Relative Length of Long Paths and Cycles in Graphs with Large Degree Sums

Hikoe Enomoto

DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY, HIYOSHI 3-14-1 KOHOKU-KU, YOKOHAMA KANAGAWA 223, JAPAN

Jan van den Heuvel*

FACULTY OF APPLIED MATHEMATICS UNIVERSITY OF TWENTE, P.O. BOX 217 7500 AE ENSCHEDE THE NETHERLANDS

Atsushi Kaneko

DEPARTMENT OF ELECTRONIC ENGINEERING KOGAKUIN UNIVERSITY, NISHI-SHINJUKU 1-24-2 SHINJUKU-KU, TOKYO 160, JAPAN

Akira Saito

DEPARTMENT OF MATHEMATICS NIHON UNIVERSITY, SAKURAJOSUI 3-25-40 SETAGAYA-KU, TOKYO 156, JAPAN

ABSTRACT

For a graph *G*, p(G) denotes the order of a longest path in *G* and c(G) the order of a longest cycle. We show that if *G* is a connected graph on $n \ge 3$ vertices such that $d(u) + d(v) + d(w) \ge n$ for all triples u, v, w of independent vertices, then *G* satisfies $c(G) \ge p(G) - 1$, or *G* is in one of six families of exceptional graphs. This generalizes results of Bondy and of Bauer, Morgana, Schmeichel, and Veldman. © 1995 John Wiley & Sons, Inc.

^{*}Present address: Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6.

Journal of Graph Theory, Vol. 20, No. 2, 213–225 (1995) © 1995 John Wiley & Sons, Inc. CCC 0364-9024/95/02013-13

1. INTRODUCTION

We use Bondy and Murty [4] for terminology and notation not defined here and consider only finite undirected graphs with no loops or multiple edges.

For a graph G and an integer k with $1 \le k \le \alpha(G)$, define $\sigma_k(G)$ by

$$\sigma_k(G) = \min\{\sum_{v \in S} d(v) \, | \, S \subseteq V(G) \text{ an independent set, } |S| = k\}.$$

For $k > \alpha(G)$ we set $\sigma_k(G) = k(|V(G)| - \alpha(G))$.

G is called 1-tough if $|S| \ge \omega(G - S)$ for every subset $S \subseteq V(G)$ with $\omega(G - S) > 1$, where $\omega(H)$ denotes the number of components of a graph H. We use "+" to denote the disjoint union of graphs and G[S] to denote the subgraph of G induced by a nonempty set $S \subseteq V(G)$.

A cycle C of G is called a *dominating cycle* if every edge of G has at least one of its end vertices on C, or, equivalently, if G - V(C) contains no edges. The order of a longest path and a longest cycle in G is denoted by p(G) and c(G), respectively.

There are now several results in graph theory that relate degree sums to the structure of long cycles. Two such results are the following.

Theorem 1 (Bondy [3]). Let G be a 2-connected graph on n vertices such that $\sigma_3(G) \ge n + 2$. Then every longest cycle in G is a dominating cycle.

Theorem 2 (Bauer, Morgana, Schmeichel, and Veldman [1]). Let G be a 1-tough graph on $n \ge 3$ vertices such that $\sigma_3(G) \ge n$. Then every longest cycle in G is a dominating cycle.

Our main results were inspired by the following easy observation.

Lemma 3. Let G be a connected graph that satisfies $c(G) \ge p(G) - 1$. Then every longest cycle in G is a dominating cycle.

Proof. Let G be a connected graph such that $c(G) \ge p(G) - 1$ and let C be a longest cycle in G. Suppose G - C contains a component H with $|V(H)| \ge 2$. Now it is easy to construct a path in G that contains all vertices on the cycle and at least 2 vertices of H, hence contradicting $p(G) \le c(G) + 1$.

Our first result is the next theorem, the proof of which will be given in Section 2.

Theorem 4. Let G be a connected graph on n vertices such that $\sigma_3(G) \ge n$. Then G contains a Hamilton path, or $c(G) \ge p(G) - 1$.

Theorem 4 improves the result in Enomoto, Kaneko, and Tuza [5] that if G is a connected graph on n vertices with $\sigma_3(G) \ge n$, then G contains a Hamilton path, or every longest cycle in G is a dominating cycle.

Theorem 4 is best possible in the sense that the condition $\sigma_3(G) \ge n$ cannot be relaxed, even under a strong connectivity constraint. To see this we construct two classes of graphs. For integers a, b, c with $a \ge b \ge c \ge 2$, define the graph $G_{a,b,c}$ as the join of K_1 and $K_a \cup K_b \cup K_c$. Then $G_{a,b,c}$ is connected and satisfies $\sigma_3(G_{a,b,c}) = a + b + c =$ $|V(G_{a,b,c})| - 1$. Furthermore, $c(G_{a,b,c}) = a + 1$ and $p(G_{a,b,c}) =$ a + b + 1, hence $c(G_{a,b,c}) = p(G_{a,b,c}) - b \le p(G_{a,b,c}) - 2$, but $G_{a,b,c}$ also contains no Hamilton path.

Next define, for an integer $t \ge 1$, the graph H_t as the join of K_t and $(t + 2)K_2$. Then H_t is t-connected and satisfies $\sigma_3(H_t) = 3t + 3 = |V(H_t)| - 1$. Furthermore, a longest path in H_t has order 3t + 2 and a longest cycle in H_t has order 3t. So H_t contains no Hamilton path and also $c(H_t) = p(H_t) - 2$.

Now we can state our main result, in which we characterize the connected graphs G on n vertices with $\sigma_3(G) \ge n$ that do not satisfy $c(G) \ge p(G) - 1$.

Theorem 5. Let G be a connected graph on $n \ge 3$ vertices such that $\sigma_3(G) \ge n$. Then G satisfies $c(G) \ge p(G) - 1$, or $G \in \mathcal{F}(n)$.

Here $\mathcal{F}(n)$ is the class of graphs defined below. Theorem 5 is an immediate consequence of the following result, the proof of which will be given in Section 2. Theorem 6 gives some more information on the relation between paths and cycles in the graphs satisfying the hypothesis of Theorem 5.

Theorem 6. Let G be a connected graph on $n \ge 3$ vertices such that $\sigma_3(G) \ge n$ and suppose $G \notin \mathcal{F}(n)$. Then for every path P in G, there exists a cycle C in G such that $|V(P) - V(C)| \le 1$.

 $\mathcal{F}(n)$ is a class of graphs on *n* vertices consisting of six subclasses:

$$\mathcal{F}(n) = \mathcal{F}_{1,1}(n) \cup \mathcal{F}_{1,2}(n) \cup \mathcal{F}_{2,1}(n) \cup \mathcal{F}_{2,2}(n) \cup \mathcal{F}_{2,3}(n) \cup \mathcal{F}_{2,4}(n).$$

The subclasses $\mathcal{F}_{1,2}(n), \ldots, \mathcal{F}_{2,4}(n)$ are defined as follows.

- $\mathcal{F}_{1,1}(n) : G \in \mathcal{F}_{1,1}(n)$ if |V(G)| = n, $\sigma_3(G) \ge n$, $V(G) = A_1 \cup A_2$ with $A_1 \cap A_2 = \emptyset$, $G[A_1]$ and $G[A_2]$ are hamiltonian or isomorphic to K_2 , and there exists exactly one edge between A_1 and A_2 .
- $\mathcal{F}_{1,2}(n)$: $G \in \mathcal{F}_{1,2}(n)$ if |V(G)| = n, $\sigma_3(G) \ge n$, and $V(G) = A_1 \cup A_2$ with $A_1 \cap A_2 = \{a\}$, $G[A_1]$ and $G[A_2]$ are both hamiltonian or both isomorphic to K_2 , and there exists no edge between $A_1 - \{a\}$ and $A_2 - \{a\}$.

- $\mathcal{F}_{2,1}(n)$: $G \in \mathcal{F}_{2,1}(n)$ if |V(G)| = n, $\sigma_3(G) \ge n$, and G is a 2-connected spanning subgraph of the join of K_2 and $K_a + K_b + K_c$, with $a, b, c \ge 2$ (n = a + b + c + 2).
- $\mathcal{F}_{2,2}(n)$: $G \in \mathcal{F}_{2,2}(n)$ if |V(G)| = n, $\sigma_3(G) \ge n$, and G is a 2-connected spanning subgraph of the join of K_3 and $aK_2 + bK_3$, with $a, b \ge 0$ and a + b = 4 $(n = 2a + 3b + 3, 11 \le n \le 15)$.
- $\mathcal{F}_{2,3}(n)$: $G \in \mathcal{F}_{2,3}(n)$ if |V(G)| = n, $\sigma_3(G) \ge n$, and G is a 2-connected spanning subgraph of the join of K_s and $sK_2 + K_3$, with $s \ge 4$ (n = 3s + 3).
- $\mathcal{F}_{2,4}(n)$: $G \in \mathcal{F}_{2,4}(n)$ if |V(G)| = n, $\sigma_3(G) \ge n$, and G is a 2-connected spanning subgraph of the join of K_s and $(s + 1)K_2$, with $s \ge 4$ (n = 3s + 2).

The graphs in $\mathcal{F}(n)$ are not 1-tough, the graphs in $\mathcal{F}_{1,1}(n) \cup \mathcal{F}_{1,2}(n)$ are not 2-connected, and the graphs in $\mathcal{F}_{2,1}(n) \cup \mathcal{F}_{2,2}(n) \cup \mathcal{F}_{2,3}(n) \cap \mathcal{F}_{2,4}(n)$ are 2-connected but satisfy $\sigma_3(G) \leq n + 1$. These observations show that Theorem 5 implies the following results, which are, by Lemma 3, generalizations of Theorems 1 and 2, respectively.

Corollary 7.

- (a) Let G be a 2-connected graph on n vertices such that $\sigma_3(G) \ge n + 2$. Then G satisfies $c(G) \ge p(G) - 1$.
- (b) Let G be a 1-tough graph on $n \ge 3$ vertices such that $\sigma_3(G) \ge n$. Then G satisfies $c(G) \ge p(G) - 1$.

Theorem 5 also implies the following improvement of Bauer, Morgana, Schmeichel, and Veldman [1, Lemma 8]. The proof of Corollary 8 will be given in Section 2 too.

Corollary 8. Let G be a connected graph on $n \ge 3$ vertices such that $\sigma_3(G) \ge n$. Suppose G contains a longest cycle C which is a dominating cycle. Let $A = \bigcup_{v \in V(G)-V(C)} N(v)$. Fix an orientation \vec{C} on C and let A^+ denote the set of vertices immediately following the vertices of A on \vec{C} . Then $(V(G) - V(C)) \cup A^+$ is an independent set of vertices.

In Van den Heuvel [6] it is shown that the conclusions from Corollary 8 can be extended in order to obtain a version of the Hopping Lemma from Woodall [7] that uses all vertices outside the cycle. Using these results, in [6] several new lower bounds for the lengths of longest cycles in graphs with large degree sums are proved.

2. PROOFS OF THE RESULTS

First we introduce some additional notation.

If P is a path in a graph G, then we denote by \vec{P} the path P with a given orientation, and by \vec{P} the same path with reverse orientation. If $u, v \in V(P)$ and u precedes v on \vec{P} , then $u\vec{P}v$ denotes the consecutive vertices of P from u to v. The same vertices in reverse order are given by $v\vec{P}u$. We will consider $u\vec{P}v$ and $v\vec{P}u$ both as paths and as vertex sets. If $u \in V(P)$, then u^+ denotes the successor of u on \vec{P} and u^- its predecessor. For $U \subseteq V(P)$, $U^+ = \{u^+ \mid u \in U\}$ and $U^- = \{u^- \mid u \in U\}$. Similar notation is used for cycles.

An extension of P is a path P' with $V(P) \subseteq V(P')$ and $V(P) \neq V(P')$. P is called *nonextendable* if there exists no extension of P.

First we prove Theorem 4. It is a consequence of the following result, in the same way as Theorem 5 follows from Theorem 6.

Theorem 9. Let G be a connected graph on $n \ge 3$ vertices such that $\sigma_3(G) \ge n$ and let P be a nonextendable path in G. Then P is a Hamilton path, or there exists a cycle C in G such that $|V(P) - V(C)| \le 1$.

Proof. Let G be a connected graph on $n \ge 3$ vertices with $\sigma_3(G) \ge n$. Let $P = x_1 \vec{P} x_p$ be a nonextendable path in G. Suppose P is not a Hamilton path and there exists no cycle C in G such that $|V(P) - V(C)| \le 1$. Since G is connected and $n \ge 3$, we may assume $|V(P)| \ge 3$. Let $y \in V(G) - V(P)$. Since P is nonextendable, we have $N(x_1) \subseteq V(P) - \{x_1\}$ and $N(x_p) \subseteq V(P) - \{x_p\}$. Set

$$A = N(x_1)^-$$
, $B = N(x_p)^+$, and $D = N(y)$.

If $x \in A \cap D$, then the path $yx\bar{P}x_1x^+\bar{P}x_p$ is an extension of P, contradicting the assumption. Therefore, we have $A \cap D = \emptyset$ and, similarly, $B \cap D = \emptyset$. If $x \in A \cap B$, then $C = x^-\bar{P}x_1x^+\bar{P}x_px^-$ is a cycle with |V(P) - V(C)| = 1, a contradiction. Thus we have $A \cap B = \emptyset$. Finally, if $x_1x_p \in E(G)$, then $C = x_1\bar{P}x_px_1$ is a cycle with V(P) = V(C), again a contradiction. So $\{x_1, x_p, y\}$ is an independent set and we have, since $y \notin A \cup B \cup D$,

$$n \le \sigma_3(G) \le d(x_1) + d(x_p) + d(y) = |A^+| + |B^-| + |D|$$

= |A| + |B| + |D| = |A \cup B \cup D| \le n - 1.

This contradiction completes the proof.

The remainder of this section is devoted to the proof of Theorem 6.

Proof of Theorem 6. Let G be a graph on $n \ge 3$ vertices with $\sigma_3(G) \ge n$ and suppose there exists a path $P = x_1 \vec{P} x_p$ in G such that there is no cycle C with $|V(P) - V(C)| \le 1$. If P' is an extension of P and C' is a cycle such that $|V(P') - V(C')| \le 1$, then also $|V(P) - V(C')| \le 1$. So, without

loss of generality, we may assume that P is nonextendable. By Theorem 9 this means that P is a Hamilton path, hence p(G) = n. Since G does not contain a cycle C with $|V(P) - V(C)| \le 1$, we conclude $c(G) \le n - 2$. For a Hamilton path $Q = x_1 \tilde{Q} x_n = x_1 x_2 \dots x_n$, define

$$r(Q) = \max\{i \mid x_i \in N(x_1)\}$$

and

$$s(Q) = \min\{j \mid x_i \in N(x_n)\}.$$

Now suppose $P = x_1 \vec{P} x_n = x_1 x_2 \dots x_n$ is chosen such that

- (1) r(P) is as large as possible, and
- (2) s(P) is as small as possible, subject to (1).

Let r = r(P) and s = s(P). Since $c(G) \le n - 2$ and $n \ge 3$, we have $x_1x_n \notin E(G).$

We consider four cases, depending on the relative values of r and s. In each case we obtain a contradiction, or we reach the conclusion $G \in \mathcal{F}(n)$.

Case 1. $r \le s - 2$. Let $y \in x_r^+ \vec{P} x_s^-$. By the definition of r and s we have $x_1y, x_ny \notin E(G)$, hence $\{x_1, x_n, y\}$ is an independent set. Furthermore, $N(x_1) \subset x_1^+ \vec{P} x_r$ and $N(x_n) \subset x_s \vec{P} x_n^-$. Define

$$A = N(x_1)^-$$
, $B = N(x_n)^+$, and $D = N(y)$.

Since $r \leq s - 2$, we have $A \cap B = \emptyset$. If $x \in A \cap D$, then the path $P' = x \tilde{P} x_1 x^+ \tilde{P} x_n$ is a Hamilton path with r(P') > r, contradicting the choice of P in (1), while if $x \in B \cap D$, then the path $x_1 \vec{P} x^- x_n \vec{P} x$ is a path that contradicts the choice of P in (2). So we have $A \cap D = B \cap D = \emptyset$. Since $\{x_1, x_n, y\}$ is an independent set and $y \notin A \cup B \cup D$, we reach a contradiction as in the proof of Theorem 9.

Case 2. r = s - 1. If $x_r x_s$ is a cut edge, then $G \in \mathcal{F}_{1,1}(n)$. So we can assume there exists an edge y_1y_2 with $y_1 \in x_1 \vec{P} x_r^-$ and $y_2 \in x_s \vec{P} x_n$, or $y_1 \in x_1 \vec{P} x_r$ and $y_2 \in x_s^+ \vec{P} x_n$. First suppose $y_1 \in x_1 \vec{P} x_r^-$ and $y_2 \in x_s \vec{P} x_n$. Then $x_1y_1^+ \notin E(G)$, otherwise the path $y_1\tilde{P}x_1y_1^+\tilde{P}x_n$ contradicts the choice of P in (1); and $x_n y_1^+ \notin E(G)$, by the definition of s. So $\{x_1, x_n, y_1^+\}$ is an independent set. Set

$$A = N(x_1), \quad D_1 = (N(y_1^+) \cap x_1 \bar{P} y_1)^+, \\ B = N(x_n), \quad D_2 = (N(y_1^+) \cap y_1^{++} \bar{P} x_n)^-.$$

Since $N(x_1) \subseteq x_1^{\dagger} \vec{P} x_r$, $N(x_n) \subseteq x_s \vec{P} x_n^{-}$, r = s - 1, and $y_1^{\dagger} \in x_1 \vec{P} x_r$, we have $A \cap B = \emptyset$ and $B \cap D_1 = \emptyset$. Furthermore, $D_1 \cap D_2 = \{y_1^{\dagger}\}$. If $x \in A \cap D_1$, then the path $y_1 \vec{P} x_1 \vec{P} x_1^{-} \vec{y}_1^{\dagger} \vec{P} x_n$ contradicts the choice of P in (1); and if $x \in A \cap D_2$, then $y_1 \vec{P} x_1 x \vec{P} y_1^{\dagger} x^{\dagger} \vec{P} x_n$ contradicts the choice of P in (1). This gives $A \cap D_1 = A \cap D_2 = \emptyset$. Finally, if $x \in$ $B \cap D_2$, then the path $P' = x_1 \vec{P} x x_n \vec{P} x^{\dagger}$ is a Hamilton path with r(P') = rand s(P') < s, contradicting the choice of P in (2). So $B \cap D_2 = \emptyset$. This shows $|A| + |B| + |D_1| + |D_2| = |A \cup B \cup D_1 \cup D_2| + 1$. Also, $x_1, x_n \notin A \cup B \cup D_1 \cup D_2$, hence it follows that

$$n \le \sigma_3(G) \le d(x_1) + d(x_n) + d(y_1^+) = |A| + |B| + |D_1^-| + |D_2^+|$$

= |A| + |B| + |D_1| + |D_2| = |A \cup B \cup D_1 \cup D_2| + 1
\le n - 2 + 1 = n - 1,

a contradiction.

If $y_1 \in x_1 \vec{P}x_r$ and $y_2 \in x_s^+ \vec{P}x_n$, then in a similar way a contradiction is reached by considering the vertices x_1 , x_n , and y_2^- .

Case 3. r = s. If $x_r(=x_s)$ is a cut vertex, then $G \in \mathcal{F}_{1,2}(n)$. So we can assume there exists an edge y_1y_2 with $y_1 \in x_1 \vec{P}x_r^-$ and $y_2 \in x_s^+ \vec{P}x_n$. Assume y_1, y_2 are chosen such that $|y_1\vec{P}y_2|$ is minimum. Then $x_1y_1^+ \notin E(G)$, otherwise the path $y_1\vec{P}x_1y_1^+\vec{P}x_n$ contradicts the choice of P in (1), and, similarly, $x_ny_2^- \notin E(G)$. This also shows that $y_1^+ \neq x_r$ and $y_2^- \neq x_r$. Furthermore, $x_ny_1^+ \notin E(G)$, by the definition of s. So $\{x_1, x_n, y_1^+\}$ is an independent set. Define

$$A = N(x_1), \quad D_1 = (N(y_1^+) \cap x_1 \vec{P} y_1)^+, \\ B = N(x_n), \quad D_2 = (N(y_1^+) \cap y_1^{++} \vec{P} x_n)^-.$$

Since $N(x_1) \subseteq x_1^+ \vec{P}x_r$, $N(x_n) \subseteq x_s \vec{P}x_n^-$, and r = s, we have $|A \cap B| = 1$. Similar to Case 2 we can prove $D_1 \cap D_2 = \{y_1^+\}$ and $A \cap D_1 = A \cap D_2 = B \cap D_1 = B \cap D_2 = \emptyset$. This shows $|A| + |B| + |D_1| + |D_2| = |A \cup B \cup D_1 \cup D_2| + 2$. Since $y_2^- \in x_r^+ \vec{P}x_n$ and $x_n y_2^- \notin E(G)$, we have $y_2^- \notin A \cup B \cup D_1$. Finally, we have $y_1^+ y_2 \notin E(G)$, by the choice of y_1 and y_2 , so $y_2^- \notin D_2$. Thus we have $x_1, x_n, y_2^- \notin A \cup B \cup D_1 \cup D_2$. If follows that

$$n \le \sigma_3(G) \le d(x_1) + d(x_n) + d(y_1^+) = |A| + |B| + |D_1^-| + |D_2^+|$$

= |A| + |B| + |D_1| + |D_2| = |A \cup B \cup D_1 \cup D_2| + 2
\le n - 3 + 2 = n - 1,

the final contradiction in this case.

Case 4. $r \ge s + 1$. In this case we know that G is 2-connected. Let H be the path $x_r^+ \vec{P} x_n$. By the maximality of r we have $N(x_1) \cap V(H) = \emptyset$.

Let Q be the path $x_s^+ \vec{P} x_r x_1 \vec{P} x_s x_n \vec{P} x_r^+$. Then the path Q satisfies $r(Q) \ge r$, hence r(Q) = r, and $r(Q) \ge s(Q) + 1$. And we also have $N(x_s^+) \cap V(H) = \emptyset$. Note that the path Q satisfies (1), but does not necessarily satisfy (2). In the remainder of the proof we often reach a contradiction by the construction of a path that contradicts the choice of P in (1). In these cases the path Q can play a similar role as the path P.

For $x \in V(H)$, let $A_x = N(x) \cap x_1 \tilde{P} x_r$, and set $A = \bigcup_{x \in V(H)} A_x$.

Claim 1. If $a \in A$, then $a^+ \notin N(x_1) \cup N(x_s^+)$.

Proof of Claim 1. Suppose $a \in A_x$ with $a^+ \in N(x_1) \cup N(x_s^+)$ for some $x \in V(H)$. First suppose $a \in x_1 \vec{P}x_s$. Assume $a = x_s$. Then $a^+ = x_s^+$ and $a^+ \notin N(x_s^+)$. If $x_s^+ = a^+ \in N(x_1)$, then $x_1 \vec{P}x_s x_n \vec{P}x_s^+ x_1$ is a Hamilton cycle, a contradiction. Hence we may assume $a \neq x_s$, thus $\{a, a^+\} \subseteq x_1 \vec{P}x_s$. If $a^+ \in N(x_1)$, then the path $a\vec{P}x_1a^+\vec{P}x_n$ contradicts the choice of P in (1). If $a^+ \in N(x_s^+)$, then the path $x_1\vec{P}ax\vec{P}x_nx_s\vec{P}a^+x_s^+\vec{P}x^-$ contradicts the choice of P in (1). We conclude $a^+ \notin N(x_1) \cup N(x_s^+)$.

If $a \in x_s^* P x_r$, then we reach the same conclusion by considering the path Q instead of P.

Now set

$$R_1 = (N(x_1) \cap x_1 \vec{P} x_s)^-, \qquad S_1 = N(x_s^+) \cap x_1 \vec{P} x_s, R_2 = N(x_1) \cap x_s^+ \vec{P} x_r, \qquad S_2 = (N(x_s^+) \cap x_s^+ \vec{P} x_r)^-,$$

and

$$R = R_1 \cup R_2, \qquad S = S_1 \cup S_2.$$

Claim 2. $d(x_1) = |R|$ and $d(x_s^+) = |S|$.

Proof of Claim 2. We have $N(x_1) = R_1^+ \cup R_2$ and $R_1^+ \cap R_2 = \emptyset$. So $d(x_1) = |R_1^+| + |R_2| = |R_1| + |R_2| = |R|$. The claim $d(x_1^+) = |S|$ is proved in the same way.

The claim $d(x_s^+) = |S|$ is proved in the same way.

Claim 3. $R \cap S = \emptyset$.

Proof of Claim 3. Assume $R \cap S \neq \emptyset$ and let $a \in R \cap S$. First suppose $a \in x_1 \vec{P} x_s$. By definition, $x_s \notin R$, so $\{a, a^+\} \subseteq x_1 \vec{P} x_s$. This means $a \in R_1 \cap S_1$, so $a^+ \in N(x_1)$ and $a \in N(x_s^+)$. Then $x_1 \vec{P} a x_s^+ \vec{P} x_n x_s \vec{P} a^+ x_1$ is a Hamilton cycle, a contradiction.

If $a \in x_s^+ \vec{P} x_r$, then the same conclusion is obtained by considering the path Q.

Claim 4. If $a \in A - \{x_r, x_s\}$, then $\{a, a^+\} \not\subseteq R \cup S$.

Proof of Claim 4. Let $a \in A - \{x_r, x_s\}$ and assume $\{a, a^+\} \subseteq R \cup S$. Again, we only consider the case $a \in x_1 \vec{P} x_s$; the case $a \in x_s^+ \vec{P} x_r$ is proved similarly by considering the path Q. Since $a \neq x_s$, $\{a, a^+\} \subseteq x_1 \vec{P} x_s$, hence $\{a, a^+\} \subseteq R_1 \cup S_1$. By Claim 1, $a \notin R_1$ and $a^+ \notin S_1$. Therefore, we have $a \in S_1$ and $a^+ \in R_1$. This means $a \in N(x_s^+)$ and $a^{++} \in N(x_1) \cap x_1 \vec{P} x_s$. We can construct the cycle $x_1 \vec{P} a x_s^+ \vec{P} x_n x_s \vec{P} a^{++} x_1$ of length n - 1, a contradiction.

Claim 5. $A_{x_n}^+ \cap A = \emptyset$, $A_{x_n}^- \cap A = \emptyset$, $A_{x_r^+}^+ \cap A = \emptyset$, and $A_{x_r^+}^- \cap A = \emptyset$.

Proof of Claim 5. First we assume $A_{x_n}^+ \cap A \neq \emptyset$, say $a^+ \in A_{x_n}^+ \cap A$. Then $a \in N(x_n) \cap x_1 \vec{P} x_r$ and $a^+ \in N(x) \cap x_1 \vec{P} x_r$ for some $x \in V(H)$. This implies $a^+ \neq x_1$. The path $x_1 \vec{P} a x_n \vec{P} x a^+ \vec{P} x^-$ contradicts the choice of P in (1).

Next, assume $A_{x_n}^- \cap A \neq \emptyset$, say $a^- \in A_{x_n}^- \cap A$. Then $a \in N(x_n) \cap x_1 \vec{P} x_r$ and $a^- \in N(x) \cap x_1 \vec{P} x_r$ for some $x \in V(H)$. This implies $a \neq x_1$, and the path $x_1 \vec{P} a^- x \vec{P} x_n a \vec{P} x^-$ contradicts the choice of P in (1) again.

We can prove $A_{x_{t}^{+}}^{+} \cap A = \emptyset$ and $A_{x_{t}^{+}}^{-} \cap A = \emptyset$ in the same way, by considering the path Q instead of P

We call a vertex $x \in V(H)$ good if $A_x^+ \cap A_x = \emptyset$. Then x_n is a good vertex since $A_{x_n}^+ \cap A_{x_n} \subseteq A_{x_n}^+ \cap A = \emptyset$.

Suppose $x \in V(H)$ is a good vertex. Let $A_x - \{x_r, x_s\} = \{a_1, \ldots, a_{k(x)}\}$. For $i = 1, \ldots, k(x)$, there exists a vertex $b_i \in \{a_i, a_i^+\}$ such that $b_i \notin R \cup S$, by Claim 4. Since $A_x^+ \cap A_x = \emptyset$, we have $b_i \neq b_j$ if $i \neq j$. Let

$$\ell(x) = |x_1 \vec{P} x_r - (R \cup S) - \{b_1, \dots, b_{k(x)}\}|.$$

Then $|R \cup S| = r - k(x) - \ell(x)$. Let $\delta(x) = |A_x \cap \{x_r, x_s\}|$. Then we have $0 \le \delta(x) \le 2$ and $|A_x| = k(x) + \delta(x)$. Therefore,

$$k(x) = |A_x| - \delta(x) = d_G(x) - d_H(x) - \delta(x).$$

Let $\alpha(x) = |V(H)| - 1 - d_H(x) = n - r - 1 - d_H(x)$ $(0 \le \alpha(x) \le n - r - 1)$. Then $k(x) = d_G(x) - n + r + 1 + \alpha(x) - \delta(x)$, and so

we have

$$|R \cup S| = r - \ell(x) - d_G(x) + n - r - 1 - \alpha(x) + \delta(x)$$

= $n - d_G(x) - \ell(x) - 1 - \alpha(x) + \delta(x)$.

On the other hand, $|R \cup S| = |R| + |S| = d(x_1) + d(x_s^+)$, by Claims 2 and 3, and this means

$$d(x_1) + d(x_s^+) + d(x) = n - \ell(x) - 1 - \alpha(x) + \delta(x).$$

Since $\sigma_3(G) \ge n$ and $\{x_1, x_s^+, x\}$ is an independent set, we have $n - \ell(x) - 1 - \alpha(x) + \delta(x) \ge n$, or $\delta(x) \ge 1 + \alpha(x) + \ell(x)$. Thus we have proved the following claim.

Claim 6. If $x \in V(H)$ is a good vertex, then $2 \ge \delta(x) \ge 1 + \alpha(x) + \ell(x)$. In particular, $2 \ge \delta(x_n) \ge 1 + \alpha(x_n) + \ell(x_n)$

Claim 7. $A \cap A^+ = \emptyset$.

Proof of Claim 7. Assume $A \cap A^+ \neq \emptyset$, say $a^+ \in A \cap A^+$. First suppose $a \in x_1 \vec{P} x_s$. Let $a \in A_x$ and $a^+ \in A_y$ for $x, y \in V(H)$. By Claim 5, $x, y \neq x_n$. We consider two cases.

Case 7.1. $y \in x \vec{P} x_n$. If $x^- \in N(x_n)$, then the existence of the path $x_1 \vec{P} a x \vec{P} y a^+ \vec{P} x^- x_n \vec{P} y^+$ contradicts the choice of P in (1). Therefore, we have $x^- \notin N(x_n)$. If $x \neq x_r^+$, then $\alpha(x_n) \ge 1$. This implies $\alpha(x_n) = 1$, $\ell(x_n) = 0$, and $\delta(x_n) = 2$, by Claim 6. If $x = x_r^+$, then $x_r = x^- \in N(x_n)$, hence we have $\delta(x_n) \le 1$.. This implies $\delta(x_n) = 1$ and $\alpha(x_n) = \ell(x_n) = 0$, again by Claim 6. Therefore, we have $\ell(x_n) = 0$ in either case. By Claim 5, $\{a, a^+\} \cap (A_{x_n}^+ \cup A_{x_n}) = \emptyset$. Since $\ell(x_n) = 0$, this implies $\{a, a^+\} \subseteq R \cup S$. By Claim 4, this means $a \notin A - \{x_r, x_s\}$, hence $a = x_s$. So $a^+ \in A_{x_n}^+ \cap A$, which contradicts Claim 5.

Case 7.2. $x \in y^+ \vec{P}x_n$. If $y^- \in N(x_n)$, then the path $x_1 \vec{P}ax$ $\vec{P}ya^+ \vec{P}y^- x_n \vec{P}x^+$ contradicts the choice of P in (1). Hence we have $y^- \notin N(x_n)$. This implies $\ell(x_n) = 0$, and by the same argument as in Case 7.1 we obtain a contradiction.

If $a \in x_s^+ \vec{P} x_r$, we consider the path Q to reach similar contradictions.

By Claim 7, all vertices in H are good.

Claim 8. $|A - A_{x_n} - \{x_r, x_s\}| \le 1$ and $|A - A_{x_r^+} - \{x_r, x_s\}| \le 1$.

Proof of Claim 8. Assume $|A - A_{x_n} - \{x_r, x_s\}| \ge 2$, say $a, b \in A - A_{x_n} - \{x_r, x_s\}, a \ne b$. By Claim 4 we have $\{a, a^+\} \nsubseteq R \cup S$ and $\{b, b^+\} \nsubseteq R \cup S$. Let $a' \in \{a, a^+\}$ and $b' \in \{b, b^+\}$ such that $\{a', b'\} \cap (R \cup S) = \emptyset$. By Claim 7 we have $a' \ne b'$. By Claim 5 and the assumption that $a \notin A_{x_n}$ we have $\{a, a^+\} \cap (A_{x_n}^+ \cup A_{x_n}) = \emptyset$, and hence $a' \notin A_{x_n}^+ \cup A_{x_n}$. This means $a' \in x_1 \mathring{P} x_r - (R \cup S) - (A_{x_n}^+ \cup A_{x_n})$. Similarly, we obtain $b' \in x_1 \mathring{P} x_r - (R \cup S) - (A_{x_n}^+ \cup A_{x_n})$ and hence $\ell(x_n) \ge 2$. By Claim 6 this gives $\delta(x_n) \ge 1 + \alpha(x_n) + \ell(x_n) \ge 3$, a contradiction.

By the same arguments we can show $|A - A_{x_r^+} - \{x_r, x_s\}| \le 1$.

Claim 9. For any distinct $a, b \in A$, there exists a Hamilton path $P_{ab} = y_1 \vec{P}_{ab} y_{n-r}$ in H with $a \in N(y_1)$ and $b \in N(y_{n-r})$.

Proof of Claim 9. We consider three cases, one of which is trivial.

Case 9.1. $\{a, b\} \cap \{x_r, x_s\} = \emptyset$. By Claim 8, $\{a, b\} \cap A_{x_n} \neq \emptyset$ and $\{a, b\} \cap A_{x_r^+} \neq \emptyset$. We may assume $a \in A_{x_n}$. If $b \in A_{x_r^+}$, then $x_n \tilde{P} x_r^+$ is a required Hamilton path in *H*. So we may assume $\{a, b\} \cap A_{x_r^+} = \{a\}$ and hence $\{a, b\} \cap A_{x_n} = \{a\}$.

Let $b \in A_x$ $(x \neq x_r^+, x_n)$. Since $b \in A - A_{x_n} - \{x_r, x_s\}$, it follows that $\{b, b^+\} \not\subseteq R \cup S$, by Claim 4, and $\{b, b^+\} \cap (A_{x_n}^+ \cup A_{x_n}) = \emptyset$. This implies $\ell(x_n) \ge 1$. Therefore, we have $\delta(x_n) = 2$, $\alpha(x_n) = 0$, and $\ell(x_n) = 1$ by Claim 6. Since $\alpha(x_n) = 0$, we have $x^- \in N(x_n)$. Then $x_r^+ \vec{P} x^- x_n \vec{P} x$ is a required Hamilton path in H.

Case 9.2. $|\{a, b\} \cap \{x_r, x_s\}| = 1$. We may assume $a = x_r$ and $b \neq x_s$. If $b \in A_{x_n}$, then $x_r^+ \vec{P} x_n$ is a required Hamilton path. Thus we may assume $b \notin A_{x_n}$. Then we have $\ell(x_n) \ge 1$ and hence $\alpha(x_n) = 0$ and $\delta(x_n) = 2$. Let $b \in A_x - \{x_r, x_s\}$. If $x \neq x_r^+$, then $x^- \in N(x_n)$ since $\alpha(x_n) = 0$, and $x_r^+ \vec{P} x^- x_n \vec{P} x$ is a required Hamilton path. If $x = x_r^+$, then we have $a = x_r \in N(x_n)$ since $\delta(x_n) = 2$, and $x_n \vec{P} x_r^+$ is a required path.

Case 9.3. $\{a, b\} = \{x_r, x_s\}$. This case is trivial.

This completes the proof of Claim 9.

By Claim 9 we can describe the structure of G as follows: G contains a cycle $C = x_1 \vec{P} x_r x_1$ and a path $H = x_r^+ \vec{P} x_n$ satisfying V(H) = G - V(C) and $|V(H)| \ge 2$, such that, if we set $A = N_G(H)$, then for any distinct $a, b \in A$, there exists a Hamilton path $P_{ab} = y_1 \vec{P}_{ab} y_{n-r}$ in H with $a \in N(y_1)$ and $b \in N(y_{n-r})$. This means that we can use the following result, established implicitly in the proof of Bauer et al. [1, Theorem 5] (already cited in Theorem 2).

Theorem 10. (Bauer et al. [1]). Let G be a 2-connected graph on n vertices with $\sigma_3(G) \ge n$. Suppose G contains a cycle C and a nontrivial component H (i.e., $|V(H)| \ge 2$) of G - V(C). Then one of the following holds.

- (a) there is a cycle C' in G such that $|V(C') \cap V(H)| \ge 1$, $|V(C') \cap V(C)| \ge |V(C)| 1$, and the vertices in $V(C') \cap V(H)$ form a path in C', or
- (b) there exists a nonempty subset $S \subseteq V(G)$ such that G S contains more than |S| nontrivial components.

If we apply Theorem 10 to our situation, then we observe that possibility (a) cannot occur. If there exists a cycle C' with $|V(C') \cap V(C)| \ge |V(C)| - 1$, $|V(C') \cap V(H)| \ge 1$, and the vertices in $V(C') \cap V(H)$ form a path in C', then, by Claim 9, we can form a cycle C_0 with $|V(C_0) \cap V(C)| \ge |V(C)| - 1$ and $V(H) \subseteq V(C_0)$, hence $|V(C_0)| \ge n - 1$, a contradiction. This proves the following claim.

Claim 10. There exists a nonempty subset $S \subseteq V(G)$ such that G - S contains more than |S| nontrivial components.

The 2-connected graphs G on n vertices with $\sigma_3(G) \ge n$ that satisfy the condition in Claim 10 are characterized in Bauer, Schmeichel, and Veldman [2]. Since the proof is rather short, we reproduce it here.

Let $S \subseteq V(G)$ be a nonempty cut set such that G - S contains at least |S| + 1 nontrivial components. Let s = |S|. Since G is 2-connected, we have $s \ge 2$. Let $H_1, H_2, \ldots, H_{s+1+j}$ $(j \ge 0)$ be the nontrivial components of G - S and let $n_i = |V(H_i)|$ $(i = 1, \ldots, s + 1 + j)$, where we assume $2 \le n_1 \le n_2 \le \cdots \le n_{s+1+j}$. Let t be the number of trivial components of G - S.

By counting the number of neighbors of vertices in the three smallest components of G - S we see

$$n \leq \sigma_3(G) \leq n_1 - 1 + n_2 - 1 + n_3 - 1 - \min\{3, t\} + 3s.$$

Since $n = n_1 + n_2 + ... + n_{s+1+i} + s + t$, we obtain

$$2(s + j - 2) \le n_4 + \dots + n_{s+1+j} \le 2s - t - \min\{3, t\} - 3, \tag{3}$$

implying that $2j \le 1 - t - \min\{3, t\}$. We conclude that j = t = 0. If s = 2, then we have $G \in \mathcal{F}_{2,1}(n)$.

If s = 3, then (3) implies $n_4 \leq 3$, hence $G \in \mathcal{F}_{2,2}(n)$.

Finally, if $s \ge 4$, then (3) implies $n_s = 2$ and $n_{s+1} \le 3$. If $n_{s+1} = 3$, then $G \in \mathcal{F}_{2,3}(n)$, and if $n_{s+1} = 2$, then $G \in \mathcal{F}_{2,4}(n)$.

This settles Case 4 and hence completes the proof of Theorem 6.

Proof of Corollary 8. Let G, C, and A be as defined in the statement of the corollary. Since none of the graphs in $\mathcal{F}(n)$ contains a dominating cycle, we have $c(G) \ge p(G) - 1$, by Theorem 5. Suppose $a, b \in (V(G) - V(C)) \cup A^+$ such that $ab \in E(G)$. Since C is a dominating cycle, we can assume that $a \in A^+$ and $b \in V(G) - V(C)$, or $a, b \in A^+$.

First suppose $a \in A^+$ and $b \in V(G) - V(C)$. By the definition of A, there exist an $x_a \in V(G) - V(C)$ such that $a^- \in N(x_a)$. If $b = x_a$, then $ba\ddot{C}a^-b$ is a cycle of length |V(C)| + 1 contradicting the choice of C as a longest cycle. And if $b \neq x_a$, then $ba\ddot{C}a^-x_a$ is a path of length |V(C)| + 2, contradicting $p(G) \leq c(G) + 1$.

Next suppose $a, b \in A^+$, hence $a^-, b^- \in A$. There exist $x_a, x_b \in V(G) - V(C)$ such that $a^- \in N(x_a)$ and $b^- \in N(x_b)$. Suppose a and b are neighbors on the cycle, say $b^+ = a$. Then $x_a a^- C b^- x_b$ is a cycle of length |V(C)| + 1 (if $x_a = x_b$), or a path of length |V(C)| + 2 (if $x_a \neq x_b$). In both cases we have a contradiction. So we can assume that a and b are not neighbors on the cycle. Then $x_a a^- C b a C b^- x_b$ is a cycle of length |V(C)| + 1 (if $x_a = x_b$), or a path of length |V(C)| + 2 (if $x_a \neq x_b$). So also in this last case, we always obtain a contradiction.

This shows that there exists no pair $a, b \in (V(G) - V(C)) \cup A^+$ such that $ab \in E(G)$, thus proving Corollary 8.

References

- D. Bauer, A. Morgana, E. F. Schmeichel, and H. J. Veldman, Long cycles in graphs with large degree sums. *Discrete Math.* 79 (1989/90) 59-70.
- [2] D. Bauer, E. Schmeichel, and H. J. Veldman, A note on dominating cycles in 2-connected graphs. Preprint (1992).
- [3] J. A. Bondy, Longest paths and cycles in graphs of high degree. Research Report CORR 80-16, Univ. of Waterloo, Waterloo, Ontario (1980).
- [4] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*. Macmillan, London and Elsevier, New York (1976).
- [5] H. Enomoto, A. Kaneko, and Zs. Tuza, P₃-factors and covering cycles in graphs of minimum degree n/3. A. Hajnal, L. Lovász, and V. T. Sós, editors, *Combinatorics, Eger (Hungary), 1987.* Colloquia Mathematica Societas János Bolyai 52. North-Holland, Amsterdam (1988) 213–219.
- [6] J. van den Heuvel, Long cycles in graphs with large degree sums and neighborhood unions. Preprint (1993), J. Graph Theory; to appear.
- [7] D. R. Woodall, The binding number of a graph and its Anderson number. J. Comb. Th. (B) 15 (1973) 225-255.