dm, and a set V of CCs in CQ,
whether RCQ(Q, Dm, V) is nonempty.

Lower bound. We verify the NEXPTIME lower bound by reduction from the
2n × 2n-TILING problem, which is NEXPTIME-complete (see, e.g., Dantsin and
Voronkov [1997]). An instance of 2n × 2n-TILING consists of a set of tiles
T = {t0, t1, . . . , tk}, and vertical and horizontal compatibility conditions between
pairs of tiles, given by binary relations V ⊆ T2 and H ⊆ T2, respectively. A
tiling is a function f : {1, . . . , 2n} × {1, . . . , 2n} into T such that:

—V(f (i, j), f (i + 1, j)) holds for all 1 � i < 2n, 1 � j � 2n;
— H(f (i, j), f (i, j + 1)) holds for all 1 � i � 2n, 1 � j < 2n; and
— f (1, 1) = t0.

Here n is given in unary. The 2n × 2n-TILING problem is to decide, given T,
V, and H, whether there exists a tiling f . It is known that this problem is
NEXPTIME-complete (cf. Papadimitriou [1994]).

Given an instance T, V, and H of the tiling problem, we define relational
schemas R and Rm, master data Dm, a set S of CCs in CQ, and a CQ query
Q such that there exists a solution to the tiling problem for T, V, and H if
and only if RCQ(Q, Dm, V) is nonempty. The reduction closely follows the one
presented in Dantsin and Voronkov [1997].

(a) The master data schema Rm consists of five relations: Rm
e , Rm

T , Rm
V , Rm

H,
and Rm

b , of arities 0, 1, 2, 2, and 1, respectively. We define the master data
instance Dm of Rm such that Im

e = ∅, Im
T = T, Im

V = V, Im
H = H, and Im

b = {(0)}.
(b) We define the database schema R and the set S of CCs in steps. In a

nutshell, R consists of relation schemas R1, . . . , Rn, such that Ri encodes a
2i × 2i square of tiles for i ∈ [1, n]. We use master data Dm and the set Sof CCs,
to assure the vertical and horizontal compatibility of the tiling.

Following the exposition given in Dantsin and Voronkov [1997], we first
generalize tiles to hypertiles. A hypertile of rank i is defined by induction as
a 2i × 2i square of tiles. More specifically, a hypertile of rank 0 is any tile of
the set T. Let T1, T2, T3, and T4 be hypertiles of rank i. Then the quadruple
(H1, H2, H3, H4) is a hypertile of rank i +1. That is, (H1, H2, H3, H4) corresponds
to a set of tiles covering a square of size 2(i+1) × 2(i+1), as follows:

T1 T2

T3 T4
.

Clearly, hypertiles of rank i can be identified with functions from
{1, . . . , 2i} × {1, . . . , 2i} into T. We call a hypertile a tiling if the corresponding
function is a tiling over the appropriate square size.

The first relation of R is defined to be R1(id, X1, X2, X3, X4, Z). In an
instance I1 of R1, each tuple t is to encode the following: (1) a hypertile
(t[X1], t[X2], t[X3], t[X4]) of rank 1 that is a tiling; (2) a unique identifier t[id]
for the hypertile; and (3) the top-left corner tile t[Z] of the hypertile. We will
see why we need identifiers when we define relations for storing hypertiles of
higher rank. An instance I1 of R1 is said to be well-formed if each of its tuples
encodes the information as desired.

More precisely, we say that I1 is well-formed if it satisfies the following CCs
in S, all definable in CQ.

—Vkey
1 : id → X1, X2, X3, X4, which is an FD assuring that id is a key;

—V A
1 : πA(R1) ⊆ Rm

T , for A ∈ {X1, X2, X3, X4, Z}; these assure that all attributes
except id take values in T;

—Vvert1
1 : πX1 X3 (R1) ⊆ Rm

V and Vvert2
1 : πX2 X4 (R1) ⊆ Rm

V ; these ensure that the
vertical compatibility conditions are satisfied by each tile encoded in a tuple;

—Vhor1
1 and Vhor2

1 defined similarly, to ensure the horizontal compatibility
conditions; and finally,

—Vtopl
1 : σX1 �=Z(R1) ⊆ ∅ (recall that Rm

e = ∅); these ensure that tiles X1 and Z
are the same.

We next define relations Ri in R, for i > 2, to encode hypertiles of
rank i. More specifically, Ri is 11-ary relation Ri(id, id1, id2, id3, id4, id12, id13,

id24, id34, id1234, Z), where the attributes id j refer to the identifiers of hypertiles
of rank i − 1, i.e., elements in Ri−1. As before, the id-attribute is to serve
as identifier for a hypertile of rank i stored in an instance of Ri. A well-
formed instance Ii of Ri consists of tuples t such that, (1) t[id] is a unique
identifier for the hypertile of rank i represented by (t[id1], t[id2], t[id3], t[id4]);
(2) t[Z] is to denote the tile at the top-left corner; and (3) the hypertile
(t[id1], t[id2], t[id3], t[id4]) satisfies the appropriate vertical and horizontal
compatibility conditions. These conditions specify constraints on the hypertiles
of rank (i − 1): t[id12], t[id13], t[id24], t[id34], and t[id1234]. More precisely, assume
that (t[id1], t[id2], t[id3], t[id4]) corresponds to:

R(i−1)(id1, a1, a2, a3, a4, , , , , z) R(i−1)(id2, b1, b2, b3, b4, , , , ,)

R(i−1)(id3, c1, c2, c3, c4, , , , ,) R(i−1)(id4, d1, d2, d3, d4, , , , ,),

where ‘ ’ denotes an arbitrary value. Then the hypertiles identified by the
remaining identifiers in t must have the form:

R(i−1)(id12, a2, b1, a4, b3, , , , ,) R(i−1)(id13, a3, a4, c1, c2, , , , ,)

R(i−1)(id24, b3, b4, d1, d2, , , , ,) R(i−1)(id34, c2, d1, c4, d3, , , , ,)

R(i−1)(id1234, a4, b3, c3, d1, , , , ,).

That is, such tuples t in Ri encode tilings of a square of size 2i × 2i, provided
that the identifiers in t appear in R(i−1).

To assure that only well-formed instances of Ri are considered, we include
certain CCs in S, assuring that no invalid tuples are in instances of Ri. These
can be easily expressed as CCs of the form q ⊆ ∅, where q is a CQ query. An
example CC is:

∃ts1s2(Ri(t)∧R(i−1)(t[id1], s1)∧R(i−1)(t[id12], s2)∧s1[R(i−1).id2] �= s2[R(i−1).id1])) ⊆ ∅.

This asserts that if hypertile t[id1] = X1 X2

X3 X4
, then t[id12] is of the form

X2 .

All such conditions can be expressed as CCs in CQ in a similar way. Finally, we
also include an FD in S that ensures that the id-attribute is a key of Ri.

Inductively we define n relation R1, . . . , Rn in R. Let t be a tuple in a
well-formed instance of Rn with t[Z] = t0. Then this tuple intends to encode a
solution to the 2n×2n-TILING problem, provided that all the identifiers in t can be
traced all the way back to tiles in R1. The last CC to be included in Schecks the
existence of such a tuple. Furthermore, if such a tuple (hence a tiling) exists, it
bounds instances of Rb by Rm

b . Otherwise it leaves instances of Rb unbounded.
More specifically, we define the CC using a sequence of queries: for each

1 < i < n,

— Qp
i = πid(Qs

i), and
— Qs

(i+1) selecting all tuples from R(i+1) that only have identifiers in Qp
i .

For example, Qp
1 = πid(R1), and Qs

2 is to select all tuples from R2 that only
have identifiers in Qp

1 . Observe that the result of Qs
n consists of tuples that are

hypertiles of rank n with the following properties: (1) they can be traced all
the way back to tiles in R1, and (2) they satisfy the compatibility conditions.

Leveraging these queries, we then define the CC φ: q(w) ⊆ Rm
b , where

q(w) = ∃t(Qs
n(t) ∧ t[Z] = t0) ∧ Rb(w).

That is, if a tiling of 2n × 2n with top-left tile t0 exists, then any instance of Ib

of Rb is either empty or {(0)}.
(c) Finally, we define the query Q such that it simply returns Rb.

This completes the construction of the coding of the tiling instance.
We now show that the 2n × 2n-TILING problem for T, V, and H has a solution

if and only if RCQ(Q, Dm, V) is nonempty. Suppose that there exists a tiling
function f from {1, . . . , 2n} × {1, . . . , 2n} to T. Then let D = (I1, . . . , In, Ib)
be the instance such that Ii stores all hypertiles of rank i given by f , and
Ib = {(1)}. Clearly we have that (D, Dm) |= V. Furthermore, by the CC φ in S, it
is impossible to add tuples to Ib. Hence for each addition of tuples to any of the
Ijs, either the resulting D′ is not a partially closed extension of D, or Q(D′) =
{(1)} = Q(D). Hence D is indeed in RCQ(Q, Dm, V). That is, RCQ(Q, Dm, V) is
nonempty.

Conversely, suppose that there is no tiling for T, V, and H. Assume by
contradiction that there exists a D ∈ RCQ(Q, Dm, V). Then clearly, Ib must be
bounded since D is complete. Hence the condition ∃t(Qs

n(t) ∧ t[Z] = t0) in φ is
satisfied and moreover, the conditions specified by Qp

i = πid(Qs
i) and Qs

(i+1) hold
for (I1, . . . , In). Since (D, Dm) |= V, it is easily verified that a tiling for T, V, and
H can be induced from the tuples in D, by tracing the identifiers in In, In−1, . . .,

until I1 is reached. This contradicts the assumption that there is no tiling for
T, V, and H.

Upper bound. From Proposition 4.2 a NEXPTIME algorithm can be readily
be developed such that, given a CQ query Q, master data Dm, and a set V
of CCs in CQ, it determines whether RCQ(Q, Dm, V) is nonempty. Indeed,
as remarked earlier, the proof of Proposition 4.2 establishes a small model
property: RCQ(Q, Dm, V) is nonempty if and only if there exists a relatively
complete database D such that the size of D is bounded by an exponential in
the sizes of Q, V, and Dm. The small model property can be readily verified by
leveraging the monotonicity of CQ queries.

Capitalizing on Proposition 4.2, the algorithm first constructs the tableau
representation (TQ, uQ) of Q. It then takes the following steps.

(1) Check whether all variables in uQ have a finite domain. This takes PTIME.
If so, return “yes”.

(2) Guess a set of V valuations of V and consider DV = ⋃
ν∈V Dν . Check whether

(DV , Dm) |= V. If not, reject the guess and repeat the step. Otherwise
proceed to the next step. These can be done in NEXPTIME since there are
only exponentially many valuations of V taken values from Adom.

(3) For all valuations μ of TQ that take values from Adom, check whether the
following three conditions hold.
(a) (μ(TQ), Dm) |= V and Q(μ(TQ)) �= ∅. If so, i.e., when μ is a valid valuation

of variables in TQ, then proceed to the next step. This can be done in NP.
(b) (DV ∪ μ(TQ), Dm) |= V. This can be done by using a coNP oracle: for each

CC qi ⊆ pi in V, where qi is represented as a tableau query (Ti, ui),
guess a valuation ν of Ti using values in DV ∪μ(TQ), and check whether
(ν(Ti), Dm) �|= φ. The condition on μ is then satisfied if the coNP process
returns “no”.

(c) Every variable y in uQ with an infinite domain is bounded by V with
respect to μ. This again can be checked in NP.

(4) If all the conditions are satisfied, return “yes”; otherwise reject the current
guess of V and repeat steps (2) and (3).

Note that all the processes in step (3) can clearly be done in EXPTIME. Putting
these together, the algorithm is in NEXPTIME.

(3) When LQ and LC are UCQ. The problem is obviously NEXPTIME-hard, as
shown by the lower bound proof for step (2).

We show that the problem is in NEXPTIME. Consider a query Q = Q1 ∪ · · · ∪ Qk

in UCQ, where Qi is represented as a tableau query (Ti, ui). Let Dm be master
data, and V be a set of CCs in UCQ. We modify the NEXPTIME algorithm given
in (2) as follows. In step (1), we check whether all the variables in ui have a
finite domain, for all i ∈ [1, k]. This can still be done in PTIME. Step (2) remains
unchanged. Indeed, as remarked earlier, V can be treated without loss of gener-
ality as a set of CCs in CQ. In step (3), we inspect all valuations μ = (μ1, . . . , μk)
of Q, and check whether μ is valid, whether (DV ∪ ⋃

i∈[1,k] μi(Ti), Dm) |= V and
whether for all i ∈ [1, k] and for all variable variable y with an infinite domain
in ui, y is bounded by V with respect to μ, in steps (3.a)–(3.c), respectively.

Clearly these changes do not increase the EXPTIME complexity of step (3). Thus
the algorithm is still in NEXPTIME. By Corollary 4.4, the algorithm suffices to
determine whether RCQ(Q, Dm, V) is nonempty.

(4) When LQ and LC are ∃FO+. The problem is NEXPTIME-hard in this setting,
since RCQP(LQ,LC) is already NEXPTIME-hard when LQ and LC are CQ.

For the upper bound, observe that this case can be reduced to the case
when LQ and LC are UCQ. Indeed, given an ∃FO+query Q and a set V of CCs
in ∃FO+, we can rewrite Q and the CCs in V into an equivalent UCQ query and
an equivalent set of CCs in UCQ. Although the rewriting incurs an exponential
blowup in the size of the queries, the overall complexity of the algorithm
given for UCQ remains in NEXPTIME. Therefore, RCQP(LQ,LC) remains in
NEXPTIME-hard when LQ and LC are ∃FO+. �

As remarked earlier, master data Dm and containment constraints V are
often predefined and fixed in practice. Recall from Corollary 3.7 that fixed Dm

and V have no impact on the complexity of RCDP(LQ,LC). In contrast, we show
in the following that fixed Dm and V do make our lives easier to some extent.
(a) When LQ and LC are CQ, UCQ or ∃FO+, RCQP(LQ,LC) becomes �

p
3 -complete,

down from NEXPTIME-complete. (b) On the other hand, when LQ is CQ and LC

is the class of INDs, the problem remains coNP-complete. (c) Fixed Dm and V do
not help when either LQ or LC is FO or FP, as we have seen in Theorem 4.1.

COROLLARY 4.6. When master data and CCs are fixed, RCQP(LQ,LC) is:

(1) coNP-complete if LC is the class of INDs and LQ is CQ, UCQ or ∃FO+; and
(2) �

p
3 -complete if LQ and LC are CQ, UCQ or ∃FO+.

PROOF. When master data and CCs are fixed, RCQP(LQ,LC) remains
coNP-complete when LC consists of INDs and LQ ranges over CQ, UCQ and ∃FO+.
Indeed, the coNP-hardness follows from the proof for the lower bound of The-
orem 4.5 (1), in which only fixed master data Dm and a set V of fixed INDs are
used. In addition, its coNP upper bound carries over when Dm and V are fixed.

To verify the �
p
3 -completeness when master data and CCs are fixed, it suffices

to show the following. (1) Lower bound: RCQP(LQ,LC) is �
p
3 -hard when LQ and

LC are CQ; and (2) upper bound: RCQP(LQ,LC) is in �
p
3 when LQ and LC are

∃FO+. For if these hold, then the lower bound remains intact whenLQ andLC are
UCQ or ∃FO+, and RCQP(LQ,LC) remains in �

p
3 when LQ and LC are CQ or UCQ.

Lower bound. We show that RCQP(LQ,LC) is �
p
3 -hard when LQ and LC

are CQ, by reduction from the ∃∗∀∗∃∗3SAT-problem, which is �
p
3 -complete (cf.

Papadimitriou [1994]). Given an instance ϕ = ∃X∀Y∃Zψ(X, Y, Z) of the latter
problem, we define relational schemas R and Rm, a fixed set V of CCs in CQ,
fixed master data Dm and a CQ query Q. We show that ϕ is satisfiable if and
only if RCQ(Q, Dm, V) is nonempty.

Assume that X = {x1 . . . , xn}, Y = {y1, . . . , ym}, and Z = {z1, . . . , zp}. Assume
that ψ = C1 ∧ · · · ∧ Cr, which is an instance of 3SAT over X ∪ Y ∪ Z. We define
R, Rm, V, Dm, and Q as follows.

(a) The relational schema R consists of six relation schemas, including R1,
R2, R3, and R4 given in the proof for the �

p
2 lower bound of Theorem 3.6. In

addition, R contains the following:

— RX(A1, . . . , An, id), which is to encode a unique truth assignment for variables
X, where id is the key of RX;

— Rb(q, A), where A has infinite domain d; intuitively, we shall use Rb(A) to
inspect whether variables in the query Q are bounded or not.

The schema of master data Rm is defined in terms of R1, R2, R3, R4, and Rb of
R, and an additional nullary relation Rm

e , i.e., Rm = (Rm
1 = R1, Rm

2 = R2, Rm
3 =

R3, Rm
4 = R4, Rm

b = Rb, Rm
e).

(b) The master data instance Dm of Rm contains the fixed relations
Im
1 = I01, Im

2 = I∨, Im
3 = I∧, and Im

4 = I¬, which are defined in the proof for the
lower bound of Theorem 3.6; in addition, it includes fixed relations Im

b = {(0)}
and Im

e = ∅.
(c) The set V of CCs includes Ri ⊆ Rm

i , for i ∈ [1, 4], and in addition, the
following.

—Vkey, expressing that id is a key of RX; this CC can be expressed by means of
a CQ query and Rm

e (i.e., ∅);
—πAj (RX) ⊆ R(0,1), for j ∈ [1, n]; these CCs ensure that Ai ∈ {0, 1} for j ∈ [1, n];

and finally
—qb(A) ⊆ Rm

b , where qb(A) = Rb(1, A); this CC asserts that the A attributes
in an instance of Rb are bounded only if q = 1. We will see shortly how q is
related to the satisfiability of ϕ.

(d) The query Q is defined as follows.

Q(Y, A) = Qx(X) ∧ Q1(x1, . . . , xn, Y, q) ∧ Rb(q, A),

where Qx(X) = ∧
i∈[1,n] RX(xi, i), that is, it selects from RX the truth assign-

ments for x1, . . . , xn. We use μx to denote the truth assignment of X selected
by Qx. Here the query Q1 is a variation of the CQ query given in the proof for
the lower bound of Theorem 3.6 (referred to as Q there). More specifically, for
a given truth assignment μx of X, Q1 returns (μy, q) for all μy that is a truth
assignment for Y; in addition, it returns q = 1 when ∃ZC1 ∧ · · · ∧ Cr holds for
the given μx and μy, and q = 0 otherwise.

Putting these together, given any instance D of R, Q(D) returns (μY, A) for
all truth assignment μY to Y, whenever a single truth assignment μX for X is
selected by QX, no matter whether (μX, μY) satisfies ∀Zψ or not. Observe that
Dm and V are fixed, as desired.

We next show the correctness of the reduction. First, assume that ϕ is
satisfiable. We show that RCQ(Q, Dm, V) is nonempty. Since ϕ is satisfiable,
there exists μx such that for all μy, ∀Zψ is true. Define a database D of R such
that the instance IX of RX encodes μx, i.e., IX = {(μX(x1), 1), . . . , μX(xn), n)}, the
instance Ib of Rb is a singleton {(1, 0)}, and moreover, the instances of R1–R4

are fixed as given in the proof of Theorem 3.6. Then D is complete. Indeed,
Q(D) consists of all possible truth assignments of Y while the A attribute is
fixed to be 0. Furthermore, adding any tuples to D either violates V or does
not change the answer to Q. Note that here it is essential to guarantee that a
single assignment μX to X is used.

Conversely, assume that there exists a database D of R that is complete
relative to (Dm, V). Assume by contradiction that ϕ is not satisfiable. Then for
each μx of X, there exists μy such that ∀Zψ is false. Add (0, a) to the instance
Ib of Rb in D, where a is a constant not in D (this is possible since A has
an infinite domain). Refer to this extension as D′, and the truth assignment
specified by the instance of RX in D as X0. Then obviously (D′, Dm) |= V but
Q(D′) �= Q(D). Indeed, there exists (Y0, a) in the answer to Q in D′ that is not
in Q(D), where (X0, Y0) does not satisfy ∀Zψ , i.e., (X0, Y0, 0) is in the answer to
Q1 embedded in Q.

Upper bound. To illustrate the main idea, we first consider the case when
LQ and LC are CQ. Recall the NEXPTIME algorithm for determining whether
RCQ(Q, Dm, V) is nonempty, given in the proof of Theorem 4.5. We show that
when Dm and V are fixed, we can modify the algorithm to be in �

p
3 . Indeed, when

V and Dm are fixed, it suffices to inspect small models D of a polynomial size.
More specifically, in step (2) of the algorithm, one can guess sets V of

valuations of V in NP since V is fixed. Step (3) of the algorithm can be done by
using a �

p
2 oracle. Indeed, one can guess a valuation μ of TQ and then check

whether any of the conditions specified in steps (3.a)–(3.c) are not satisfied,
where Q is represented as a tableau query (TQ, uQ). To see these, observe the
following. (a) Check whether μ is not valid is in coNP (step 3.a), (b) inspect
whether (DV ∪ μ(TQ), Dm) �|= V is in NP; and (c) check whether there exists a
variable with an infinite domain in uQ that is not bounded is also in coNP.
Putting these together, step (3) is in coNPNP, i.e., in �

p
2 . Hence the algorithm is

in NP�
p
2 . That is, it is in �

p
3 to determine whether RCQ(Q, Dm, V) is nonempty.

We next show that it remains in �
p
3 to determine whether RCQ(Q, Dm, V)

is nonempty when Q is an ∃FO+query and V is a fixed set of CCs in ∃FO+. As
observed in the proof of Theorem 4.5, the case of ∃FO+can be reduced to the
case for UCQ. From this and Corollary 4.4, it follows that it suffices to check
conditions E5 and E6 given in Section 4.2 to determine the nonemptiness of
RCQ(Q, Dm, V).

We extend the algorithm for CQ such that E5 and E6 can be checked without
rewriting Q into a UCQ query. Step (1) inspects whether all variables in Q have
a finite domain, and can be done in PTIME in the size of Q. Step (2) remains
unchanged since the CCs in V can be rewritten as equivalent CCs in CQ with-
out incurring any increase to the complexity bound when V is fixed. Step (3)
guesses a CQ subquery of Q and a valuation μ, and then checks whether any
of the conditions specified in steps (3.a)–(3.c) are not satisfied. Along the same
lines as the argument for the CQ case, one can verify that step (3) can be done by
a �

p
2 oracle. Thus the algorithm is in �

p
3 . That is, RCQP(LQ,LC) is in �

p
3 when

LQ and LC are ∃FO+and in addition, when master data and CCs are fixed. �

5. CONCLUSIONS

We have proposed the notion of the relative completeness of information to
capture incomplete information in emerging applications such as Master Data
Management. We have also formulated and studied two important decision
problems associated with this notion, namely, RCDP(LQ,LC) and RCQP(LQ,LC).

Table I. Complexity of RCDP(LQ,LC)

RCDP(LQ,LC) Complexity

(FO, CQ) (Th. 3.1(1)) undecidable
(CQ, FO) (Th. 3.1(2)) undecidable
(FP, CQ) (Th. 3.1(3)) undecidable
(fixed(FP), FP) (Th. 3.1(4)) undecidable
(CQ, INDs), (∃FO+, INDs) (Th. 3.6(1)) �

p
2 -complete

(CQ, CQ) (Th. 3.6(2)) �
p
2 -complete

(UCQ, UCQ) (Th. 3.6(3)) �
p
2 -complete

(∃FO+, ∃FO+) (Th. 3.6(4)) �
p
2 -complete

Table II. Complexity of RCQP(LQ,LC)

RCQP(LQ,LC) Complexity

(FO, fixed(FO)) (Th. 4.1(1)) undecidable
(CQ, FO) (Th. 4.1(2)) undecidable
(FP, fixed(FP)) (Th. 4.1(3)) undecidable
(CQ, FP) (Th. 4.1(4)) undecidable
(CQ, INDs), (∃FO+, INDs) (Th. 4.5(1)) coNP-complete
(CQ, CQ) (Th. 4.5(2.a)) NEXPTIME-complete
(UCQ, UCQ) (Th. 4.5(2.b)) NEXPTIME-complete
(∃FO+, ∃FO+) (Th. 4.5(2.c)) NEXPTIME-complete

When Dm and V are fixed

(CQ, CQ) (Cor. 4.6(2)) �
p
3 -complete

(UCQ, UCQ) (Cor. 4.6(2)) �
p
3 -complete

(∃FO+, ∃FO+) (Cor. 4.6(2)) �
p
3 -complete

For a variety of query languages for expressing queries (LQ) and containment
constraints (LC), we have provided a comprehensive picture of lower and upper
bounds for these problems, all matching. We have also presented sufficient and
necessary conditions for a database or a query to be relatively complete with
respect to master data and containment constraints, for certain cases where
RCDP(LQ,LC) and RCQP(LQ,LC) are decidable. We expect that these results
will help users determine whether a database has complete information to an-
swer a query, whether a query can find a complete answer at all, and what data
should be collected by a database in order to yield a complete answer to a query.

We summarize the complexity bounds for RCDP(LQ,LC) and RCQP(LQ,LC)
in Tables I and II, respectively, annotated with their corresponding theorems,
where fixed(L) indicates a set of fixed queries in L. When master data and
containment constraints are fixed, we only show complexity bounds that differ
from their counterparts in the general settings.

The study of relatively complete information is still preliminary. One issue
is about how to incorporate missing values, together with missing tuples,
into the framework. To this end, preliminary results have been reported
in Fan and Geerts [2010], which uses presentation systems for possible worlds
(conditional tables [Grahne 1991; Imieliński and Lipski 1984]) instead of
traditional relations. Another open issue concerns syntactic characterizations
for relatively complete databases or queries, in certain cases. A third inter-
esting topic is to identify tractable (PTIME) special cases for RCDP(LQ,LC) and

RCQP(LQ,LC). Finally, although the containment constraints proposed in this
work are fairly general, in certain applications one might want to formulate
containment constraints not only from databases to master data, but also from
the master data to the databases. We defer the treatment of this richer class
of constraints to future work.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library.

REFERENCES

ABITEBOUL, S. AND DUSCHKA, O. M. 1998. Complexity of answering queries using materialized
views. In Proceedings of the Symposium on Principles of Database Systems (PODS). 254–263.

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley.
ARENAS, M., BERTOSSI, L. E., AND CHOMICKI, J. 1999. Consistent query answers in inconsistent

databases. In Proceedings of the Symposium on Principles of Database Systems (PODS). 68–79.
BATINI, C. AND SCANNAPIECO, M. 2006. Data Quality: Concepts, Methodologies and Techniques.

Springer.
BRAVO, L., FAN, W., AND MA, S. 2007. Extending dependencies with conditions. In Proceedings of

International Conference on Very Large Databases (VLDB). 243–254.
CALI, A., LEMBO, D., AND ROSATI, R. 2003. On the decidability and complexity of query answering

over inconsistent and incomplete databases. In Proceedings of the Symposium on Principles of
Database Systems (PODS). 260–271.

CALVANESE, D., GIACOMO, G. D., LENZERINI, M., AND VARDI, M. Y. 2007. View-based query processing:
On the relationship between rewriting, answering and losslessness. Theor. Comput. Sci. 371, 3,
169–182.

CHANDRA, A. K. AND MERLIN, P. M. 1977. Optimal implementation of conjunctive queries in relational
data bases. In Proceedings of ACM Symposium on Theory of Computing (STOC). 77–90.

CHOMICKI, J. 2007. Consistent query answering: Five easy pieces. In Proceedings of the International
Conference on Database Theory (ICDT). 1–17.

DANTSIN, E. AND VORONKOV, A. 1997. Complexity of query answering in logic databases with complex
values. In Proceedings of the International Symposium Logical Foundations of Computer Science
(LFCS). 56–66.

DEUTSCH, A., LUDÄSCHER, B., AND NASH, A. 2007. Rewriting queries using views with access patterns
under integrity constraints. Theor. Comput. Sci. 371, 3, 200–226.

DREIBELBIS, A., HECHLER, E., MATHEWS, B., OBERHOFER, M., AND SAUTER, G. 2007. Master data
management architecture patterns. Tech. rep. IBM.

ELKAN, C. 1990. Independence of logic database queries and updates. In Proceedings of the
Symposium on Principles of Database Systems (PODS). 154–160.

FAN, W. 2008. Dependencies revisited for improving data quality. In Proceedings of the Symposium
on Principles of Database Systems (PODS). 159–170.

FAN, W. AND GEERTS, F. 2009. Relative information completeness. In Proceedings of the Symposium
on Principles of Database Systems (PODS). 97–106.

FAN, W. AND GEERTS, F. 2010. Capturing missing tuples and missing values. In Proceedings of the
Symposium on Principles of Database Systems (PODS).

FAN, W., GEERTS, F., JIA, X., AND KEMENTSIETSIDIS, A. 2008. Conditional functional dependencies for
capturing data inconsistencies. ACM Trans. Database Syst. 33, 2, 1–48.

GAREY, M. AND JOHNSON, D. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company.

GOTTLOB, G. AND ZICARI, R. 1988. Closed world databases opened through null values. In Proceedings
of International Conference on Very Large Databases (VLDB). 50–61.

GRAHNE, G. 1991. The Problem of Incomplete Information in Relational Databases. Springer.

HERZOG, T. N., SCHEUREN, F. J., AND WINKLER, W. E. 2007. Data Quality and Record Linkage
Techniques. Springer.

IMIELIŃSKI, T. AND LIPSKI, JR, W. 1984. Incomplete information in relational databases. J. ACM 31, 4,
761–791.

LEVY, A. Y. 1996. Obtaining complete answers from incomplete databases. In Proceedings of
International Conference on Very Large Databases (VLDB). 402–412.

LEVY, A. Y. AND SAGIV, Y. 1993. Queries independent of updates. In Proceedings of International
Conference on Very Large Databases (VLDB). 171–181.

LI, C. 2003. Computing complete answers to queries in the presence of limited access patterns.
VLDB J. 12, 3, 211–227.

LOSHIN, D. 2008. Master Data Management. Morgan Kaufmann.
MOTRO, A. 1989. Integrity = validity + completeness. ACM Trans. Datab. Syst. 14, 4, 480–502.
PAPADIMITRIOU, C. H. 1994. Computational Complexity. Addison-Wesley.
RADCLIFFE, J. AND WHITE, A. 2008. Key issues for master data management. Tech. rep. Gartner.
SEGOUFIN, L. AND VIANU, V. 2005. Views and queries: determinacy and rewriting. In Proceedings of

the Symposium on Principles of Database Systems (PODS). 49–60.
SPIELMANN, M. 2000. Abstract state machines: Verification problems and complexity. Ph.D. thesis,

RWTH Aachen.
VAN DER MEYDEN, R. 1998. Logical approaches to incomplete information: A survey. In Logics for

Databases and Information Systems, J. Chomicki and G. Saake, Eds., Kluwer.
VARDI, M. 1986. On the integrity of databases with incomplete information. In Proceedings of the

Symposium on Principles of Database Systems (PODS). 252–266.

