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Abstract

Let X be a smooth projective variety. Given any basepoint-free lin-

ear system, ∣D∣, there is a dense open subset parametrizing smooth

divisors, and over that subset, we can consider the relative Picard va-

riety of the universal divisor, which parametrizes pairs of a smooth

divisor in the linear system and a line bundle on that divisor. In the

case where X is a surface, there is a natural compactification of the

relative Picard variety, given by taking the moduli space of pure one-

dimensional Gieseker-semistable sheaves with respect to some polar-

ization. In the case of P2, this is an irreducible projective variety of

Picard number 2. We study the nef and effective cones of these mod-

uli spaces, and talk about the relation with variation of Bridgeland

stability conditions.

We show how the knowledge of the Picard group of this moduli

space of pure one-dimensional sheaves on P2 can be used to deduce

that every section of the relative Picard varieties of the complete lin-

ear systemof plane curves (of degree at least 3) comes from restriction
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a line bundle on P2. We also give an independent proof of this fact

for any basepoint-free linear system on any smooth projective vari-

ety when the locus of reducible or non-reduced divisors in the linear

system has codimension at least two.
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1. Introduction

This thesis can be largely divided into two parts. The first part

consists of a description of the birational geometry of moduli spaces

of pure one-dimensional sheaves on P2. The second consists of a de-

scription of the sections of relative Picard varieties over certain linear

systems.

A moduli space of torsion sheaves on P2 is a space parametrizing

pure semistable sheaves with Hilbert polynomial χ(F(m)) = µm + χ

on P2 (technically, S-equivalence classes of such sheaves). We will

call this spaceN(µ,χ). This space is a compactification of the space of

pairs (C,L)withC a smooth plane curve of degree µ and L a line bun-

dle on C with Euler characteristic χ. In the first section of this thesis,

we will study the divisor theory of these moduli spaces, specifically,

their pseudoeffective and nef cones.

When µ < 3, these spaces have Picard number 1, so these cones

are trivial. When µ ≥ 3, these spaces have Picard number 2, so their

divisor theory is still relatively simple. Moreover, we will show that

they are Mori dream spaces, so these spaces have the nicest possible

divisor theory.

On these moduli spaces, there is always a natural divisor class

which lies on an edge of both the nef and effective cones. Specifi-

cally, there is a map fromN(µ,χ) to the projective space of all curves

of degree µ. We can then pull backO(1) from this projective space to

get such a divisor class. Much of this paper is devoted to finding the
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other edge of both the nef and the pseudoeffective cones. We succeed

entirely in calculating the nef cone, but in this thesiswe only calculate

the effective cone for some choices of µ and χ. In subsequent work

with Izzet Coskun and Jack Huizenga, we manage to calculate the ef-

fective cones of all moduli spaces of sheaves (not necessarily torsion)

on P2 ([9]).

In doing so, we find something similar to what is known for the

Hilbert scheme. That is, the shape of the effective cones is deter-

mined by algebraic properties of these sheaves which don’t always

have an obvious geometric interpretation, while the nef cone is more

obviously related to the geometry of these sheaves, thought of as a

generalization of line bundles on plane curves.

To be more specific, in the case of the effective cone, we will prove

that for many of these moduli spaces, there is a vector bundle E such

that the locus of F ∈ N(µ,χ) such that h0(E ⊗ F) is a divisor, and it

is this divisor which lies on the other edge of the effective cone. The

divisor on the other edge of the nef cone is the pullback of an ample

divsior by a regular map, and we will describe the fibers of this map

in terms of points on curves and the line bundles they define.

For the case of χ = 1, Jinwon Choi and Kiryong Chung have amuch

more geometric description of the divisor lying on the other edge of

the effective cone in [8].

For the calculation of the effective cone, the idea behind the calcula-

tion is to use the relationship between line bundles on plane curves,
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points on plane curves, and points on the plane to show that vec-

tor bundles of a certain form have interpolation with respect to the

general point of the Hilbert scheme if and only if they have interpo-

lation with respect to the general point of the moduli space of pure

one-dimensional sheaves. We use an existence result of Huizenga to

show that there are such vector bundles – the locus where interpola-

tion fails is then an effective divisor. To show this divisor is extremal,

we construct a moving curve class which has intersection number 0

with this divisor.

The calculation of the nef cone uses the theory of Bridgeland stabil-

ity conditions. The theory of stability conditions on P2 gives us a way

of writing moduli spaces of sheaves as GIT quotients in a number of

ways. Each suchway gives us an ample line bundle, sowe get a lower

bound on the nef cone. We then find a curve which has intersection

number 0 with the divisor on the edge of the cone, so this cone must

be the entire nef cone.

The spaces N(µ,χ) and N(µ,χ ′) are known to be isomorphic if

χ ≅ ±χ ′ (mod µ). Intuitively, these isomorphisms come from taking

the tensor product of a sheaf with some multiple of O(1), and from

taking a line bundle supported on some plane curve to its dual. If

µ ≠ µ ′, then the spaces N(µ,χ) and N(µ ′,χ ′) do not have the same

dimension, so they cannot be isomorphic. Using the calculation of

the nef cone, we will show that if χ /≅ ±χ ′ (mod µ) and µ > 2, then the
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dimension of the exceptional locus of a certain canonically defined

map distinguishes between N(µ,χ) and N(µ,χ ′).

This brings us to the second part of this work, where we discuss an

analogue of the Franchetta conjecture for relative Picard varieties of

linear systems.

The original Franchetta conjecture was that the only natural lines

bundles on curves are multiples of the canonical bundle. There are

two ways to make this into a precise statement. The weak Franchetta

conjecture says that the relative Picard group of the universal curve

overMg, i.e. the group of line bundles on the total space of the uni-

versal curve modulo those pulled back fromMg, is generated by the

relative canonical bundle. The strong Franchetta conjecture says that

the only rational sections of the universal Picard varieties Jd come

from multiples of the canonical bundle.

Any line bundle on the universal curve overMg gives rise to a ra-

tional section of the universal Picard variety, so the weak Franchetta

conjecture follows from the strong one. However, all known proofs

of the strong Franchetta conjecture first use the fact that the weak

Franchetta conjecture follows from the calculation of the Picard group

of the universal curve by Harer and Arbarello-Cornalba. From the

weak Franchetta conjecture, it is possible to deduce that given a ra-

tional section of the relative Picard variety, some multiple of it is a

multiple of the canonical bundle (see proposition 3.3). The proofs by
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Mestrano [21] and Kouvidakis [18] proceed by showing that the de-

gree of a rational section must be a multiple of 2g− 2 to reduce to the

case of J0, where any section must a fortiori be torsion, and then show

that the monodromy action on torsion line bundles has no nonzero

fixed point.

Given a linear system of curves on a surface, a natural conjecture

to make is that the only “natural line bundles” are restrictions of line

bundles on the surface (at least when the linear system is basepoint-

free). We can also make the same conjecture about linear systems in

varieties of dimension greater than two. The purpose of this paper

is to show that with one additional necessary hypothesis, this conjec-

ture is correct.

Theorem 1.1. Let X be a smooth projective variety over C, ∣D∣ a basepoint-

free linear system of divisors on X such that the locus of divisors which are

either reducible or non-reduced has codimension at least two. Then rational

sections of the relative Picard variety all come from restricting line bundles

on X.

This theorem can be thought of as a weakening of the Lefschetz

hyperplane theorem – there are no hypotheses about ampleness or

dimension, but we only get a result about the relative Picard group,

not the Picard groups of each divisor. In the case of curves, though,

where the Lefschetz hyperplane theorem tells you very little, this

result provides the most information. For example, by considering
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curves in K3 surfaces which generate the Picard group, we see imme-

diately that the degree of any rational section of the universal Picard

variety over the moduli space of curves must have degree divisible

by 2g−2, after which we can use the same methods as [21] to deduce

the original strong Franchetta conjecture.

The hypothesis on the dimension of the locus of non-integral divi-

sors might seem a little odd at first, but we will show that there are

counterexamples to the theorem without this hypothesis. Moreover,

in the case of very ample linear systems on a surface, the Castelnuovo-

Kronecker theorem (see [7]) implies that this hypothesis is satisfied

except in the case where the image of the map from the surface to

projective space is either ruled by lines or a projection of the Veronese

surface.

Our proof strategy will be to first prove the analogue of the weak

Franchetta conjecture, which is very easy in this setting, then to re-

strict our section to pencils, wherewe can use Tsen’s theorem to show

that any rational section must be a linear combination of the restric-

tion of a line bundle on X and the base locus of the pencil. We then

show that in fact we can choose a line bundle on X which gives rise

to the section.

It is likely that it is possible to reproduce a version of this result us-

ing the theory of normal functions, but this argument has the advan-

tage of being purely algebraic and requiring no ampleness hypothe-

ses.
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2. Moduli Spaces of Torsion Sheaves

2.1. Preliminaries on the Moduli Space of Torsion Sheaves.

Definition 2.1. A coherent sheaf on P2 is called pure of dimension 1

if its support is one-dimensional, and the same is true of any nonzero

subsheaf.

A pure one-dimensional sheaf F on P2 is called semistable if for all

nonzero proper subsheaves G ⊂ F , we have

χ(G)
ch1(G)

≤ χ(F)
ch1(F)

and it is called stable if moreover this inequality is always strict. This

notion of stability will sometimes be called Simpson (semi)stability.

(This agrees with the usual definition of Gieseker-Simpson stability

applied to pure one-dimensional sheaves.)

In this section, we will recall a number of facts about such sheaves,

most of which can be found in le Potier’s paper [19], except where

otherwise noted.

Given any semistable sheaf F , there is always a filtration

0 = F0 ⊂ F1 ⊂ ⋯ ⊂ Fn = F

called the Jordan-Hölder filtration, such that the subquotientsFi/Fi−1

are stable. This filtration is not unique, but the subquotients in any

such filtration are the same. Two semistable sheaves are called S-

equivalent if the stable sheaves appearing as subquotients in their
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Jordan-Hölder filtrations are the same. We note that this filtration is

only interesting if the sheaf is strictly semistable, i.e. semistable but

not stable, so each stable sheaf is the only object in its S-equivalence

class.

There is a moduli space, which we will call N(µ,χ), parametriz-

ing S-equivalence classes of pure one-dimensional sheaves which are

semistable and have Hilbert polynomial χ(F(m)) = µm + χ. We

will call this space the moduli space of one-dimensional sheaves, or

the moduli space of torsion sheaves. In a slight abuse of notation,

we will write F ∈ N(µ,χ) to mean that F is a semistable pure one-

dimensional sheaf with Hilbert polynomial χ(F(m)) = µM + χ. If

c ∈ K(P2) is the class of a pure one-dimensional sheaf, thenN(c) will

be the moduli space of semistable sheaves with class c, which will be

isomorphic to some N(µ,χ).

The spacesN(µ,χ) are irreducible and factorial of dimension µ2+1.

A dimension count then shows that the generic such sheaf is the push

forward of a line bundle on a smooth plane curve. The spacesN(µ,χ)

are smooth away from the locus of strictly semistable sheaves. The

space N(µ,χ) is isomorphic to N(µ,χ + µ), with the isomorphism

being given by the map F ↦ F⊗OP2(1). We also know that the space

N(µ,χ) is isomorphic to N(µ,−χ) by the map

F ↦ E xt1(F ,ωP2)

as proved in [20].
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Corollary 2.2. If χ ≡ ±χ ′ (mod µ), then N(µ,χ) ≅N(χ,χ ′).

When µ ≥ 3, the Picard group of N(r,χ) is a free abelian group

of rank 2. We will now describe generators for this group. There

is a morphism (which we will call the Fitting morphism) N(µ,χ) →

P(H0(OP2(µ))) which sends a sheaf to its support. Here, the scheme-

theoretic structure on the support is that given by the Fitting ideal of

the sheaf. The pullback of O(1) from P(H0(OP2(µ))) to N(µ,χ) will

be denoted L0. This is one generator of the Picard group.

Let K(P2) be the Grothendieck group of coherent sheaves. This is a

free Abelian group of rank 3. Let c be the class of elements ofN(r,χ)

in K(P2), Let a ∈ K(P2). Let F be a sheaf on P2 × S flat over S such

the the restriction to each fiber has class c, i.e. a flat family of sheaves

of class c on P2 parametrized by S. Let π1 (resp. π2) be the projection

from P2 × S to P2 (resp. S). Then

det(∑
i

(−1)iRπ2∗(F ⊗ π∗1(a)))

is a line bundle on S.

On K(P2), there is a quadratic form given by

⟨[E], [E ′]⟩ ↦∑
i

(−1)iχ(Tori(E,E ′)).

Given b ∈ K(P2), let b⊥ be the orthogonal complement to b with re-

spect to this quadratic form. If a ∈ c⊥, then the line bundle above
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descends to a line bundle on N(µ,χ). This determines a group ho-

momorphism λ ∶ c⊥ → Pic(N(µ,χ)).

Definition 2.3. The line bundle λ(a) is called the determinant line

bundle determined by a.

As a first case, we note that λ(−h2) = λ0.

Let δ = gcd(µ,χ). Let L1 be the line bundle onN(µ,χ) correspond-

ing to the class

a = 1
δ
((−µ) + χh) ∈ K(P2)

whereh = [OH]. ThenL0 andL1 generate the Picard group ofN(µ,χ).

It is clear that L0 gives one edge of both the nef and effective cones,

since it is the pullback of an ample line bundle by a nonconstant reg-

ular map to a variety of smaller dimension (when µ ≥ 3).

2.2. TheModuli Spaces areMori Dream Spaces. In this section, we

will prove that themoduli spacesN(µ,χ) areMori dream spaces. The

casewhen the Picard group is isomorphic toZ is trivial, so for the rest

of this section, wewill focus on the case µ ≥ 3, when the Picard group

has rank two. Our first goal will be to understand the canonical class.

Lemma 2.4. The canonical class K of N(µ,χ) is a negative multiple of L0.

Proof. This follows from theorem 8.3.3 of [14] and the preceding dis-

cussion. In fact, K = −3µL0. Note that the divisor they call L1 is in

fact a multiple of what we call L0. �
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We will now work to understand the singularities of N(µ,χ). The

first thing to note is that as proved in sections 4.3 and 4.4 of [14], for all

m sufficiently large, there is a k such thatN(µ,χ) is the good quotient

of an open subscheme Um of the scheme parametrizing quotients of

O(−m)k with Hilbert polynomial µm + χ.

Write H for O(−m)k and K for the kernel of some surjective map

H → F , with F some fixed semistable sheaf with Hilbert polyno-

mial χ(F(n)) = µn + χ. By the same discussion in [14], m can be

picked larger than the Castelnuovo-Mumford regularity of F for all

semistable F with this Hilbert polynomial.

Lemma 2.5. The scheme Um is nonsingular form sufficiently large.

Proof. By proposition 4.4.4 of [25], the obstruction space to the point

of Um corresponding to the quotient H → F is given by Ext1(K,F),

so it suffices to show that this space vanishes.

We have the short exact sequence

0→ K→H → F → 0

Applying Hom(⋅,F), we get a long exact sequence of Ext groups,

which in particular gives us the exact sequence

Ext1(H,F) → Ext1(K,F) → Ext2(F ,F)

so it suffices to show that the two outside groups vanish.
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We have

Ext1(H,F) ≅ H1(F(m))k

but sincem is larger than the regularity ofF ,H1(F(m)) = 0. By Serre

duality,

Ext2(F ,F) ≅ Hom(F ,F(−3))∗

. But F(−3) is a pure 1-dimensional semistable sheaf with the same

first Chern class as F and smaller Euler characteristic, so by consid-

ering the image of a putative map F → F(−3), we will be able to

contradict the semistability of F unless this map is 0. �

By [5], a good quotient of a varietywith rational singularities (e.g. a

nonsingular variety) also has rational singularities. This shows that

N(µ,χ)has rational (in particular, Cohen-Macaulay) singularities. By

[24], a local ring is Gorenstein if it is Cohen-Macaulay, factorial, and

a quotient of a regular local UFD. This last property will certainly

be satisfied for any local ring occurring here, so we have shown that

N(µ,χ) has only Gorenstein singularities.

By theorem 11.1 of [16] (noting that a variety with Gorenstein sin-

gularities has an invertible dualizing sheaf), rational Gorenstein sin-

gularities are canonical, so we have proved the following result.

Proposition 2.6. The space N(µ,χ) has only canonical (and hence klt,

since there is no boundary divisor) singularities.

By corollary 2.35 of [17], this implies that ifD is an effective divisor,

and ε > 0 is sufficiently small, then (N(µ,χ),εD) is a klt pair.
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Definition 2.7. IfD1, . . . ,Dn are Cartier divisors on a variety X, then

we will denote by R(X;D1, . . . ,Dn) the multisection ring of the Di,

i.e.

R(X;D1, . . . ,Dn) = ⊕
(i1,...,in)∈Nn

H0(i1D1 +⋯inDn)

Where there is no ambiguity, we will drop the X from the notation.

L0

D N

K

K+εB

εB

Let A be an ample divisor on N(µ,χ). Let D be a divisor on the

edge of the pseudoeffective cone which does not consist of multiples

of L0. Let N be a divisor on the edge of the nef cone which does not

consist of multiples of L0 By a result of Zariski (lemma 2.8 of [11]),

since L0 and A are both semiample, R(L0,A) is finitely generated.

Note that any effective divisor which is not a multiple of L0 can be

written as K + εB, with B ample and ε arbitrarily small. By choosing

B so that ε is sufficiently small, we can ensure that (N(µ,χ),εB) a klt

pair. By corollary 1.19 of [4], R(A,D) is finitely generated.

Proposition 2.8. The Cox ring of N(µ,χ) is finitely generated.
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Proof. We note that the Cox ring ofN(µ,χ) is isomorphic to themulti-

section ring R(L0,D). Inside R(L0,D), we have two finitely generated

subrings, namely R(L0,A) and R(A,D). I claim that the generators of

these two rings together generate R(L0,D). It clearly suffices to show

that any section of any effective divisorD onN(µ,χ) is in R(L0,A) or

R(A,D). But D is either in the cone generated by L0 and A or it is in

the cone generated by A and D. In the former case, the section of D

lies in R(L0,A), and in the latter case, it is contained in R(A,D). �

By [11], we have the following corollary.

Corollary 2.9. The spaces N(µ,χ) are Mori dream spaces.

2.3. Effective Divisors. In the case of N(µ, 0), the line bundle L1 =

λ(−1) is effective – it corresponds to the subvariety ofN(µ,χ) consist-

ing of sheaves which have a global section ([19]). More generally, we

have the following.

Definition 2.10. Let F be a sheaf on P2 and E a vector bundle. We

say that E is cohomologically orthogonal to F if Hi(F ⊗ E) = 0 for

all i. If there is some semistable F ∈ N(µ,χ) which is cohomolog-

ically orthogonal to E, we say that E has the interpolation property

forN(µ,χ). Wewill also talk about the interpolation property for the

Hilbert scheme of points on P2, which has a completely analagous

definition, since the Hilbert scheme of n points on P2 is isomorphic

to amoduli space of semistable sheaves on P2 with rank 1, first Chern

class 0, and second Chern class −n (see for example [13]).
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Proposition 2.11. Let c ∈ K(P2) denote the class of some semistable pure

one-dimensional sheafF . SupposeE is cohomologically orthogonal toF . Let

D be the locus inN(c) of sheaves which are not cohomologically orthogonal

to E. Then D is a divisor on N(µ,χ), and the corresponding line bundle is

the dual of the determinant bundle corresponding to E.

The proof of this proposition follows from the same argument as

in the discussion after proposition 2.10 of [19], which covers the case

where E = OP2 . A calculation with the Hirzebruch-Riemann-Roch

formula shows that χ(E,F) = 0, which is a necessary condition for E

to be cohomologically orthogonal to F , if and only if the slope of E is
−χ
µ
.

In particular, since the map λ ∶ c⊥ → Pic(N(µ,χ)) is a homomor-

phism, the class of D is aL0 + bL1, where a and b are such that

b

δ
(−µ + χ chOH) + ah2 = − ch(E)

More explicitly, we get a = − ch2 E + χ
2µ rkE and b = δ

µ
rk(E).

Because of the isomorphismN(µ,χ) ≅N(µ,χ+µ), in order to calcu-

late the effective cone, it suffices to assume that 0 < χ ≤ µ. The isomor-

phism N(µ,χ) ≅ N(µ,−χ) lets us reduce further to the case 0 ≤ χ ≤ µ2 .

We will find the effective cone in these cases (when we can) by com-

paring the minimal resolutions of generic one-dimensional sheaves

and of generic ideal sheaves of zero-dimensional subschemes. We

will use the similarity between the minimal resolutions to show that
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there is a relation between cohomological orthogonality in the two

cases for a particular type of vector bundle.

We now consider the Hilbert schemeHn of n = (µ+1
2 ) +µ−χ points

in P2.

Theorem 2.12. Let 0 ≤ 2χ ≤ µ. Let E be a vector bundle which fits in a

short exact sequence

0→ k(µ − χ)O(µ − 2) → k(2µ − χ)O(µ − 1) → E→ 0

for some positive integer k. Such a bundle is called a Steiner bundle. If E

has the interpolation property with respect to the Hilbert scheme of n points

in P2, then E(−µ) has the interpolation property with respect to N(µ,χ).

Proof. We note that any length n subscheme Z of P2 is contained in a

curveC of degree µ by an easy parameter count. Suppose that we can

pick C smooth, which will be true for the general point of the Hilbert

scheme. We get a short exact sequence

0→ OP2(−µ) → IZ → OC(−Z) → 0

where in the last term we consider Z as a Cartier divisor on C. All

cohomology groups of E vanish, so we see that Hi(E⊗ IZ) ≅ Hi(E⊗

OC(−Z)). The Euler characteristic ofOC(−Z) is −µ2+χ, so we see that

twisting this with OP2(µ) gives us an element of our desired moduli

space.

�
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We note that the class of the divisor corresponding to such an E is

D = k((µ − χ)L0 + δL1)

Theorem 7.1 of [12] tells us when a general Steiner bundlehas in-

terpolation with respect to a general ideal sheaf of n points.

Theorem 2.13. Let α = 1 − χ
µ
. Then there is a bundle E of the above form

such that E(µ) has the interpolation property with respect to the Hilbert

scheme of n points in P2 if and only if either α > ϕ−1, where ϕ = 1+
√

5
2 or

α ∈ {0
1
,
1
2
,
3
5
,
8
13

, . . .}

i.e. α is a ratio of consecutive Fibonacci numbers.

2.4. Moving Curves. In this previous section, we constructed effec-

tive divisorsD onN(µ,χ for certain choices of µ and χ. In this section,

we will show that these divisors are on the edge of the effective cone.

For this purpose, wewill construct a family of numerically equivalent

curves onN(µ,χ) which pass through a general ofN(µ,χ) and have

intersection number 0 with D. This will force D to be on the bound-

ary of the effective cone, but since the Picard number of N(µ,χ) is

two, this means that D will generate an extremal ray of the effective

cone. We then need only show thatD is not numerically proportional

to L0.

Take a general pencil of plane curves of degree µ. X, the total space

of the pencil, is isomorphic to the blowup of P2 at the µ2 basepoints of
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the pencil. Given a line bundle L on Xwhich has Euler characteristic

χ when restricted to each fiber, we can push it forward to P2 × P1 to

get a family of semistable sheaves on P2 parametrized by P1, which

in turn gives us a curve in N(µ,χ).

Lemma 2.14. Suppose that E is a vector bundle with the interpolation prop-

erty with respect toN(µ,χ). LetD be the corresponding line bundle. Let C

be as above. Then we have

C ⋅ (−D) = χ(E) + rk(E) (1
2∑(ai − a2

i) +
1
2
b(b + 3)) + bch1(E)

rk(E)

Proof. We again use Grothendieck-Riemann-Roch, but now we have

ch(π!(L⊗ E))Td(P1) =

π∗[(1 +∑aiEi + bH + 1
2 (b2 −∑a2

i)H2)(1 + 3
2H − 1

2E +H2) ch(E)]

which equals

χ(E) + rk(E) (1
2∑(ai − a2

i) +
1
2
b(b + 3)) + bch1(E)

rk(E)

Again, multiplying by the inverse ofTd(P1) does not change this, and

since D is given by the dual of the determinant line bundle corre-

sponding to E, we have the desired result. �

Lemma 2.15. Let 0 < χ ≤ µ. Let

L =
χ+ 1

2µ(µ−3)

∑
i=1

Ei
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be a line bundle on X, and C the corresponding curve on N(µ,χ). Then

curves in the numerical class of C pass through a general point of N(µ,χ).

Proof. Let M be a general line bundle of Euler characteristic χ on a

general plane curve of degree µ. Since χ(M) > 0,M is linearly equiv-

alent to a sum of (distinct) points p1, . . . ,pn. We need to show that

there is a pencil of curves containing p1, . . . ,pn, but containing pi im-

poses one linear condition on PN where

N = 1
2
(µ + 1)(µ + 2) − 1

and
1
2
(µ + 1)(µ + 2) − 1 − 1

2
µ(µ − 3) − χ = 3µ − χ

will be bigger than 1 for χ ≤ µ. �

Lemma 2.14 lets us work out that the corresponding curvesC have

intersection number 0 with the divisors associated to the vector bun-

dles of theorem 2.12, since these have Euler characteristic 0 and ai =

a2
i , but by the discussion at the beginning of the section, this means

that the divisor D is on the edge of the effective cone.

In the case of χ = 0, we must use a slightly different moving curve.

Again, we take a general pencil of plane curves of degree µ, but now

we take the line bundle

−Ek +
1
2 (µ−1)(µ−2)

∑
i=1

Ei
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where Ek is some exceptional divisor which is not included in the

second part of the expression. The same arguments as above show

that the divisor D gives an edge of the effective cone. We can now

prove the following theorem.

Theorem 2.16. Let D be the locus in N(µ,χ) of sheaves which are not

cohomologically orthogonal to a vector bundle coming from theorem 2.12,

if such a vector bundle exists. Then D and L0 span the two edges of the

effective cone of N(µ,χ). More explicitly, the effective cone is spanned by

L0 and

L1 +
χ − µ
δ
L0

.

Proof. We just need to show that D is not proportional to L0. But

the moving curves we constructed above have intersection number 0

with D and intersection number 1 with L0, which would be impossi-

ble if the two were proportional.

The description of D as a linear combination of L0 and L1 comes

from the discussion following the statement of theorem 2.12. �

2.5. Bridgeland Stability Conditions. In this section, we will give

a brief review of the theory of Bridgeland stability conditions, and

prove one result about them. I will restrict myself to the case of P2,

and I will often ignore the case of torsion-free sheaves. I will largely

follow the treatment of [1] and [6].
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For us, Db(P2) will mean the bounded derived category of coher-

ent sheaves on P2. By Hi, we will mean the ith cohomology sheaf of

an object of Db(P2).

Definition 2.17. The heart of a bounded t-structure is a full additive

subcategory A ⊂ Db(P2) such that for all A,B ∈ A, Hom(A,B[k]) = 0

if k < 0 and for any object E ∈Db(P2) there are objects

0 = Em,Em+1, . . . ,En = E

and triangles Ei → Ei+1 → Fi → Ei[1] such that Fi[i] ∈ A.

The standard example of the heart of a bounded t-structure on

Db(P2) is the full subcategory of coherent sheaves. In general, many

of the things which make sense for the category of coherent sheaves

work just as well for the heart of any bounded t-structure. For exam-

ple, a map A → B with A,B ∈ A is an inclusion with respect to A if

the mapping cone is also in A.

Definition 2.18. A stability condition on P2 is a function Z ∶ K(P2) →

C called a central charge, together with A, the heart of a bounded

t-structure on Db(P2), which satisfy the following conditions. First,

for any nonzero A ∈ A, Arg(Z(A)) ∈ R>0eiθ with 0 < θ ≤ π. We

note that this allows us to put a partial order on the arguments which

occur, with one argument being bigger than another if it is closer to

the negative real axis.
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Wewill call a nonzeroA ∈ A semistable with respect to the stability

condition if every nonzero proper subobject B ⊂ A has Arg(Z(B)) ≤

Arg(Z(A)). We will call A stable if this inequality is always strict.

The second part of being a stability condition is that any nonzero

objectA ∈ A has a Harder-Narasimhan filtration, i.e. a finite filtration

0 = F0 ⊂ F1 ⊂ ⋯ ⊂ Fn−1 ⊂ Fn = A

such that for each of the subquotients Ei = Fi/Fi−1, Arg(Z(Ei)) <

Arg(Z(Ei+1)) and the Ei are semistable.

The Harder-Narasimhan filtration of an object ofDb(P2) is always

unique. Any semistable object has a Jordan-Hölder filtration, i.e. a

finite filtration where the subquotients Ei are stable and arg(Z(Ei)) =

arg(Z(Ej)) for all i, j. The Jordan-Hölder filtration is not unique, but

the isomorphism classes of the subquotients are well-defined. In gen-

eral, we will say that two objects are S-equivalent with respect to

some stability condition if the isomorphism classes of the subquo-

tients in their Jordan-Hölder filtration are the same up to reordering.

We note that if we have an inclusion of two semistable objects E ⊂ F

with arg(Z(E)) = arg(Z(F)), then E/F if semistable and arg(Z(E/F)) =

arg(Z(E)).

Given a stability condition, we can define a slope function

µZ(E) =
−Re(Z(E))
Im(Z(E))
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An object A ∈ A will then be semistable if and only if for all nonzero

proper subobjects B ⊂ A, µZ(B) ≤ µZ(A), and it will be stable if and

only if this inequality is always strict.

There is another, equivalent, definition of stability condition, which

will also prove useful.

Definition 2.19. A slicing of Db(P2) is a collection of full additive

subcategories Aφ with φ ∈ R, the objects of which will be called

semistable of phase φ, satisfying the following conditions.

(1) For A ∈ Aφ, B ∈ Aφ ′ with φ ′ < φ, Hom(B,A) = 0.

(2) Aφ[1] = Aφ+1

(3) For each nonzero object C ∈ Db(P2), we have a collection of

objects and maps

0 = E0 → E1 → ⋯→ En = C

such that themapping cone of Ei → Ei+1 is inAφi with theφi >

φi+1. This collection ofmaps is called theHarder-Narasimhan

filtration ofCwith respect to the slicing. Thesemapping cones

will be called the subquotients of the filtration.

The following is proposition 5.3 of [6].

Proposition 2.20. A stability condition on Db(P2) is equivalent to a slic-

ing, together with a central charge function Z ∶ K(P2) → C such that for any

nonzero A ∈ Aφ, arg(Z(A)) = πφ.
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The idea behind the correspondence is as follows. Given a slic-

ing of Db(P2), we can take the full extension-closed subcategory of

Db(P2) generated by the objects of Aφ with φ ∈ (0, 1]. This will be

the heart of a bounded t-structure. To go the other way, for φ ∈ (0, 1],

we let Aφ be the full subcategory of objects E in the heart which are

semistable and such that arg(Z(E)) = πφ.

Definition 2.21. Given a slicing, for I ⊂ R an interval, we can define

AI to be the extension-closed subcategory of Db(P2) generated by

objects in Aφ with φ ∈ I.

A slicing is called locally finite if for all φ, there is some ε > 0 such

thatA(φ−ε,φ+ε) is of finite length. A stability condition is called locally

finite if the corresponding slicing is locally finite.

In general, we can define a metric on the set of (locally finite) sta-

bility conditions as follows.

Definition 2.22. Suppose we have two slicings P and P ′ of Db(P2).

Given a nonzero object E ∈Db(P2), wewill defineφ+
P(E) (resp.φ−

P(E))

to be the subquotient of theP-Harder-Narasimhanfiltration ofEwith

largest (resp. smallest) phase. We define

d(P ,P ′) = sup
0≠E∈Db(P2)

max{∣φ+
P(E) −φ+

P ′(E)∣, ∣φ−
P(E) −φ−

P ′(E)∣}

Given two stability conditions (Z,P) and (Z ′,P ′), we define

d((Z,P), (Z ′,P ′)) = d(P ,P ′) + ∣∣Z −Z ′∣∣
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where for the last term of the sum, we use the Euclidean norm on the

finite-dimensional vector space Hom(K(P2),C).

Theorem 7.1 of [6] says that the map from the space of (locally fi-

nite) stability conditions with the above metric to Hom(K(P2),C) is a

local homeomorphism onto a linear subspace.

On P2, there is a family of stability conditions parametrized by two

variables s and twith s ∈ R and t ∈ R>0, which we will think of as giv-

ing coordinates on the upper half plane. The central charge is given

by

Zs,t(E) = −∫
P2
e−(s+it)H ch(E)

The heart of the t-structure is a little more complicated. Given a

nonzero torsion-free sheaf E on P2, we will define its slope µ(E) to be

c1(E)H
rk(E)

Wewill say that E is µ-semistable if for all nonzero proper subobjects

F ⊂ E, we have µ(F) ≤ µ(E). This lets us define a notion of Harder-

Narasimhan filtration, which we will call the µ-Harder-Narasimhan

filtration.

Definition 2.23. For s ∈ R, define Fs to be the full subcategory of

coherent sheaves A on P2 which are torsion-free and such that for

each subquotientAi ofA in the µ-Harder-Narasimhan filtration ofA,

µ(Ai) ≤ s.
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We will define Qs to be the full subcategory of coherent sheaves A

on P2 such that for each subquotient Ai of A/Tor(A) (where Tor(A)

denotes the torsion subsheaf of A) in the µ-Harder-Narasimhan fil-

tration of A/Tor(A), µ(Ai) > s.

We define a category As ⊂ Db(P2) as the full subcategory contain-

ing objects CwithH−1(C) ∈ Fs,H0(C) ∈ Qs, andHi(C) = 0 for i ≠ 0, 1.

The following is implied by theorem 5.11 of [1] and the preceding

discussion.

Theorem 2.24. For all s ∈ R and t > 0, the category As is the heart of

a bounded t-structure on Db(P2) and the pair (Zs,t,As) give a stability

condition.

Wenote that this gives a set-theoretic inclusion from the upper half

plane to the space of stability conditions. By inspection, the compos-

ite map to Hom(K(P2),C) is a local embedding, so the map from the

upper half plane to the space of stability conditions must be continu-

ous.

It will be useful to have a more explicit description of the slope

function at each point of the upper half plane. We have

µs,t(A) =
rk(A)

2 (s2 − t2) + ch2(A) − s ch1(A)
t(ch1(A) − s rk(A))

Given a sheaf F (or more generally, an element of K(P2)), we get a

collection of potential walls in the upper half plane. Each potential

wall is the locus where µs,t(F) = µs,t(E) for some fixed sheaf E. IfF ∈
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N(µ,χ), then these potential walls are concentric semicircles. More

precisely, we have the following result of [1].

Lemma 2.25. The potential wall corresponding to a sheaf E is a semicircle

with center

(ch2(F)
ch1(F) , 0) = (χ

µ
− 3
2
, 0)

and radius
¿
ÁÁÀ(χ

µ
− 3
2
)

2

+ 2
ch0(E)

(ch2(E) − (χ
µ
− 3
2
) ch1(E))

In particular, the potential walls never intersect.

The following proposition allows us to use the geometry of the po-

tential walls to understandwhen sheaves have nonzeromaps to a tor-

sion sheaf. It extends lemma 6.3 of [1] to the case of torsion sheaves.

Proposition 2.26. Suppose we have a map E → F , with F ∈ N(µ,χ).

Suppose at some point (s, t) on the potential wall corresponding to E, E→ F

is an inclusion of semistable objects in the heart of the t-structure. Then this

is true for all (s ′, t ′) on that potential wall.

Proof. Let C be the mapping cone of E→ F . We have a distinguished

triangle

E→ F → C→ E[1]

Since F is a sheaf, and both E and C are in As, the corresponding

long exact sequence of cohomology sheaves shows that E is a sheaf

too. By assumption, with respect to (s, t); E, F , and C are all in the
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same slice, say Aφ. For pure one-dimensional sheaves and t > 0, we

have φ ∈ (0, 1).

In order to prove the theorem, it is enough to show that for all

(s ′, t ′) on the wall; E, F , and C will all belong to A ′
φ, that is, the

corresponding slice with respect to the slicing given by (s ′, t ′). Since

φ ∈ (0, 1], this will imply that E → F is an inclusion of objects in the

heart, and the fact that they’re in the corresponding slice implies that

they are all semistable of the same slope.

In order to show this, it is enough to show that E, F , and C all

belong to A ′
φ for all stability condition (s ′, t ′) on the wall which are

contained in a ball of radius ε2 centered at (s, t), where the ball is

defined with respect to the above metric on the space of stability con-

ditions and ε < min{phi, 1 − φ}. This is because the metric on the

space of stability conditions defines the usual topology on the wall,

so any two points (s, t) and (s ′, t ′) on the wall can be connected by a

sequence of points (s, t) = (s0, t0), (s1, t1), . . . , (sn, tn) = (s ′, t ′) such

that d((si, ti), (si+1, ti+1)) < ε2 .

Suppose that there are two stability conditions (s, t) and (s ′, t ′)

within φ
2 of each other such that E, F , and C are all in the same (s, t)-

slice but not the same (s ′, t ′)-slice. By definition of the potential wall,

the argument of the central chargewill be the same, soE,F , orCmust

either be semistable inAφ+n for somen ∈ 2Z, or one of themmust stop

being semistable. By definition of themetric on the stabilitymanifold,

for (s ′, t ′) within φ
2 of (s, t), the first case is impossible.
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We claim that if F remains semistable, then so must E and C. Sup-

pose E stops being semistable. Let E ′ be the semistable factor with

the largest slice in the Harder-Narasimhan filtration with respect to

the (s ′, t ′)-slicing. Then the phase of E ′ must be larger than φ, since

the overall phase of E is φ. By definition of a slicing, this means that

the map E ′ → F is 0. By applying Hom(E ′, ⋅) to the above triangle,

we see that there must be a nonzero map E ′ → C[−1]. With respect

to (s, t), C[−1] ∈ Aφ−1, and for (s ′, t ′) within ε
2 of (s, t), the largest

subquotient occurring in the (s ′, t ′)-Harder-Narasimhan filtration of

C[−1] will have a (s ′, t ′)-phase less than φ − 1
2 , but this means that

any map E ′ → C[−1] vanishes, a contradiction. A similar argument

shows that if F continues to be semistable, then so must C.

We nowwant to show that F is (s ′, t ′)-semistable of phase φ. Sup-

pose it’s not. LetF ′ be the piece of largest phase in the (s ′, t ′)-Harder-

Narasimhan filtration of F . By nestedness of potential walls, the

(s, t)-slope of F ′ is still greater than the (s, t)-slope of F . Let G be

piece of the (s, t)-Harder-Narasimhan filtration of F ′ with greatest

(s, t)-phase. By our choice of ε, G will be contained in (0, 1]. Since

the (s, t)-slope of G is bigger than the (s, t)-slope of F ′, we can con-

clude that the (s, t)-phase of G is bigger than φ.

Since F is (s, t)-semistable of phase φ, we must have the map G →

F is zero. Let K be the mapping cone of F ′ → F . Then we have a
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distinguished triangle

K[−1] → F ′ → F → K

Applying the functor Hom(G, ⋅) to this triangle, and using the fact

that Hom(G,F) = 0, but Hom(G,F ′) ≠ 0, we see that there must be a

nonzeromap G → K[−1]. We know that the largest piece of the (s ′, t ′)-

Harder-Narasimhan filtration of Kmust have phase at most φ+ ε2 , so

the largest piece of the (s, t)-Harder-Narasimhan filtration of K[−1]

can have phase at most φ − 1
2 , and so there can be no nonzero maps

G → K[−1], a contradiction. �

2.6. Nef Divisors. We recall the following from [2].

Theorem 2.27. Let Z be a Bridgeland stability condition on Db(P2). Let

v ∈ K(P2). Let C be a curve, and C ∈Db(C × P2). We can associate to this

a real number

I(−Z(φC (OC))
Z(v) )

where φC ∶ Db(C) → Db(P2) denotes the integral transform with kernel

C .

This assignment induces a mapN1(MZ(v)) → R, or equivalently, gives

an element ofN1(MZ(v)). This element is nef, and it has intersection num-

ber 0 with a curve if and only if the curve parametrizes a family of strictly

Z-semistable complexes all of which are S-equivalent.

In the specific case of P2, there is another description of this nef

divisor. Using the Beilinson equivalence between Db(P2) and the
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derived category of representations of a quiver with relations, it is

possible to construct moduli spaces of Bridgeland-semistable objects

as GIT moduli spaces. Each Bridgeland stability condition gives an

ample R-divisor on the relevant GIT quotient. By finding the first

GIT wall-crossing, we will have an algebraic contraction of the mod-

uli space of sheaves. Pulling back an ample line bundle on the target

will give us the other edge of the nef cone. For a more detailed de-

scription of this idea, and of the correspondence betweenwalls in the

Bridgeland stability manifold of P2 and the stable base locus decom-

position of the pseudoeffective cone of moduli spaces of sheaves on

P2, see [3], though note that there are some errors.

We already know that L0 is on the edge of the nef cone, so it re-

mains to find the other edge of the nef cone. To do this, we will find a

Bridgeland stability condition (s, t) such that all Simpson-semistable

sheaves are (s, t)-semistable, and there is a one-dimensional family

of sheaves which are S-equivalent with respect to the (s, t)-stability

condition, but not with respect to Simpson stability. The above theo-

rem will then give us a divisor class which is nef but has intersection

number 0 with some curve, and hence must lie on the edge of the nef

cone. It will then suffice to check that this divisor class is not a mul-

tiple of L0. By theorem 2.8, this divisor class will be a positive real

multiple of the class of a semiample line bundle.
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Lemma 2.28. Let F , G be pure one-dimensional sheaves, and (s, t) a sta-

bility condition. If F → G destabilizes G with respect to (s, t), then it also

destabilizes G with respect to Simpson stability.

Proof. We have

µs,t(F) = 1
t
( ch2(F)
ch1(F) − s)

and similarly for G. But ch2(F) = χ(F) − 3
2 ch1(F). This agrees with

our earlier definition of Simpson stability. �

The long exact sequence of cohomology sheaves associated to a

destabilizing triangle, along with the fact that all the objects in the

triangle belong to the heart As together imply that any Bridgeland-

destabilizing object must itself be a sheaf. The next lemma shows

that for sufficiently large t, torsion-freesheaves cannot be Bridgeland

destabilizing. Combined with the previous lemma, this will show

that for sufficiently large t, Simpson-stability implies Bridgeland sta-

bility, and similarly for semistability.

Lemma 2.29. Fix the numerical invariants for a pure one-dimensional sheaf.

Then the radius of the wall in the stability manifold given by a torsion-free

sheaf E is bounded. More specifically, the radius of the wall associated to E

is at most
ch1(F)
2 rk(E)

Proof. Let d = ch2(F) = χ− 3
2µ. Suppose we also fixed the Chern char-

acter of the destabilizing object E to be (r ′,c ′,d ′). Then the potential
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wall is a semicircle with center

( d

mu
, 0)

and radius √
d2

µ2 +
2d ′

r ′
− 2c ′d
r ′µ

If this is an actualwall, then by proposition 2.26, E→ F is an inclusion

of objects in As at every point of the wall.

Let us denote by R the radius of the wall, and K the kernel of the

map E→ F . We have the string of inequalities

d

µ
+ R < c1(E)

rk(E) ≤ µ

rk(E) +
c1(K)
rk(K) ≤ µ

rk(E) +
d

µ
− R

which together give us the inequality

R < µ

2 rk(E)

�

The following lemma follows from the calculation in [1] of the sta-

bility conditions on P2 for which every ideal sheaf is stable.

Lemma 2.30. Let IW(k) be a twist of an ideal sheaf. Then IW(k) is (s, t)-

semistable if (s, t) is to the left of the line s = k and (s, t) is outside the

potential wall of O(k − 1), which is a semicircle with center

(k − ∣W∣ − 1
2
, 0)
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and radius ∣W∣ − 1
2

We will now find the destabilizing object which gives the largest

wall for sheaves inN(µ,χ). Write a = d+ 1
2µ

2. IfF is the pushforward

of a line bundle of degree a on a smooth plane curve of degreeµ, then

F ∈ N(µ,χ). Now write a = bµ + ε with −µ2 ≤ ε ≤ µ
2 . Note that the

case ε = ±µ2 is ambiguous. Since we will be looking at many rank

one walls, we note that the potential wall associated to IW(k) is a

semicircle with center

(b + ε
µ
− µ
2
, 0)

and radius
¿
ÁÁÀ(d

µ
− k)

2

− 2∣W∣ =

¿
ÁÁÀ(ε

µ
− µ
2
+ (b − k))

2

− 2∣W∣

Proposition 2.31. If ε ≤ 0, then IW(b) is destabilizing and gives the

biggest wall, where ∣W∣ = ∣ε∣. If ε ≥ 0, then O(b) is destabilizing and

gives the biggest wall.

Proof. In order to prove this, there are a number of things we must

check. First, we must check that for some one-dimensional sheaf F ,

this is an inclusion of semistable objects of the same phase. We first

consider the case ε ≤ 0. We want to check that on the potential wall

corresponding to IW(b), the ideal sheaves are semistable, and there

is an inclusion of objects in As.

The potential wall associated to IW(b) with ∣W∣ = −ε has radius
ε
µ
+ µ

2 . We know that the points (b + 2ε
µ
, 0) and (b − µ, 0) are on the
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potential wall. These are to the left of the line s = b. They strictly

contain the semicircle with center (b−ε− 1
2 , 0) and radius ε− 1

2 unless

ε = −µ2 , in which case the semicircles are equal.

LetC be a smooth plane curve. Consider the line bundle bH−p1⋯−

pε. This gives a semistable sheaf F of the right numerical invariants,

and we have a map Ip1,...,pε(b) → F which is surjective with kernel

O(b−µ). Since the left edge of the wall is (b−µ, 0), we see that when

t > 0, the mapping cone will be in As.

The case where ε ≥ 0 is very similar, but slightly easier. In this

case, the destabilizing object is the line bundle O(b), which is stable

if s < b. The potential wall associated toO(b) has radius µ2 − εµ , so we

see that O(b) will be stable along this potential wall, since the right

edge is (b, 0). If we have a line bundle of the form bH + p1 + ⋯ + pε,

then we get a mapO(b) → F which has kernelO(b−µ) and cokernel

a zero-dimensional sheaf. Since the left edge of the potential wall is

(b − µ + 2ε
µ
, 0), this will always be in the heart at every point of the

potential wall.

Wemust now check that there can be no bigger destabilizing walls.

This will also imply that IW(b) really destabilizes the sheaves de-

scribed in the previous paragraph. The largest possible radius of a

higher rank wall is µ4 , but when µ > 2, we have ε
µ
+ µ2 > µ4 , so all higher

rank walls are strictly smaller.

Now suppose that IZ(k) gives a bigger wall. Since this must be in

As for s = b + 2ε
µ
, we must have k ≥ b + 2ε

µ
. Let K be the kernel of the
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map IZ(k) → F . We have that K is a torsion-free rank 1 sheaf, and

k − µ ≤ c1(K) ≤ k. Since the mapping cone of IZ(k) → F must be in

As when s = b − µ, we have that c1(K) ≤ b − µ, and so k ≤ b. We see

that b = k unless ε = −µ
2 , in which case b can be k − 1. We note that

when ε = −µ2 , both O(b − 1) and IW(b) with ∣W∣ = µ
2 give the same

semicircle.

Increasing the number of points in the ideal sheaf decreases the

radius of the potential wall, so it suffices to show that we can’t have

IZ(b) with ∣Z∣ < ∣W∣. In the case of ε ≥ 0 (and hence also ε = −µ2 ), the

destabilizing object is a line bundle, so this case is complete. From

the inequalities above, we know that c1(K) ≤ b − µ. But if ε ≤ 0, then

(b − µ, 0) is on the left edge of the wall associated to IW(b), so for

a bigger wall, the mapping cone will not be in the heart along the

leftmost part of the wall.

�

The above proof also gives the following result.

Corollary 2.32. Suppose −µ2 < ε
µ
≤ 0. Then IW(b) with ∣W∣ = ∣ε∣ are the

only destabilizing objects along the largest wall. The Jordan-Hölder factors

of F for sheaves which become semistable along this wall are IW(b) and

O(b − µ)[1]. If 0 ≤ ε
µ
< µ

2 , then the only destabilizing objects along the

largest wall are of the form O(b), and the Jordan-Hölder subquotients are

O(b) and an extension of a zero-dimensional sheaf by O(b − c)[1]. If ε
µ
=

±µ2 , then the destabilizing objects can be can be of either form. In either case,
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the Jordan-Hölder subquotients are again of the same form as above, unless

all the points in the ideal sheaf or the zero-dimensional sheaf are collinear,

in which case the Jordan-Hölder quotients are O(b − 1), O(b − µ)[1], and

O`(b − µ2 ), where ` is the line containing all the points.

From the above, we see that the pushforward of a line bundle on

a plane curve becomes semistable if the difference with the closest

multiple of the hyperplane class is effective. In particular, the gen-

eral one-dimensional sheaf does not become semistable unless µ = 3,

because this is the only case when a general line bundle of degree 1

is effective. In particular, this line bundle defines a birational mor-

phism, so it cannot be a multiple of L0. In the case of c = 3, we see

that we get amorphismN(3, 1) → P2, which for a smooth plane curve

remembers the point defining the corresponding line bundle on that

curve.

2.7. Isomorphic Moduli Spaces. When are two moduli spaces of

one-dimensional sheaves N(µ,χ) and N(µ ′,χ ′) isomorphic? The di-

mension ofN(µ,χ) is µ2+1, so a necessary condition is that µ = µ ′. If

µ = µ ′ andχ ≡ ±χ ′ (mod µ), thenwehave seen thatN(µ,χ) ≅N(µ,χ ′)

in corollary 2.2.

This condition is always satisfied for µ = 1. For µ = 2, we have

N(µ, 0) ≅ N(µ, 1) ≅ P5, so this condition is not necessary. However,

we will show that this is the only case.
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Theorem 2.33. Let µ ≥ 3. Then N(µ,χ) ≅ N(µ,χ ′) only if χ ≡ ±χ ′

(mod µ).

Proof. Let a be as in the previous section, and a ′ the analogue for χ ′.

Then a = 1
2µ(µ − 3) + χ, so χ ≡ ±χ ′ (mod µ) if and only if a ≡ ±a ′

(mod µ). Write a = bµ + ε with −µ
2 ≤ ε ≤ µ

2 . We note that there is a

possible ambiguity if ε = µ
2 . Similarly, write a ′ = b ′µ + ε ′. It suffices

to show that we must have ∣ε∣ = ∣ε ′∣.

Let us suppose thatN(µ,χ) ≅N(µ,χ ′). This isomorphism induces

an isomorphism of Picard groups which must preserve the nef cone.

Since one edge of the nef cone is distinguished by the fact that it is

proportional to the canonical class, this isomorphism must preserve

the other edge of the nef cone too.

This implies that both the map swhich sends a sheaf to its support

and themap f given by the other edge of the nef cone are preserved by

isomorphisms, as is E, be the exceptional locus of f. Let us consider

the restriction of s to E. By the discussion in the above section, the

general fiber has dimension ∣ε∣, since we can identify the fiber over a

point in PH0(OP2(µ))) corresponding to a smooth plane curveCwith

the image of the ∣ε∣-th symmetric power ofC in its Jacobian under the

Abel-Jacobi map. This shows that ∣ε∣ must equal ∣ε ′∣ �

Note that a section of the Fitting morphism would give a (bira-

tional) isomorphism between moduli spaces of torsion sheaves. It is

possible to use this observation, together with ideas of Mestrano and
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Kouvidakis to recover the result that the only sections of the relative

Picard varieties of the universal plane curve of degree d ≥ 3 come

from sending C to OP2(m) for some m. In the sequel, we will use a

different approach to prove a version of this result in a much more

general setting.

3. Franchetta for Linear Systems

3.1. Relative Picard Varieties. For the basic facts about relative Pi-

card varieties we recall in this section, we refer the reader to [15] ex-

cept where otherwise noted. For an introduction to Brauer groups,

see for example [23].

Given a smooth projective morphism of varieties π ∶ D → S, we can

define the relative Picard variety, which is a countable disjoint union

of projective varieties Pic(D/S)η. The components of the relative

Picard variety form a group, which we will call the relative Neron-

Severi group, NS(D/S).

Proposition 3.1. Let π ∶ D → S be a smooth projective morphism. Let L ∈

Pic(D) restrict to the trivial line bundle on each fiber of π. Then L ≅ π∗L ′

for some L ′ ∈ Pic(S).

Proof. Consider L ′ = π∗L. By Grauert’s theorem (corollary (III, 12.9)

of [10]) , this is a line bundle, since there is one section of the trivial

bundle on an integral scheme. Now consider

π∗L ′ = π∗π∗L→ L
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This is a nonzero map of invertible sheaves, and it is an isomorphism

on fibers by Grauert’s theorem, so it is an isomorphism of sheaves.

�

The following is corollary 1.5 of [22] in the case where the fibers

are curves, but the proof is the same in general.

Proposition 3.2. Let π ∶ D → S be a smooth projective morphism. Let

τ ∈ NS(D/S). Let σ ∶ S → Picτ(D/S) be a rational section of the natural

map Picτ(D/S) → S. Then σ extends to a regular section.

Proposition 3.3. Let π ∶ D → S be a smooth projective morphism with S a

smooth base. Let τ ∈ NS(D/S). Let σ ∶ S → Picτ(D/S) be a section. There

is a natural numberm such that σ⊗m comes from a line bundle on D .

Proof. The obstruction to σ coming from a line bundle on D is an

element of the Brauer group of S, and taking the tensor product of

two sections adds these obstructions, but every element of the Brauer

group of S is torsion. �

Proposition 3.4. Let D → S a family of smooth projective varieties, with

S a smooth curve. Let τ ∈ NS(D/S). Let σ ∶ S → Picτ(D/S) be a section.

Then there is a line bundle L on D which gives rise to σ.

Proof. The obstruction to σ coming from a line bundle on D is an

element of the Brauer group of S, but Tsen’s theorem says that the

Brauer group of a curve over an algebraically closed field is trivial.

�
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Suppose we have a family of projective varieties π ∶ D/S over an

integral base such that the general fiber is smooth. By abuse of no-

tation, we will refer to the relative Picard variety (resp. Neron-Severi

group) of the restriction of π to the complement of the discriminant

locus in S as the relative Picard variety(resp. Neron-Severi group) of

π.

3.2. Counterexamples. In this section, we show that the hypothesis

on the dimension of the locus of non-integral divisors in theorem 1.1

is necessary.

The first counterexample is very simple. Take the complete linear

system of conics in P2. There is certainly a rational section of the rela-

tive Picard variety which assigns to a smooth conic C the line bundle

OC(1), but there is no line bundle on P2 which restricts to OC(1) on

each conic.

Conics are somewhat exceptional, having genus 0, so we will rest

easier once we have found a counterexample using curves of higher

genus. Indeed, we will show that there are counterexamples with

arbitrarily high genus.

Let S be a very general double cover of P2 branched over a sextic

curve. Then S is a K3 surface of Picard number 1, generated by the

pullback of OP2(1). Let C be the preimage of a conic in P2. Then C is

a hyperelliptic curve of genus 5, so ∣C∣ ≅ P5, since on a K3 surface, the

dimension of a linear system of curves is equal to the genus. Since
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the linear system of conics in P2 is five-dimensional, this means that

every curve in the linear system is a double cover of a conic.

There is a rational section of J2 → ∣C∣ which sends each curve to

the line bundle on that curve giving rise to the double cover of P1.

On the other hand, it is easy to check that there is no line bundle on

S which has intersection number 4 with C, so this rational section

cannot come from a line bundle on S.

By the Noether-Lefschetz theorem for weighted projective spaces,

a double cover of P2 branched along a very general curve of degree at

least 6 has Picard number 1. Taking the preimage of a conic in such a

surface will give a hyperelliptic curve. It is not difficult to show that

all curves in the same linear system will again be double covers of

conics. The same argument as above shows that the corresponding

rational section of J2 → ∣C∣ cannot come from a line bundle on the sur-

face. Increasing the degree of the branch curve increases the genus

of the curves in the linear system, so this provides us with counterex-

amples of arbitrarily high genus.

3.3. Proof of Franchetta for Linear Systems. Let X be a smooth pro-

jective variety, and ∣D∣ a linear system. The universal divisor D over

∣D∣maps toX, sowe can pull back any line bundle L onX to the univer-

sal divisor. By the universal property of the relative Picard scheme,

L gives rise to a rational section of the relative Picard variety of line

bundles, and its image is contained in some component Picτ(D/∣D∣)

with τ ∈ NS(D/∣D∣).
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We will let ∣D∣s be the complement of the discriminant locus, and

Ds its preimage in D . By Bertini’s theorem, if ∣D∣ is basepoint-free,

then ∣D∣s is nonempty. For the rest of this section, we will assume

that the hypotheses of theorem 1.1 hold.

We first note that the analogue of the weak Franchetta conjecture

for basepoint-free linear systems is very easy.

Lemma 3.5. The relative Picard group (i.e. the Picard group of the total

space modulo the Picard group of the base) of the universal divisor over a

basepoint-free linear system on a projective varietyX is generated byPic(X).

Proof. Since ∣D∣ is basepoint-free, the natural map D → X realizes D

as a projective bundle over X, so its Picard group is the direct sum

of Pic(X) and the tautological quotient line bundle O(1), but O(1) is

pulled back from ∣D∣. �

By proposition 3.3, this means that there is an integerm such that

σ⊗m comes from some line bundle on X, which we will call L.

Proposition 3.6. For every [D ′] ∈ ∣D∣s, we have σ([D ′]) = [LD ′ ∣D ′] for

some LD ′ ∈ Pic(S).

Proof. FixD ′ ∈ ∣D∣ and consider a general pencil containingD ′. Let X̃

be the total space of the pencil, and P1 the base. X̃ is the blowup of X

at the scheme-theoretic base locus of the pencil, which is smooth by

a double application of Bertini’s theorem, so

Pic(X̃) ≅ Pic(X) ⊕ZEi
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where the Ei are the connected components of the exceptional locus.

LetDp denote the fiber over a point p ∈ P1. The class ofDp in Pic(X̃)

will be D − E, where E = ∑Ei is the (reduced) exceptional divisor.

LetC ⊂ P1 be the complement of the discriminant locus (or the com-

plement of a point if the discriminant locus is empty). By proposition

3.2, σ is defined on all of C. LetDC be the preimage of C in X̃. All the

fibers of the map X̃→ P1 are integral by hypothesis, so

Pic(DC) ≅ Pic(X̃)/(D − E) ≅ Pic(X) ⊕ZEi/(D − E)

by the exact sequence of divisor class groups for an open subset ((II,

6.5) of [10]).

By proposition 3.4, σ comes from a line bundle on DC, L̃. We can

write

L̃ ≡ L ′ +∑aiEi (mod D − E)

with L ′ ∈ Pic(X) by the calculation of Pic(DC). We know that

mL ′ +m∑aiEi − L

restricts to the trivial line bundle on the fibers ofDC/C, so by propo-

sition 3.1, it is trivial in Pic(DC) (since the class of a fiber is trivial),

and hence amultiple ofD−E inPic(X̃) (sayn(D−E)). We can rewrite

this fact as the equation

mL ′ − L +nD +∑(mai −n)Ei = 0
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in Pic(X̃). Since all the Ei are linearly independent from each other

and from Pic(X) in Pic(X̃), this means that in particular all the ai are

equal, say to a. But

L ′ + a∑Ei = L ′ + aE

has the same restriction to each fiber ofDC/C as L ′+aD, which is the

pullback of a line bundle on X. �

Consider the set

T = {τ ′ ∈ NS(X) ∶ τ ′∣∣D∣ = τ}

For each τ ′ ∈ T , we have a restriction map

Picτ
′(X) × ∣D∣s → Picτ(Ds/∣D∣s)

Each of these maps is proper over ∣D∣s since

Picτ
′(X) × ∣D∣s → Picτ(Ds/∣D∣s)

is proper over ∣D∣s (since Picτ ′(X) is proper) and the map

Picτ(Ds/∣D∣s) → ∣D∣s

is proper. In particular, each of the restriction maps has a closed im-

age. By the above proposition, the image of σ is contained in the

union of these images. But T is a countable set by Severi’s theorem of

the base, so by pulling back by σ the images of the restriction maps
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for each τ ′ ∈ T , we see that ∣D∣s is a countable union of closed subva-

rieties, so one of them must be all of ∣D∣s, and hence there must be

some τ ′ such that the image of σ is contained in the image ofPicτ ′(X).

Pick L ∈ Picτ ′(X) with τ ′ chosen as above, and let σL be the corre-

sponding section of Picτ(Ds/∣D∣s). By considering σ − σL, we might

as well assume that τ and τ ′ are both 0.

Now consider the map

r ∶ Pic0(X) × ∣D∣s → Pic0(Ds/∣D∣s)

This is a morphism of abelian varieties over ∣D∣s which preserves 0,

so in particular, it’s a group homomorphism. Let K be the kernel of

r. Let

π ∶ Pic0(X) × ∣D∣s → ∣D∣s

be the projection onto the second factor. We will need the following

lemma.

Lemma 3.7. There is a nonempty open set U ⊂ ∣D∣s such that K ∩ π−1(x)

is constant for x ∈ U.

Proof. By generic flatness, there is an open set V ⊂ ∣D∣s such that

Kx = K ∩ π−1(x) ⊂ Pic0(X)

is a flat family of closed subvarieties. We will now restrict our atten-

tion to V .
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Consider the component of the Hilbert scheme of closed subvari-

eties of Pic0(X)which contains Kx. The tangent space to this point of

theHilbert scheme is given byH0(NKx/Pic0(X)), but sinceKx is a closed

subgroup, this normal bundle is a trivial bundle of rank equal to c,

the codimension of Kx in Pic0(X). Therefore, h0(NKx/Pic0(X)) = cn,

where n is the number of components of Kx.

We will now construct a flat family of embedded deformations of

Kx in Pic0(X) such that its base dominates this component of the

Hilbert scheme. Assume first that Kx is connected. We note that we

can identify the vector space NKx/Pic0(X),0 with T0(Pic0(X)/Kx). Let

K ′
x ⊂ Pic0(X) ×Pic0(X)

be such that

π−1
2 ({a}) = Kx + a

i.e. Kx translated by a. This is just the universal family of translates

of Kx. There is an induced map from Pic0(X), considered as the base

of this family, to the Hilbert scheme of subschemes of Pic0(X), and

the differential of this map at 0 is given by the natural map

T0 Pic0(X) → T0(Pic0(X)/Kx) ≅ H0(NKx/Pic0(X))

which is certainly surjective. Moreover, the kernel of this map con-

sists of directions inwhicha ∈ Kx, or equivalently, directions inwhich
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0 ∈ Kx+a. In particular, any point near toKx but not equal to it, cannot

be a subgroup, since it will not contain 0.

IfKx is not connected, then nearby points of theHilbert schemewill

correspond to independent translations of each component of Kx, so

again, none of the nontrivial deformations of Kx can be a subgroup.

�

Let K0 be Kx for some x in the U of the above lemma. We get a

birational factorization

Pic0(X) × ∣D∣s → Pic0(X)/K0 × ∣D∣s ⇢ Pic0(Ds/∣D∣s)

where the last arrow is a rational map which is birational onto its

image. We know that σ is contained in the closure of the image of

this last map, and σ is defined for all points of ∣D∣s by proposition 3.2,

so we see that σ factors birationally to give a map

∣D∣S ⇢ Pic0(X)/K0.

Since ∣D∣s is an open subvariety of projective space and Pic0(X)/K0 is

an abelian variety, this map must be constant. We can therefore find

an element L ′ of Pic0(X) such that σ and σL ′ agree on a dense open

subset of ∣D∣s, and hence agree everywhere.
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