Relative Length of Long Paths and Cycles in Graphs with Large Degree Sums

Hikoe Enomoto
DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY, HIYOSHI 3-14-1 KOHOKU-KU, YOKOHAMA KANAGAWA 223, JAPAN
Jan van den Heuvel* FACULTY OF APPLIED MATHEMATICS UNIVERSITY OF TWENTE, P.O. BOX 217

7500 AE ENSCHEDE
THE NETHERLANDS
Atsushi Kaneko
DEPARTMENT OF ELECTRONIC ENGINEERING KOGAKUIN UNIVERSITY, NISHI-SHINJUKU 1-24-2 SHINJUKU-KU, TOKYO 160, JAPAN

Akira Saito
DEPARTMENT OF MATHEMATICS NIHON UNIVERSITY, SAKURAJOSUI 3-25-40 SETAGAYA-KU, TOKYO 156, JAPAN

Abstract

For a graph $G, p(G)$ denotes the order of a longest path in G and $c(G)$ the order of a longest cycle. We show that if G is a connected graph on $n \geq 3$ vertices such that $d(u)+d(v)+d(w) \geq n$ for all triples u, v, w of independent vertices, then G satisfies $c(G) \geq p(G)-1$, or G is in one of six families of exceptional graphs. This generalizes results of Bondy and of Bauer, Morgana, Schmeichel, and Veldman. © 1995 John Wiley \& Sons, Inc.

[^0]
1. INTRODUCTION

We use Bondy and Murty [4] for terminology and notation not defined here and consider only finite undirected graphs with no loops or multiple edges.

For a graph G and an integer k with $1 \leq k \leq \alpha(G)$, define $\sigma_{k}(G)$ by

$$
\sigma_{k}(G)=\min \left\{\sum_{v \in S} d(v) \mid S \subseteq V(G) \text { an independent set, }|S|=k\right\}
$$

For $k>\alpha(G)$ we set $\sigma_{k}(G)=k(|V(G)|-\alpha(G))$.
G is called 1 -tough if $|S| \geq \omega(G-S)$ for every subset $S \subseteq V(G)$ with $\omega(G-S)>1$, where $\omega(H)$ denotes the number of components of a graph H. We use "+" to denote the disjoint union of graphs and $G[S]$ to denote the subgraph of G induced by a nonempty set $S \subseteq V(G)$.

A cycle C of G is called a dominating cycle if every edge of G has at least one of its end vertices on C, or, equivalently, if $G-V(C)$ contains no edges. The order of a longest path and a longest cycle in G is denoted by $p(G)$ and $c(G)$, respectively.

There are now several results in graph theory that relate degree sums to the structure of long cycles. Two such results are the following.

Theorem 1 (Bondy [3]). Let G be a 2-connected graph on n vertices such that $\sigma_{3}(G) \geq n+2$. Then every longest cycle in G is a dominating cycle.

Theorem 2 (Bauer, Morgana, Schmeichel, and Veldman [1]). Let G be a 1 -tough graph on $n \geq 3$ vertices such that $\sigma_{3}(G) \geq n$. Then every longest cycle in G is a dominating cycle.

Our main results were inspired by the following easy observation.
Lemma 3. Let G be a connected graph that satisfies $c(G) \geq p(G)-1$. Then every longest cycle in G is a dominating cycle.

Proof. Let G be a connected graph such that $c(G) \geq p(G)-1$ and let C be a longest cycle in G. Suppose $G-C$ contains a component H with $|V(H)| \geq 2$. Now it is easy to construct a path in G that contains all vertices on the cycle and at least 2 vertices of H, hence contradicting $p(G) \leq c(G)+1$.

Our first result is the next theorem, the proof of which will be given in Section 2.

Theorem 4. Let G be a connected graph on n vertices such that $\sigma_{3}(G) \geq$ n. Then G contains a Hamilton path, or $c(G) \geq p(G)-1$.

Theorem 4 improves the result in Enomoto, Kaneko, and Tuza [5] that if G is a connected graph on n vertices with $\sigma_{3}(G) \geq n$, then G contains a Hamilton path, or every longest cycle in G is a dominating cycle.
Theorem 4 is best possible in the sense that the condition $\sigma_{3}(G) \geq n$ cannot be relaxed, even under a strong connectivity constraint. To see this we construct two classes of graphs. For integers a, b, c with $a \geq b \geq c \geq 2$, define the graph $G_{a, b, c}$ as the join of K_{1} and $K_{a} \cup K_{b} \cup K_{c}$. Then $G_{a, b, c}$ is connected and satisfies $\sigma_{3}\left(G_{a, b, c}\right)=a+b+c=$ $\left|V\left(G_{a, b, c}\right)\right|-1$. Furthermore, $\quad c\left(G_{a, b, c}\right)=a+1 \quad$ and $\quad p\left(G_{a, b, c}\right)=$ $a+b+1$, hence $c\left(G_{a, b, c}\right)=p\left(G_{a, b, c}\right)-b \leq p\left(G_{a, b, c}\right)-2$, but $G_{a, b, c}$ also contains no Hamilton path.
Next define, for an integer $t \geq 1$, the graph H_{t} as the join of K_{t} and $(t+2) K_{2}$. Then H_{t} is t-connected and satisfies $\sigma_{3}\left(H_{t}\right)=3 t+3=$ $\left|V\left(H_{t}\right)\right|-1$. Furthermore, a longest path in H_{t} has order $3 t+2$ and a longest cycle in H_{t} has order $3 t$. So H_{t} contains no Hamilton path and also $c\left(H_{t}\right)=p\left(H_{t}\right)-2$.
Now we can state our main result, in which we characterize the connected graphs G on n vertices with $\sigma_{3}(G) \geq n$ that do not satisfy $c(G) \geq p(G)-$ 1.

Theorem 5. Let G be a connected graph on $n \geq 3$ vertices such that $\sigma_{3}(G) \geq n$. Then G satisfies $c(G) \geq p(G)-1$, or $G \in \mathcal{F}(n)$.

Here $\mathcal{F}(n)$ is the class of graphs defined below. Theorem 5 is an immediate consequence of the following result, the proof of which will be given in Section 2. Theorem 6 gives some more information on the relation between paths and cycles in the graphs satisfying the hypothesis of Theorem 5.

Theorem 6. Let G be a connected graph on $n \geq 3$ vertices such that $\sigma_{3}(G) \geq n$ and suppose $G \notin \mathcal{F}(n)$. Then for every path P in G, there exists a cycle C in G such that $|V(P)-V(C)| \leq 1$.
$\mathcal{F}(n)$ is a class of graphs on n vertices consisting of six subclasses:

$$
\mathcal{F}(n)=\mathcal{F}_{1,1}(n) \cup \mathcal{F}_{1,2}(n) \cup \mathcal{F}_{2,1}(n) \cup \mathcal{F}_{2,2}(n) \cup \mathcal{F}_{2,3}(n) \cup \mathcal{F}_{2,4}(n)
$$

The subclasses $\mathcal{F}_{1,2}(n), \ldots, \mathcal{F}_{2,4}(n)$ are defined as follows.

$$
\begin{aligned}
\mathcal{F}_{1,1}(n) & : G \in \mathcal{F}_{1,1}(n) \text { if }|V(G)|=n, \sigma_{3}(G) \geq n, V(G)=A_{1} \cup A_{2} \\
& \text { with } A_{1} \cap A_{2}=\varnothing, G\left[A_{1}\right] \text { and } G\left[A_{2}\right] \text { are hamiltonian or } \\
& \text { isomorphic to } K_{2}, \text { and there exists exactly one edge between } \\
& A_{1} \text { and } A_{2} . \\
\mathcal{F}_{1,2}(n) & : G \in \mathcal{F}_{1,2}(n) \text { if }|V(G)|=n, \sigma_{3}(G) \geq n, \text { and } V(G)=A_{1} \cup A_{2} \\
& \text { with } A_{1} \cap A_{2}=\{a\}, G\left[A_{1}\right] \text { and } G\left[A_{2}\right] \text { are both hamiltonian or } \\
& \text { both isomorphic to } K_{2}, \text { and there exists no edge between } A_{1}-\{a\} \\
& \text { and } A_{2}-\{a\} .
\end{aligned}
$$

```
\(\mathcal{F}_{2,1}(n): G \in \mathcal{F}_{2,1}(n)\) if \(|V(G)|=n, \quad \sigma_{3}(G) \geq n, \quad\) and \(G\) is a
    2 -connected spanning subgraph of the join of \(K_{2}\) and
    \(K_{a}+K_{b}+K_{c}\), with \(a, b, c \geq 2(n=a+b+c+2)\).
\(\mathcal{F}_{2,2}(n): G \in \mathcal{F}_{2,2}(n)\) if \(|V(G)|=n, \quad \sigma_{3}(G) \geq n\), and \(G\) is a
    2-connected spanning subgraph of the join of \(K_{3}\) and \(a K_{2}+b K_{3}\),
    with \(a, b \geq 0\) and \(a+b=4(n=2 a+3 b+3,11 \leq n \leq\)
    15).
\(\mathcal{F}_{2,3}(n): G \in \mathcal{F}_{2,3}(n)\) if \(|V(G)|=n, \quad \sigma_{3}(G) \geq n, \quad\) and \(G\) is a
        2 -connected spanning subgraph of the join of \(K_{s}\) and \(s K_{2}+K_{3}\),
        with \(s \geq 4(n=3 s+3)\).
\(\mathcal{F}_{2,4}(n): G \in \mathcal{F}_{2,4}(n)\) if \(|V(G)|=n, \quad \sigma_{3}(G) \geq n, \quad\) and \(G\) is a
    2-connected spanning subgraph of the join of \(K_{s}\) and \((s+1) K_{2}\),
    with \(s \geq 4(n=3 s+2)\).
```

The graphs in $\mathcal{F}(n)$ are not 1-tough, the graphs in $\mathcal{F}_{1,1}(n) \cup \mathcal{F}_{1,2}(n)$ are not 2 -connected, and the graphs in $\mathcal{F}_{2,1}(n) \cup \mathcal{F}_{2,2}(n) \cup \mathcal{F}_{2,3}(n) \cap \mathcal{F}_{2,4}(n)$ are 2 -connected but satisfy $\sigma_{3}(G) \leq n+1$. These observations show that Theorem 5 implies the following results, which are, by Lemma 3, generalizations of Theorems 1 and 2 , respectively.

Corollary 7.

(a) Let G be a 2-connected graph on n vertices such that $\sigma_{3}(G) \geq n+2$. Then G satisfies $c(G) \geq p(G)-1$.
(b) Let G be a 1 -tough graph on $n \geq 3$ vertices such that $\sigma_{3}(G) \geq n$. Then G satisfies $c(G) \geq p(G)-1$.

Theorem 5 also implies the following improvement of Bauer, Morgana, Schmeichel, and Veldman [1, Lemma 8]. The proof of Corollary 8 will be given in Section 2 too.

Corollary 8. Let G be a connected graph on $n \geq 3$ vertices such that $\sigma_{3}(G) \geq n$. Suppose G contains a longest cycle C which is a dominating cycle. Let $A=\bigcup_{v \in V(G)-V(C)} N(v)$. Fix an orientation \vec{C} on C and let A^{+} denote the set of vertices immediately following the vertices of A on \vec{C}. Then $(V(G)-V(C)) \cup A^{+}$is an independent set of vertices.

In Van den Heuvel [6] it is shown that the conclusions from Corollary 8 can be extended in order to obtain a version of the Hopping Lemma from Woodall [7] that uses all vertices outside the cycle. Using these results, in [6] several new lower bounds for the lengths of longest cycles in graphs with large degree sums are proved.

2. PROOFS OF THE RESULTS

First we introduce some additional notation.

If P is a path in a graph G, then we denote by \vec{P} the path P with a given orientation, and by $\stackrel{P}{P}$ the same path with reverse orientation. If $u, v \in V(P)$ and u precedes v on \vec{P}, then $u \vec{P} v$ denotes the consecutive vertices of P from u to v. The same vertices in reverse order are given by $v \stackrel{\rightharpoonup}{P} u$. We will consider $u \vec{P} v$ and $v \bar{P} u$ both as paths and as vertex sets. If $u \in V(P)$, then u^{+}denotes the successor of u on \vec{P} and u^{-}its predecessor. For $U \subseteq V(P)$, $U^{+}=\left\{u^{+} \mid u \in U\right\}$ and $U^{-}=\left\{u^{-} \mid u \in U\right\}$. Similar notation is used for cycles.
An extension of P is a path P^{\prime} with $V(P) \subseteq V\left(P^{\prime}\right)$ and $V(P) \neq V\left(P^{\prime}\right) . P$ is called nonextendable if there exists no extension of P.
First we prove Theorem 4. It is a consequence of the following result, in the same way as Theorem 5 follows from Theorem 6.

Theorem 9. Let G be a connected graph on $n \geq 3$ vertices such that $\sigma_{3}(G) \geq n$ and let P be a nonextendable path in G. Then P is a Hamilton path, or there exists a cycle C in G such that $|V(P)-V(C)| \leq 1$.

Proof. Let G be a connected graph on $n \geq 3$ vertices with $\sigma_{3}(G) \geq n$. Let $P=x_{1} \vec{P} x_{p}$ be a nonextendable path in G. Suppose P is not a Hamilton path and there exists no cycle C in G such that $|V(P)-V(C)| \leq 1$. Since G is connected and $n \geq 3$, we may assume $|V(P)| \geq 3$. Let $y \in$ $V(G)-V(P)$. Since P is nonextendable, we have $N\left(x_{1}\right) \subseteq V(P)-\left\{x_{1}\right\}$ and $N\left(x_{p}\right) \subseteq V(P)-\left\{x_{p}\right\}$. Set

$$
A=N\left(x_{1}\right)^{-}, \quad B=N\left(x_{p}\right)^{+}, \quad \text { and } D=N(y)
$$

If $x \in A \cap D$, then the path $y x \bar{P} x_{1} x^{+} \vec{P} x_{p}$ is an extension of P, contradicting the assumption. Therefore, we have $A \cap D=\varnothing$ and, similarly, $B \cap D=\varnothing$. If $x \in A \cap B$, then $C=x^{-} \stackrel{\rightharpoonup}{P} x_{1} x^{+} \vec{P} x_{p} x^{-}$is a cycle with $|V(P)-V(C)|=1$, a contradiction. Thus we have $A \cap B=\varnothing$. Finally, if $x_{1} x_{p} \in E(G)$, then $C=x_{1} \vec{P} x_{p} x_{1}$ is a cycle with $V(P)=V(C)$, again a contradiction. So $\left\{x_{1}, x_{p}, y\right\}$ is an independent set and we have, since $y \notin A \cup B \cup D$,

$$
\begin{aligned}
n & \leq \sigma_{3}(G) \leq d\left(x_{1}\right)+d\left(x_{p}\right)+d(y)=\left|A^{+}\right|+\left|B^{-}\right|+|D| \\
& =|A|+|B|+|D|=|A \cup B \cup D| \leq n-1 .
\end{aligned}
$$

This contradiction completes the proof.
The remainder of this section is devoted to the proof of Theorem 6.
Proof of Theorem 6. Let G be a graph on $n \geq 3$ vertices with $\sigma_{3}(G) \geq$ n and suppose there exists a path $P=x_{1} \vec{P} x_{p}$ in G such that there is no cycle C with $|V(P)-V(C)| \leq 1$. If P^{\prime} is an extension of P and C^{\prime} is a cycle such that $\left|V\left(P^{\prime}\right)-V\left(C^{\prime}\right)\right| \leq 1$, then also $\left|V(P)-V\left(C^{\prime}\right)\right| \leq 1$. So, without
loss of generality, we may assume that P is nonextendable. By Theorem 9 this means that P is a Hamilton path, hence $p(G)=n$. Since G does not contain a cycle C with $|V(P)-V(C)| \leq 1$, we conclude $c(G) \leq n-2$.

For a Hamilton path $Q=x_{1} \vec{Q} x_{n}=x_{1} x_{2} \ldots x_{n}$, define

$$
r(Q)=\max \left\{i \mid x_{i} \in N\left(x_{1}\right)\right\}
$$

and

$$
s(Q)=\min \left\{j \mid x_{j} \in N\left(x_{n}\right)\right\} .
$$

Now suppose $P=x_{1} \vec{P} x_{n}=x_{1} x_{2} \ldots x_{n}$ is chosen such that
(1) $r(P)$ is as large as possible, and
(2) $s(P)$ is as small as possible, subject to (1).

Let $r=r(P)$ and $s=s(P)$. Since $c(G) \leq n-2$ and $n \geq 3$, we have $x_{1} x_{n} \notin E(G)$.

We consider four cases, depending on the relative values of r and s. In each case we obtain a contradiction, or we reach the conclusion $G \in \mathcal{F}(n)$.

Case 1. $r \leq s-2$. Let $y \in x_{r}^{+} \vec{P} x_{s}^{-}$. By the definition of r and s we have $x_{1} y, x_{n} y \notin E(G)$, hence $\left\{x_{1}, x_{n}, y\right\}$ is an independent set. Furthermore, $N\left(x_{1}\right) \subseteq x_{1}^{+} \vec{P} x_{r}$ and $N\left(x_{n}\right) \subseteq x_{s} \vec{P} x_{n}^{-}$. Define

$$
A=N\left(x_{1}\right)^{-}, \quad B=N\left(x_{n}\right)^{+}, \quad \text { and } D=N(y)
$$

Since $r \leq s-2$, we have $A \cap B=\varnothing$. If $x \in A \cap D$, then the path $P^{\prime}=x \bar{P} x_{1} x^{+} \vec{P} x_{n}$ is a Hamilton path with $r\left(P^{\prime}\right)>r$, contradicting the choice of P in (1), while if $x \in B \cap D$, then the path $x_{1} \vec{P} x^{-} x_{n} \stackrel{P}{P} x$ is a path that contradicts the choice of P in (2). So we have $A \cap D=B \cap D=\varnothing$. Since $\left\{x_{1}, x_{n}, y\right\}$ is an independent set and $y \notin A \cup B \cup D$, we reach a contradiction as in the proof of Theorem 9.

Case 2. $\quad r=s-1$. If $x_{r} x_{s}$ is a cut edge, then $G \in \mathcal{F}_{1,1}(n)$. So we can assume there exists an edge $y_{1} y_{2}$ with $y_{1} \in x_{1} \vec{P} x_{r}^{-}$and $y_{2} \in x_{s} \vec{P} x_{n}$, or $y_{1} \in x_{1} \vec{P} x_{r}$ and $y_{2} \in x_{s}^{+} \vec{P} x_{n}$. First suppose $y_{1} \in x_{1} \vec{P} x_{r}^{-}$and $y_{2} \in x_{s} \vec{P} x_{n}$. Then $x_{1} y_{1}^{+} \notin E(G)$, otherwise the path $y_{1} \stackrel{P}{P} x_{1} y_{1}^{+} \vec{P} x_{n}$ contradicts the choice of P in (1); and $x_{n} y_{1}^{+} \notin E(G)$, by the definition of s. So $\left\{x_{1}, x_{n}, y_{1}^{+}\right\}$is an independent set. Set

$$
\begin{array}{ll}
A=N\left(x_{1}\right), & D_{1}=\left(N\left(y_{1}^{+}\right) \cap x_{1} \vec{P} y_{1}\right)^{+} \\
B=N\left(x_{n}\right), & D_{2}=\left(N\left(y_{1}^{+}\right) \cap y_{1}^{++} \vec{P} x_{n}\right)^{-}
\end{array}
$$

Since $N\left(x_{1}\right) \subseteq x_{1}^{+} \vec{P} x_{r}, N\left(x_{n}\right) \subseteq x_{s} \vec{P} x_{n}^{-}, r=s-1$, and $y_{1}^{+} \in x_{1} \vec{P} x_{r}$, we have $A \cap B=\varnothing$ and $B \cap D_{1}=\varnothing$. Furthermore, $D_{1} \cap D_{2}=\left\{y_{1}^{+}\right\}$. If $x \in A \cap D_{1}$, then the path $y_{1} \stackrel{\rightharpoonup}{P} x x_{1} \vec{P} x^{-} y_{1}^{+} \vec{P} x_{n}$ contradicts the choice of P in (1); and if $x \in A \cap D_{2}$, then $y_{1} \stackrel{P}{P} x_{1} x \stackrel{P}{P} y_{1}^{+} x^{+} \vec{P} x_{n}$ contradicts the choice of P in (1). This gives $A \cap D_{1}=A \cap D_{2}=\varnothing$. Finally, if $x \in$ $B \cap D_{2}$, then the path $P^{\prime}=x_{1} \vec{P} x x_{n} P x^{+}$is a Hamilton path with $r\left(P^{\prime}\right)=r$ and $s\left(P^{\prime}\right)<s$, contradicting the choice of P in (2). So $B \cap D_{2}=\varnothing$. This shows $|A|+|B|+\left|D_{1}\right|+\left|D_{2}\right|=\left|A \cup B \cup D_{1} \cup D_{2}\right|+1$. Also, $x_{1}, x_{n} \notin A \cup B \cup D_{1} \cup D_{2}$, hence it follows that

$$
\begin{aligned}
n & \leq \sigma_{3}(G) \leq d\left(x_{1}\right)+d\left(x_{n}\right)+d\left(y_{1}^{+}\right)=|A|+|B|+\left|D_{1}^{-}\right|+\left|D_{2}^{+}\right| \\
& =|A|+|B|+\left|D_{1}\right|+\left|D_{2}\right|=\left|A \cup B \cup D_{1} \cup D_{2}\right|+1 \\
& \leq n-2+1=n-1,
\end{aligned}
$$

a contradiction.
If $y_{1} \in x_{1} \vec{P} x_{r}$ and $y_{2} \in x_{s}^{+} \vec{P} x_{n}$, then in a similar way a contradiction is reached by considering the vertices x_{1}, x_{n}, and y_{2}^{-}.

Case 3. $r=s$. If $x_{r}\left(=x_{s}\right)$ is a cut vertex, then $G \in \mathcal{F}_{1,2}(n)$. So we can assume there exists an edge $y_{1} y_{2}$ with $y_{1} \in x_{1} \vec{P} x_{r}^{-}$and $y_{2} \in x_{s}^{+} \vec{P} x_{n}$. Assume y_{1}, y_{2} are chosen such that $\left|y_{1} \vec{P} y_{2}\right|$ is minimum. Then $x_{1} y_{1}^{+} \notin$ $E(G)$, otherwise the path $y_{1} \stackrel{\rightharpoonup}{P} x_{1} y_{1}^{+} \vec{P} x_{n}$ contradicts the choice of P in (1), and, similarly, $x_{n} y_{2}^{-} \notin E(G)$. This also shows that $y_{1}^{+} \neq x_{r}$ and $y_{2}^{-} \neq x_{r}$. Furthermore, $x_{n} y_{1}^{+} \notin E(G)$, by the definition of s. So $\left\{x_{1}, x_{n}, y_{1}^{+}\right\}$is an independent set. Define

$$
\begin{array}{ll}
A=N\left(x_{1}\right), & D_{1}=\left(N\left(y_{1}^{+}\right) \cap x_{1} \vec{P} y_{1}\right)^{+}, \\
B=N\left(x_{n}\right), & D_{2}=\left(N\left(y_{1}^{+}\right) \cap y_{1}^{++} \vec{P} x_{n}\right)^{-} .
\end{array}
$$

Since $N\left(x_{1}\right) \subseteq x_{1}^{+} \vec{P} x_{r}, N\left(x_{n}\right) \subseteq x_{s} \vec{P} x_{n}^{-}$, and $r=s$, we have $|A \cap B|=1$. Similar to Case 2 we can prove $D_{1} \cap D_{2}=\left\{y_{1}^{+}\right\}$and $A \cap D_{1}=A \cap$ $D_{2}=B \cap D_{1}=B \cap D_{2}=\varnothing$. This shows $|A|+|B|+\left|D_{1}\right|+\left|D_{2}\right|=$ $\left|A \cup B \cup D_{1} \cup D_{2}\right|+2$. Since $y_{2}^{-} \in x_{r}^{+} \vec{P} x_{n}$ and $x_{n} y_{2}^{-} \notin E(G)$, we have $y_{2}^{\sim} \notin A \cup B \cup D_{1}$. Finally, we have $y_{1}^{+} y_{2} \notin E(G)$, by the choice of y_{1} and y_{2}, so $y_{2}^{-} \notin D_{2}$. Thus we have $x_{1}, x_{n}, y_{2}^{-} \notin A \cup B \cup D_{1} \cup D_{2}$. If follows that

$$
\begin{aligned}
n & \leq \sigma_{3}(G) \leq d\left(x_{1}\right)+d\left(x_{n}\right)+d\left(y_{1}^{+}\right)=|A|+|B|+\left|D_{1}^{-}\right|+\left|D_{2}^{+}\right| \\
& =|A|+|B|+\left|D_{1}\right|+\left|D_{2}\right|=\left|A \cup B \cup D_{1} \cup D_{2}\right|+2 \\
& \leq n-3+2=n-1,
\end{aligned}
$$

the final contradiction in this case.

Case 4. $\quad r \geq s+1$. In this case we know that G is 2 -connected. Let H be the path $x_{r}^{+} \vec{P} x_{n}$. By the maximality of r we have $N\left(x_{1}\right) \cap V(H)=\varnothing$.

Let Q be the path $x_{s}^{+} \vec{P} x_{r} x_{1} \vec{P} x_{s} x_{n}{ }^{\stackrel{P}{P}} x_{r}^{+}$. Then the path Q satisfies $r(Q) \geq$ r, hence $r(Q)=r$, and $r(Q) \geq s(Q)+1$. And we also have $N\left(x_{s}^{+}\right) \cap$ $V(H)=\varnothing$. Note that the path Q satisfies (1), but does not necessarily satisfy (2). In the remainder of the proof we often reach a contradiction by the construction of a path that contradicts the choice of P in (1). In these cases the path Q can play a similar role as the path P.
For $x \in V(H)$, let $A_{x}=N(x) \cap x_{1} \vec{P} x_{r}$, and set $A=\bigcup_{x \in V(H)} A_{x}$.
Claim 1. If $a \in A$, then $a^{+} \notin N\left(x_{1}\right) \cup N\left(x_{s}^{+}\right)$.
Proof of Claim 1. Suppose $a \in A_{x}$ with $a^{+} \in N\left(x_{1}\right) \cup N\left(x_{s}^{+}\right)$for some $x \in V(H)$. First suppose $a \in x_{i} \vec{P} x_{s}$. Assume $a=x_{s}$. Then $a^{+}=x_{s}^{+}$ and $a^{+} \notin N\left(x_{s}^{+}\right)$. If $x_{s}^{+}=a^{+} \in N\left(x_{1}\right)$, then $x_{1} \vec{P} x_{s} x_{n}{ }^{\circ}{ }_{P} x_{s}^{+} x_{1}$ is a Hamilton cycle, a contradiction. Hence we may assume $a \neq x_{s}$, thus $\left\{a, a^{+}\right\} \subseteq x_{1} \vec{P} x_{s}$. If $a^{+} \in N\left(x_{1}\right)$, then the path $a \tilde{P} x_{1} a^{+} \vec{P} x_{n}$ contradicts the choice of P in (1). If $a^{+} \in N\left(x_{s}^{+}\right)$, then the path $x_{1} \vec{P} a x \vec{P} x_{n} x_{s} \stackrel{ }{P} a^{+} x_{s}^{+} \vec{P} x^{-}$contradicts the choice of P in (1). We conclude $a^{+} \notin N\left(x_{1}\right) \cup N\left(x_{s}^{+}\right)$.
If $a \in x_{s}^{+} \vec{P} x_{r}$, then we reach the same conclusion by considering the path Q instead of P.

Now set

$$
\begin{aligned}
& R_{1}=\left(N\left(x_{1}\right) \cap x_{1} \vec{P} x_{s}\right)^{-}, \quad S_{1}=N\left(x_{s}^{+}\right) \cap x_{1} \vec{P} x_{s} \\
& R_{2}=N\left(x_{1}\right) \cap x_{s}^{+} \vec{P} x_{r}, \quad S_{2}=\left(N\left(x_{s}^{+}\right) \cap x_{s}^{+} \vec{P} x_{r}\right)^{-}
\end{aligned}
$$

and

$$
R=R_{1} \cup R_{2}, \quad S=S_{1} \cup S_{2}
$$

Claim 2. $d\left(x_{1}\right)=|R|$ and $d\left(x_{s}^{+}\right)=|S|$.
Proof of Claim 2. We have $N\left(x_{1}\right)=R_{1}^{+} \cup R_{2}$ and $R_{1}^{+} \cap R_{2}=\varnothing$. So $d\left(x_{1}\right)=\left|R_{1}^{+}\right|+\left|R_{2}\right|=\left|R_{1}\right|+\left|R_{2}\right|=|R|$.
The claim $d\left(x_{s}^{+}\right)=|S|$ is proved in the same way.
Claim 3. $R \cap S=\varnothing$.
Proof of Claim 3. Assume $R \cap S \neq \varnothing$ and let $a \in R \cap S$. First suppose $a \in x_{1} \vec{P} x_{s}$. By definition, $x_{s} \notin R$, so $\left\{a, a^{+}\right\} \subseteq x_{1} \vec{P} x_{s}$. This means $a \in R_{1} \cap S_{1}$, so $a^{+} \in N\left(x_{1}\right)$ and $a \in N\left(x_{s}^{+}\right)$. Then $x_{1} \vec{P} a x_{s}^{+} \vec{P} x_{n} x_{s} \stackrel{P}{P} a^{+} x_{1}$ is a Hamilton cycle, a contradiction.

If $a \in x_{s}^{+} \vec{P} x_{r}$, then the same conclusion is obtained by considering the path Q.

Claim 4. If $a \in A-\left\{x_{r}, x_{s}\right\}$, then $\left\{a, a^{+}\right\} \nsubseteq R \cup S$.
Proof of Claim 4. Let $a \in A-\left\{x_{r}, x_{s}\right\}$ and assume $\left\{a, a^{+}\right\} \subseteq R \cup S$. Again, we only consider the case $a \in x_{1} \vec{P} x_{s}$; the case $a \in x_{s}^{+} \vec{P} x_{r}$ is proved similarly by considering the path Q. Since $a \neq x_{s}$, $\left\{a, a^{+}\right\} \subseteq x_{1} \vec{P} x_{s}, \quad$ hence $\quad\left\{a, a^{+}\right\} \subseteq R_{1} \cup S_{1}$. By Claim 1, $a \notin R_{1}$ and $a^{+} \notin S_{1}$. Therefore, we have $a \in S_{1}$ and $a^{+} \in R_{1}$. This means $a \in N\left(x_{s}^{+}\right)$and $a^{++} \in N\left(x_{1}\right) \cap x_{1} \vec{P} x_{s}$. We can construct the cycle $x_{1} \vec{P} a x_{s}^{+} \vec{P} x_{n} x_{s} \stackrel{\stackrel{P}{P}}{ } a^{++} x_{1}$ of length $n-1$, a contradiction.

Claim 5. $\quad A_{x_{n}}^{+} \cap A=\varnothing, A_{x_{n}}^{-} \cap A=\varnothing, A_{x_{t}^{+}}^{+} \cap A=\varnothing$, and $A_{x_{r}^{+}}^{-} \cap A=$ \varnothing.

Proof of Claim 5. First we assume $A_{x_{n}}^{+} \cap A \neq \varnothing$, say $a^{+} \in A_{x_{n}}^{+} \cap A$. Then $a \in N\left(x_{n}\right) \cap x_{1} \vec{P} x_{r}$ and $a^{+} \in N(x) \cap x_{1} \vec{P} x_{r}$ for some $x \in V(H)$. This implies $a^{+} \neq x_{1}$. The path $x_{1} \vec{P} a x_{n} P$ $x a^{+} \vec{P} x^{-}$contradicts the choice of P in (1).

Next, assume $A_{x_{n}}^{-} \cap A \neq \varnothing$, say $a^{-} \in A_{x_{n}}^{-} \cap A$. Then $a \in N\left(x_{n}\right) \cap$ $x_{1} \vec{P} x_{r}$ and $a^{-} \in N(x) \cap x_{1} \vec{P} x_{r}$ for some $x \in V(H)$. This implies $a \neq x_{1}$, and the path $x_{1} \vec{P} a^{-} x \vec{P} x_{n} a \vec{P} x^{-}$contradicts the choice of P in (1) again.
We can prove $A_{x_{+}^{+}}^{+} \cap A=\varnothing$ and $A_{x_{+}^{+}}^{-} \cap A=\varnothing$ in the same way, by considering the path Q instead of P

We call a vertex $x \in V(H)$ good if $A_{x}^{+} \cap A_{x}=\varnothing$. Then x_{n} is a good vertex since $A_{x_{n}}^{+} \cap A_{x_{n}} \subseteq A_{x_{n}}^{+} \cap A=\varnothing$.

Suppose $x \in V(H)$ is a good vertex. Let $A_{x}-\left\{x_{r}, x_{s}\right\}=\left\{a_{1}, \ldots, a_{k(x)}\right\}$. For $i=1, \ldots, k(x)$, there exists a vertex $b_{i} \in\left\{a_{i}, a_{i}^{+}\right\}$such that $b_{i} \notin$ $R \cup S$, by Claim 4. Since $A_{x}^{+} \cap A_{x}=\varnothing$, we have $b_{i} \neq b_{j}$ if $i \neq j$. Let

$$
\ell(x)=\left|x_{1} \vec{P} x_{r}-(R \cup S)-\left\{b_{1}, \ldots, b_{k(x)}\right\}\right| .
$$

Then $|R \cup S|=r-k(x)-\ell(x)$. Let $\delta(x)=\left|A_{x} \cap\left\{x_{r}, x_{s}\right\}\right|$. Then we have $0 \leq \delta(x) \leq 2$ and $\left|A_{x}\right|=k(x)+\delta(x)$. Therefore,

$$
k(x)=\left|A_{x}\right|-\delta(x)=d_{G}(x)-d_{H}(x)-\delta(x) .
$$

Let $\quad \alpha(x)=|V(H)|-1-d_{H}(x)=n-r-1-d_{H}(x) \quad(0 \leq \alpha(x) \leq$ $n-r-1)$. Then $k(x)=d_{G}(x)-n+r+1+\alpha(x)-\delta(x)$, and so
we have

$$
\begin{aligned}
|R \cup S| & =r-\ell(x)-d_{G}(x)+n-r-1-\alpha(x)+\delta(x) \\
& =n-d_{G}(x)-\ell(x)-1-\alpha(x)+\delta(x)
\end{aligned}
$$

On the other hand, $|R \cup S|=|R|+|S|=d\left(x_{1}\right)+d\left(x_{s}^{+}\right)$, by Claims 2 and 3 , and this means

$$
d\left(x_{1}\right)+d\left(x_{s}^{+}\right)+d(x)=n-\ell(x)-1-\alpha(x)+\delta(x)
$$

Since $\sigma_{3}(G) \geq n$ and $\left\{x_{1}, x_{s}^{+}, x\right\}$ is an independent set, we have $n-\ell(x)-$ $1-\alpha(x)+\delta(x) \geq n$, or $\delta(x) \geq 1+\alpha(x)+\ell(x)$. Thus we have proved the following claim.

Claim 6. If $x \in V(H)$ is a good vertex, then $2 \geq \delta(x) \geq 1+\alpha(x)+$ $\ell(x)$. In particular, $2 \geq \delta\left(x_{n}\right) \geq 1+\alpha\left(x_{n}\right)+\ell\left(x_{n}\right)$

Claim 7. $A \cap A^{+}=\varnothing$.
Proof of Claim 7. Assume $A \cap A^{+} \neq \varnothing$, say $a^{+} \in A \cap A^{+}$. First suppose $a \in x_{1} \vec{P} x_{s}$. Let $a \in A_{x}$ and $a^{+} \in A_{y}$ for $x, y \in V(H)$. By Claim 5, $x, y \neq x_{n}$. We consider two cases.

Case 7.1. $y \in x \vec{P} x_{n}$. If $x^{-} \in N\left(x_{n}\right)$, then the existence of the path $x_{1} \vec{P} a x \vec{P} y a^{+} \vec{P} x^{-} x_{n} \stackrel{\overleftarrow{P}}{ } y^{+}$contradicts the choice of P in (1). Therefore, we have $x^{-} \notin N\left(x_{n}\right)$. If $x \neq x_{r}^{+}$, then $\alpha\left(x_{n}\right) \geq 1$. This implies $\alpha\left(x_{n}\right)=1$, $\ell\left(x_{n}\right)=0$, and $\delta\left(x_{n}\right)=2$, by Claim 6. If $x=x_{r}^{+}$, then $x_{r}=x^{-} \in N\left(x_{n}\right)$, hence we have $\delta\left(x_{n}\right) \leq 1$.. This implies $\delta\left(x_{n}\right)=1$ and $\alpha\left(x_{n}\right)=\ell\left(x_{n}\right)=0$, again by Claim 6. Therefore, we have $\ell\left(x_{n}\right)=0$ in either case. By Claim 5, $\left\{a, a^{+}\right\} \cap\left(A_{x_{n}}^{+} \cup A_{x_{n}}\right)=\varnothing$. Since $\ell\left(x_{n}\right)=0$, this implies $\left\{a, a^{+}\right\} \subseteq R \cup S$. By Claim 4, this means $a \notin A-\left\{x_{r}, x_{s}\right\}$, hence $a=x_{s}$. So $a^{+} \in A_{x_{n}}^{+} \cap A$, which contradicts Claim 5 .

Case 7.2. $\quad x \in y^{+} \vec{P} x_{n}$. If $y^{-} \in N\left(x_{n}\right)$, then the path $x_{1} \vec{P} a x$ $\stackrel{\rightharpoonup}{P} y a^{+} \vec{P} y^{-} x_{n} \stackrel{\rightharpoonup}{P} x^{+}$contradicts the choice of P in (1). Hence we have $y^{-} \notin N\left(x_{n}\right)$. This implies $\ell\left(x_{n}\right)=0$, and by the same argument as in Case 7.1 we obtain a contradiction.

If $a \in x_{s}^{+} \vec{P} x_{r}$, we consider the path Q to reach similar contradictions.
By Claim 7, all vertices in H are good.
Claim 8. $\left|A-A_{x_{n}}-\left\{x_{r}, x_{s}\right\}\right| \leq 1$ and $\left|A-A_{x_{r}^{+}}-\left\{x_{r}, x_{s}\right\}\right| \leq 1$.

Proof of Claim 8. Assume $\left|A-A_{x_{n}}-\left\{x_{r}, x_{s}\right\}\right| \geq 2$, say $a, b \in A-$ $A_{\lambda_{n}}-\left\{x_{r}, x_{s}\right\}, a \neq b$. By Claim 4 we have $\left\{a, a^{+}\right\} \nsubseteq R \cup S$ and $\left\{b, b^{+}\right\} \nsubseteq$ $R \cup S$. Let $a^{\prime} \in\left\{a, a^{+}\right\}$and $b^{\prime} \in\left\{b, b^{+}\right\}$such that $\left\{a^{\prime}, b^{\prime}\right\} \cap(R \cup S)=$ \varnothing. By Claim 7 we have $a^{\prime} \neq b^{\prime}$. By Claim 5 and the assumption that $a \notin A_{x_{n}}$ we have $\left\{a, a^{+}\right\} \cap\left(A_{x_{n}}^{+} \cup A_{x_{n}}\right)=\varnothing$, and hence $a^{\prime} \notin A_{x_{n}}^{+} \cup A_{x_{n}}$. This means $a^{\prime} \in x_{1} \vec{P} x_{r}-(R \cup S)-\left(A_{x_{n}}^{+} \cup A_{x_{n}}\right)$. Similarly, we obtain $b^{\prime} \in x_{1} \vec{P} x_{r}-(R \cup S)-\left(A_{x_{n}}^{+} \cup A_{x_{n}}\right)$ and hence $\ell\left(x_{n}\right) \geq 2$. By Claim 6 this gives $\delta\left(x_{n}\right) \geq 1+\alpha\left(x_{n}\right)+\ell\left(x_{n}\right) \geq 3$, a contradiction.

By the same arguments we can show $\left|A-A_{x_{r}^{+}}-\left\{x_{r}, x_{s}\right\}\right| \leq 1$.
Claim 9. For any distinct $a, b \in A$, there exists a Hamilton path $P_{a b}=$ $y_{1} \vec{P}_{a b} y_{n-r}$ in H with $a \in N\left(y_{1}\right)$ and $b \in N\left(y_{n-r}\right)$.

Proof of Claim 9. We consider three cases, one of which is trivial.
Case 9.1. $\{a, b\} \cap\left\{x_{r}, x_{s}\right\}=\varnothing$. By Claim 8, $\{a, b\} \cap A_{x_{n}} \neq \varnothing$ and $\{a, b\} \cap A_{x_{r}^{+}} \neq \varnothing$. We may assume $a \in A_{x_{n}}$. If $b \in A_{x_{r}^{+}}$, then $x_{n} \stackrel{P}{P} x_{r}^{+}$ is a required Hamilton path in H. So we may assume $\{a, b\} \cap A_{x_{+}^{+}}=\{a\}$ and hence $\{a, b\} \cap A_{x_{n}}=\{a\}$.
Let $b \in A_{x}\left(x \neq x_{r}^{+}, x_{n}\right)$. Since $b \in A-A_{x_{n}}-\left\{x_{r}, x_{s}\right\}$, it follows that $\left\{b, b^{+}\right\} \nsubseteq R \cup S$, by Claim 4, and $\left\{b, b^{+}\right\} \cap\left(A_{x_{n}}^{+} \cup A_{x_{n}}\right)=\varnothing$. This implies $\ell\left(x_{n}\right) \geq 1$. Therefore, we have $\delta\left(x_{n}\right)=2, \alpha\left(x_{n}\right)=0$, and $\ell\left(x_{n}\right)=1$ by Claim 6. Since $\alpha\left(x_{n}\right)=0$, we have $x^{-} \in N\left(x_{n}\right)$. Then $x_{r}^{+} \vec{P} x^{-} x_{n} \stackrel{\rightharpoonup}{P} x$ is a required Hamilton path in H.

Case 9.2. $\left|\{a, b\} \cap\left\{x_{r}, x_{s}\right\}\right|=1$. We may assume $a=x_{r}$ and $b \neq x_{s}$. If $b \in A_{x_{n}}$, then $x_{r}^{+} \vec{P} x_{n}$ is a required Hamilton path. Thus we may assume $b \notin A_{x_{n}}$. Then we have $\ell\left(x_{n}\right) \geq 1$ and hence $\alpha\left(x_{n}\right)=0$ and $\delta\left(x_{n}\right)=2$. Let $b \in A_{x}-\left\{x_{r}, x_{s}\right\}$. If $x \neq x_{r}^{+}$, then $x^{-} \in N\left(x_{n}\right)$ since $\alpha\left(x_{n}\right)=0$, and $x_{r}^{+} \vec{P} x^{-} x_{n} \stackrel{P}{P} x$ is a required Hamilton path. If $x=x_{r}^{+}$, then we have $a=x_{r} \in N\left(x_{n}\right)$ since $\delta\left(x_{n}\right)=2$, and $x_{n} \stackrel{\rightharpoonup}{P} x_{r}^{+}$is a required path.

Case 9.3. $\{a, b\}=\left\{x_{r}, x_{s}\right\}$. This case is trivial.
This completes the proof of Claim 9.
By Claim 9 we can describe the structure of G as follows: G contains a cycle $C=x_{1} \vec{P} x_{r} x_{1}$ and a path $H=x_{r}^{+} \vec{P} x_{n}$ satisfying $V(H)=G-V(C)$ and $|V(H)| \geq 2$, such that, if we set $A=N_{G}(H)$, then for any distinct $a, b \in A$, there exists a Hamilton path $P_{a b}=y_{1} \vec{P}_{a b} y_{n-r}$ in H with $a \in N\left(y_{1}\right)$ and $b \in N\left(y_{n-r}\right)$. This means that we can use the following result, established implicitly in the proof of Bauer et al. [1, Theorem 5] (already cited in Theorem 2).

Theorem 10. (Bauer et al. [1]). Let G be a 2 -connected graph on n vertices with $\sigma_{3}(G) \geq n$. Suppose G contains a cycle C and a nontrivial component H (i.e., $|V(H)| \geq 2$) of $G-V(C)$. Then one of the following holds.
(a) there is a cycle C^{\prime} in G such that $\left|V\left(C^{\prime}\right) \cap V(H)\right| \geq 1, \mid V\left(C^{\prime}\right) \cap$ $V(C)\left|\geq|V(C)|-1\right.$, and the vertices in $V\left(C^{\prime}\right) \cap V(H)$ form a path in C^{\prime}, or
(b) there exists a nonempty subset $S \subseteq V(G)$ such that $G-S$ contains more than $|S|$ nontrivial components.
If we apply Theorem 10 to our situation, then we observe that possibility (a) cannot occur. If there exists a cycle C^{\prime} with $\left|V\left(C^{\prime}\right) \cap V(C)\right| \geq|V(C)|-1$, $\left|V\left(C^{\prime}\right) \cap V(H)\right| \geq 1$, and the vertices in $V\left(C^{\prime}\right) \cap V(H)$ form a path in C^{\prime}, then, by Claim 9 , we can form a cycle C_{0} with $\left|V\left(C_{0}\right) \cap V(C)\right| \geq$ $|V(C)|-1$ and $V(H) \subseteq V\left(C_{0}\right)$, hence $\left|V\left(C_{0}\right)\right| \geq n-1$, a contradiction. This proves the following claim.

Claim 10. There exists a nonempty subset $S \subseteq V(G)$ such that $G-S$ contains more than $|S|$ nontrivial components.

The 2-connected graphs G on n vertices with $\sigma_{3}(G) \geq n$ that satisfy the condition in Claim 10 are characterized in Bauer, Schmeichel, and Veldman [2]. Since the proof is rather short, we reproduce it here.

Let $S \subseteq V(G)$ be a nonempty cut set such that $G-S$ contains at least $|S|+1$ nontrivial components. Let $s=|S|$. Since G is 2 -connected, we have $s \geq 2$. Let $H_{1}, H_{2}, \ldots, H_{s+1+j}(j \geq 0)$ be the nontrivial components of $G-S$ and let $n_{i}=\left|V\left(H_{i}\right)\right|(i=1, \ldots, s+1+j)$, where we assume $2 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{s+1+j}$. Let t be the number of trivial components of $G-S$.

By counting the number of neighbors of vertices in the three smallest components of $G-S$ we see

$$
n \leq \sigma_{3}(G) \leq n_{1}-1+n_{2}-1+n_{3}-1-\min \{3, t\}+3 s .
$$

Since $n=n_{1}+n_{2}+\ldots+n_{s+1+j}+s+t$, we obtain
$2(s+j-2) \leq n_{4}+\cdots+n_{s+1+j} \leq 2 s-t-\min \{3, t\}-3$,
implying that $2 j \leq 1-t-\min \{3, t\}$. We conclude that $j=t=0$.
If $s=2$, then we have $G \in \mathcal{F}_{2,1}(n)$.
If $s=3$, then (3) implies $n_{4} \leq 3$, hence $G \in \mathcal{F}_{2,2}(n)$.
Finally, if $s \geq 4$, then (3) implies $n_{s}=2$ and $n_{s+1} \leq 3$. If $n_{s+1}=3$, then $G \in \mathcal{F}_{2,3}(n)$, and if $n_{s+1}=2$, then $G \in \mathcal{F}_{2,4}(n)$.

This settles Case 4 and hence completes the proof of Theorem 6.

Proof of Corollary 8. Let G, C, and A be as defined in the statement of the corollary. Since none of the graphs in $\mathcal{F}(n)$ contains a dominating cycle, we have $c(G) \geq p(G)-1$, by Theorem 5 . Suppose $a, b \in(V(G)-$ $V(C)) \cup A^{+}$such that $a b \in E(G)$. Since C is a dominating cycle, we can assume that $a \in A^{+}$and $b \in V(G)-V(C)$, or $a, b \in A^{+}$.

First suppose $a \in A^{+}$and $b \in V(G)-V(C)$. By the definition of A, there exist an $x_{a} \in V(G)-V(C)$ such that $a^{-} \in N\left(x_{a}\right)$. If $b=x_{a}$, then $b a \vec{C} a^{-} b$ is a cycle of length $|V(C)|+1$ contradicting the choice of C as a longest cycle. And if $b \neq x_{a}$, then $b a \vec{C} a^{-} x_{a}$ is a path of length $|V(C)|+2$, contradicting $p(G) \leq c(G)+1$.

Next suppose $a, b \in A^{+}$, hence $a^{-}, b^{-} \in A$. There exist $x_{a}, x_{b} \in$ $V(G)-V(C)$ such that $a^{-} \in N\left(x_{a}\right)$ and $b^{-} \in N\left(x_{b}\right)$. Suppose a and b are neighbors on the cycle, say $b^{+}=a$. Then $x_{a} a^{-} \vec{C} b^{-} x_{b}$ is a cycle of length $|V(C)|+1$ (if $x_{a}=x_{b}$), or a path of length $|V(C)|+2$ (if $x_{a} \neq x_{b}$). In both cases we have a contradiction. So we can assume that a and b are not neighbors on the cycle. Then $x_{a} a^{-} \stackrel{\rightharpoonup}{C} b a \vec{C} b^{-} x_{b}$ is a cycle of length $|V(C)|+1$ (if $x_{a}=x_{b}$), or a path of length $|V(C)|+2$ (if $x_{a} \neq x_{b}$). So also in this last case, we always obtain a contradiction.

This shows that there exists no pair $a, b \in(V(G)-V(C)) \cup A^{+}$such that $a b \in E(G)$, thus proving Corollary 8 .

References

[1] D. Bauer, A. Morgana, E. F. Schmeichel, and H. J. Veldman, Long cycles in graphs with large degree sums. Discrete Math. 79 (1989/90) 59-70.
[2] D. Bauer, E. Schmeichel, and H. J. Veldman, A note on dominating cycles in 2-connected graphs. Preprint (1992).
[3] J. A. Bondy, Longest paths and cycles in graphs of high degree. Research Report CORR 80-16, Univ. of Waterloo, Waterloo, Ontario (1980).
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Macmillan, London and Elsevier, New York (1976).
[5] H. Enomoto, A. Kaneko, and Zs. Tuza, P_{3}-factors and covering cycles in graphs of minimum degree $n / 3$. A. Hajnal, L. Lovász, and V.T. Sós, editors, Combinatorics, Eger (Hungary), 1987. Colloquia Mathematica Societas János Bolyai 52. North-Holland, Amsterdam (1988) 213-219.
[6] J. van den Heuvel, Long cycles in graphs with large degree sums and neighborhood unions. Preprint (1993), J. Graph Theory; to appear.
[7] D. R. Woodall, The binding number of a graph and its Anderson number. J. Comb. Th. (B) 15 (1973) 225-255.

[^0]: *Present address: Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6.

 Journal of Graph Theory, Vol. 20, No. 2, 213-225 (1995)
 (c) 1995 John Wiley \& Sons, Inc.

