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ABSTRACT 

For a graph G, p(G) denotes the order of a longest path in G and c(G) 
the order of a longest cycle. We show that if G is a connected graph 
on n I 3 vertices such that d(u) + d ( v )  + d(w) 2 n for all triples 
u, u ,  w of independent vertices, then G satisfies c(G) I p(G) - 1, 
or G is in one of six families of exceptional graphs. This generalizes 
results of Bondy and of Bauer, Morgana, Schmeichel, and Veldman. 
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1. INTRODUCTION 

We use Bondy and Murty [4] for terminology and notation not defined here 
and consider only finite undirected graphs with no loops or multiple edges. 

For a graph G and an integer k with 1 5 k I a ( G ) ,  define ak(G) by 

a k ( G )  = min{ d ( v )  I S C_ V ( G )  an independent set, IS1 = k }  
U E S  

For k > a ( G )  we set ak(G) = k(IV(G)I - a(G) ) .  
G is called I-tough if IS1 2 w(G - S )  for every subset S C V ( G )  with 

w(G - S) > 1, where w ( H )  denotes the number of components of a graph 
H .  We use "+" to denote the disjoint union of graphs and G[S]  to denote 
the subgraph of G induced by a nonempty set S C_ V(G) .  

A cycle C of G is called a dominating cycle if every edge of G has at 
least one of its end vertices on C, or, equivalently, if G - V ( C )  contains 
no edges. The order of a longest path and a longest cycle in G is denoted 
by p ( G )  and c(G),  respectively. 

There are now several results in graph theory that relate degree sums to 
the structure of long cycles. Two such results are the following. 

Theorem 1 (Bondy [ 3 ] ) .  Let G be a 2-connected graph on n vertices such 
that a3(G)  L n + 2. Then every longest cycle in G is a dominating cycle. 

Theorem 2 (Bauer, Morgana, Schmeichel, and Veldman [l]). Let G be a 
1-tough graph on n 2 3 vertices such that a3(G) 2 n. Then every longest 
cycle in G is a dominating cycle. 

Our main results were inspired by the following easy observation. 

Lemma 3. Let G be a connected graph that satisfies c(G)  L p ( G )  - 1. 
Then every longest cycle in G is a dominating cycle. 

Proof. Let G be a connected graph such that c(G)  2 p ( G )  - 1 and 
let C be a longest cycle in G. Suppose G - C contains a component H 
with IV(H)I 2 2. Now it is easy to construct a path in G that contains 
all vertices on the cycle and at least 2 vertices of H ,  hence contradicting 
p ( G )  5 c(G) + 1 .  I 

Our first result is the next theorem, the proof of which will be given in 
Section 2. 

Theorem 4. Let G be a connected graph on n vertices such that q ( G )  2 

n. Then G contains a Hamilton path, or c(G)  L p ( G )  - 1. 
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Theorem 4 improves the result in Enomoto, Kaneko, and Tuza [5] that if 
G is a connected graph on n vertices with v3(G) 2 n, then G contains a 
Hamilton path, or every longest cycle in G is a dominating cycle. 

Theorem 4 is best possible in the sense that the condition q ( G )  2 n 
cannot be relaxed, even under a strong connectivity constraint. To see this we 
construct two classes of graphs. For integers a,b,c  with a 2 b 2 c 2 2, 
define the graph Ga,b,c as the join of K 1  and K, U Kb U K,. 
Then G,,b,, is connected and satisfies q(Ga,b , , )  = a + b + c = 

lV(Ga,b,c)l - 1. Furthermore, c(G,,b,,) = a + 1 and p(G,,b,,) = 
a + b + 1, but 
G,,b,, also contains no Hamilton path. 

Next define, for an integer t 2 1, the graph H ,  as the join of K,  
and ( t  + 2)K2. Then H,  is t-connected and satisfies a3(H,)  = 3t + 3 = 

IV(H,)I - 1. Furthermore, a longest path in H ,  has order 3t + 2 and a 
longest cycle in H ,  has order 3t. So H ,  contains no Hamilton path and also 

Now we can state our main result, in which we characterize the connected 
graphs G on n vertices with a3(G)  2 n that do not satisfy c(G)  2 p ( G )  - 
1. 

hence c(Ga,b,c) = P(Ga,b,c) - b 5 p(G,,b,,) - 2, 

c(HJ = P ( H J  - 2. 

Theorem 5. 
a 3 ( G )  2 n. Then G satisfies c(G)  2 p ( G )  - 1, or G E T ( n ) .  

Let G be a connected graph on n 2 3 vertices such that 

Here y ( n )  is the class of graphs defined below. Theorem 5 is an immediate 
consequence of the following result, the proof of which will be given in 
Section 2. Theorem 6 gives some more information on the relation between 
paths and cycles in the graphs satisfying the hypothesis of Theorem 5. 

Theorem 6. Let G be a connected graph on n 2 3 vertices such that 
a3(G) 2 n and suppose G @ y ( n ) .  Then for every path P in G, there 
exists a cycle C in G such that IV(P) - V(C)l 5 1. 

y ( n )  is a class of graphs on n vertices consisting of six subclasses: 

The subclasses .3’1,2(n), . . . , y2 ,4 (n )  are defined as follows. 

Y I , I ( ~ )  : G E Y I , I ( ~ )  if IV(G>l = n,  a3(G) 2 12, V ( G )  = A I  U A2 
with Al  f l  A2 = 0, GIAI]  and G[A2] are hamiltonian or 
isomorphic to K2, and there exists exactly one edge between 
Al  and A2. 

3 3 n )  : G E y1,2(n) if IV(G)l = n, a3(G) 2 n,  and V ( G )  = A1 U A2 
with A1 fl A2 = {a}, G[A1] and G[A2] are both hamiltonian or 
both isomorphic to K2, and there exists no edge between A1 - {a}  
and A2 - {a}.  
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Y2,1(n) : G E y ~ , ~ ( n )  if IV(G)l = n, a3(G)  2 n, and G is a 
2-connected spanning subgraph of the join of K2 and 
K,  + Kb + K,, with a , b , c  2 2 (n  = a + b + c + 2). 

F2,2(n) : G E Yz,z(~) if IV(G)l = n, q ( G )  2 n, and G is a 
2-connected spanning subgraph of the join of K3 and aK2 + bK3, 
with a , b  2 0 and a + b = 4 (n  = 2a + 3b + 3, 11 5 n 5 
15). 

Y2,3(n) : G E y2,3(n) if IV(G)l = n, q ( G )  2 n,  and G is a 
2-connected spanning subgraph of the join of K ,  and sK2 + K3, 
with s 2 4 ( n  = 3s + 3 ) .  

y2,4(n) : G E y2,4(n) if IV(G)l = n, a3(G) L n, and G is a 
2-connected spanning subgraph of the join of K, and (s + l )Kz ,  
with s 2 4 (n  = 3s + 2). 

The graphs in y ( n )  are not l-tough, the graphs in 71,1(n)  U T1,2(n) are 
not 2-connected, and the graphs in 7 2 ,  ~ ( n )  U F2,2(n) U 72,3(n) fl 572,4(n) 
are 2-connected but satisfy a3(G)  5 n + 1. These observations show 
that Theorem 5 implies the following results, which are, by Lemma 3, 
generalizations of Theorems 1 and 2, respectively. 

Corollary 7. 

(a) Let G be a 2-connected graph on n vertices such that a3(G)  2 n + 2. 

(b) Let G be a 1-tough graph on n 2 3 vertices such that a3(G) 2 n. 
Then G satisfies c(G)  2 p ( G )  - 1. 

Then G satisfies c(G)  2 p ( G )  - 1 .  

Theorem 5 also implies the following improvement of Bauer, Morgana, 
Schmeichel, and Veldman [l ,  Lemma 81. The proof of Corollary 8 will be 
given in Section 2 too. 

Corollary 8. Let G be a connected graph on n 2 3 vertices such that 
a3(G)  2 n. Suppose G contains a longest cycle C which is a dominating 
cycle. Let A = U V E V ( G ) - V ( C ) N ( ~ ) .  Fix an orientation c on C and let A +  
denote the set of vertices immediately following the vertices of A on I.. 
Then (V(G)  - V ( C ) )  U A +  is an independent set of vertices. 

In Van den Heuvel [6] it is shown that the conclusions from Corollary 8 
can be extended in order to obtain a version of the Hopping Lemma from 
Woodall [7] that uses all vertices outside the cycle. Using these results, in 
[6] several new lower bounds for the lengths of longest cycles in graphs 
with large degree sums are proved. 

2. PROOFS OF THE RESULTS 

First we introduce some additional notation. 
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If P is a path in a graph G, then we denote by f' the path P with a given 
orientation, and by i' the same path with reverse orientation. If u, u E V ( P )  
and u precedes u on 3, then uf'u denotes the consecutive vertices of P 
from u to v. The same vertices in reverse order are given by v h .  We will 
consider u f ' v  and uPu both as paths and as vertex sets. If u E V ( P ) ,  then 
u+ denotes the successor of u on f' and u- its predecessor. For U C V ( P ) ,  
U +  = {u+ I u E U }  and U -  = {u -  I u E U}.  Similar notation is used for 
cycles. 

An extension of P is a path P' with V ( P )  V(P ' )  and V ( P )  # V(P') .  P 
is called nonextendable if there exists no extension of P. 

First we prove Theorem 4. It is a consequence of the following result, in 
the same way as Theorem 5 follows from Theorem 6. 

Theorem 9. Let G be a connected graph on n 2 3 vertices such that 
a3(G) I n and let P be a nonextendable path in G. Then P is a Hamilton 
path, or there exists a cycle C in G such that IV(P) - V(C)l  5 1. 

Proof. Let G be a connected graph on n 2 3 vertices with a3(G) 2 n .  
Let P = x , f ' x ,  be a nonextendable path in G. Suppose P is not a Hamilton 
path and there exists no cycle C in G such that IV(P) - V(C)l 5 1. 
Since G is connected and n 2 3 ,  we may assume IV(P)I 2 3 .  Let y E 
V ( G )  - V ( P ) .  Since P is nonextendable, we have N ( x l )  V ( P )  - { X I }  
and N ( x , )  C_ V ( P )  - {x , } .  Set 

A = N ( x l ) - ,  B = N ( x , ) + ,  and D = N (  y ) .  

If x E A fl D, then the path y x P x l x f P x ,  is an extension of P, contra- 
dicting the assumption. Therefore, we have A n D = 0 and, similarly, 
B rl D = 0. If x E A n B, then C = x - ~ x , x ~ ~ x p x -  is a cycle with 
IV(P) - V(C)l  = 1 ,  a contradiction. Thus we have A f l  B = 0. Finally, 
if x l x p  E E(G) ,  then C = x l f ' x p x l  is a cycle with V ( P )  = V ( C ) ,  again 
a contradiction. So { x l , x p , y }  is an independent set and we have, since 
y E A U B U D ,  

IZ 5 a3(G) 5  XI) + d ( x , )  + d ( y )  = IA'I + IB-I + IDI 
= IAl + IBI + ID1 = IA U B U DI I n - 1.  

This contradiction completes the proof. 1 

The remainder of this section is devoted to the proof of Theorem 6. 

Proof of Theorem 6. Let G be a graph on n 2 3 vertices with a-,(G) 2 
n and suppose there exists a path P = xl f 'x ,  in G such that there is no cycle 
C with IV(P) - V(C)l I 1 .  If P' is an extension of P and C' is a cycle 
such that JV(P' )  - V(C')l 5 1, then also IV(P) - V(C')l 5 1 .  So, without 
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loss of generality, we may assume that P is nonextendable. By Theorem 9 
this means that P is a Hamilton path, hence p ( G )  = n. Since G does not 
contain a cycle C with IV(P) - V(C)l  5 1 ,  we conclude c (G)  I n - 2. 

For a Hamilton path Q = xlax, = ~1x2.. . x,, define 

r (Q)  = max{i Ixi E N(xl)} 

and 

s (Q)  = min{j Ixj E N(x,)}. 

Now suppose P = xI?x, = xlx2.. . x, is chosen such that 

(1) r ( P )  is as large as possible, and 
(2) s (P)  is as small as possible, subject to (1). 

Let r = r ( P )  and s = s (P) .  Since c(G) 5 n - 2 and n 2 3, we have 
xix, 4 E(G) .  

We consider four cases, depending on the relative values of r and s. In 
each case we obtain a contradiction, or we reach the conclusion G E y ( n ) .  

Case 1. r 5 s - 2. Let y E X:?X,-. By the definition of r and s we 
have xly, x,y_ 4 E(G),  hence {xl, x,, y} is an independent set. Furthermore, 
N(xl) C x:Px, and N ( x , )  C x,?x;. Define 

A = N(XI)-, B = N ( x n ) + ,  and D = N (  y). 

Since r 5 s - 2, we have A n B = 0. If x E A n D, then the path 
P’ = xPxlx+px, is a Hamilton path with r(P’) > r ,  contradicting the 
choice of P in (I), while if x E B n D, then the path xl?x-x,Px is a path 
that contradicts the choice of P in (2). So we have A n D = B f l  D = 0. 
Since {xl,x,,y} is an independent set and y 4 A U B U D, we reach a 
contradiction as in the proof of Theorem 9. 

Case 2. r = s - 1. If x,x, is a cut edge, then G E yl,l(n). So we can 
assume there exists an edge y1y2 with y1 E X I ~ X ;  and y2 E x,?x,, or 
y1 E xl?x, and y2 E x;?x,,. First suppose yl E x,?x; and y2 E x,Px,. 
Then xly: 4 E(G) ,  otherwise the path ylPxly:?x, contradicts the choice 
of P in (1); and xny: 4 E(G), by the definition of s. So {xl,x,,y:} is an 
independent set. Set 
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Since N ( x l )  C x:Px,, N ( x , )  C x,i)x;, r = s - 1, and y: E x l ~ x r ,  we 
have A fl B = 0 and B fl D 1  = 0. Furthermore, D1 fl D2 = { y l } .  If 
x E A n D 1 ,  then the path y l P x x l ? x - y : ~ x ,  contradicts the choice of 
P in (1); and if x E A fl D2, then y l k t l x p y : x + P x ,  contradicts the 
choice of P in (1). This gives A fl D 1  = A fl D2 = 0. Finally, if x E 
B n D2, then the path P' = xl?xx,hf is a Hamilton path with r ( P ' )  = r 
and s(P') < s, contradicting the choice of P in (2). So B n D2 = 0. 
This shows IAI + IBI + lDll + 1 0 2 1  = IA U B U D1 U D21 + 1.  Also, 
x l , x n  4 A U B U D 1  U D2, hence it follows that 

a contradiction. 

reached by considering the vertices XI, x,, and y 2 .  
I f  y~ E xlf'x, and y2 E xsf@xnr then in a similar way a contradiction is 

Case 3. r = s. If x , ( = x , )  is a cut vertex, then G E 7 1 , 2 ( n ) .  So we 
can assume there exists an edge y Iy2  with yl E x#x; and y2 E x ; P x , .  
Assume ylry2 are chosen such that Iyl?y21 is minimum. Then xly: 4 
E(G), otherwise the path ylPxly:?x, contradicts the choice of P in (l), 
and, similarly, x,yZ 4 E(G). This also shows that y: f x, and y; it x,. 
Furthermore, x n y l  4 E(G), by the definition of s. So {xl ,x , ,y:}  is an 
independent set. Define 

+ 

Since N(x1)  C x:Px, ,  N ( x , )  G x,Px; ,  and r = s, we have IA n BI = 1. 
Similar to Case 2 we can prove D 1  f l  D2 = { y : }  and A n D 1  = A fl 
D2 = B n D 1  = B f l  D2 = 0. This shows IAl + IBl + lDll + 1D21 = 
IA U B U D1 U D21 + 2. Since y 2  E xT?x,, and x,y< 4 E(G) ,  we have 
y2- 4 A U B U D1. Finally, we have y:y2 4 E(G) ,  by the choice of y 1  and 
y2. so y2- 4 D2. Thus we have xl,x, ,y;  4 A U B U D 1  U D2. If follows 
that 

the final contradiction in this case. 
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Case 4. r 2 s + I .  In this case we know that G is 2-connected. Let H be 
the path x : k q , .  By the maximality of r we have N ( x l )  f l  V(H) = 0. 

Let Q be the path x k P x r x l ? x , x , f ' x ~ .  Then the path Q satisfies r ( Q )  2 

Y, hence r ( Q )  = r ,  and r ( Q )  1 s (Q)  + 1. And we also have N(x: )  fl 
V(H) = 0. Note that the path Q satisfies (l), but does not necessarily 
satisfy (2). In the remainder of the proof we often reach a contradiction by 
the construction of a path that contradicts the choice of P in (1). In these 
cases the path Q can play a similar role as the path P. 

For x E V(H), let A, = N ( x )  fl x I ~ x r ,  and set A = U x E V ( H ) A x .  

Claim 1. If a E A, then a+ @ N ( x l )  U N(x,T) .  

Proof of Claim 1. Suppose a E A, with a+ E N ( x l )  U N(x: )  for 
some x E V(H). First suppose a E xI?x , .  Assume a = x,. Then a+ = x: 
and a+ @ N ( x f ) .  If x: = a+ E N ( x l ) ,  then x I ? x , x , ~ x , f x I  is a Hamilton 
cycle, a contradiction. Hence we may assume a # x,, thus {a ,  a'} C x l p x , .  
If a+ E N ( x l ) ,  then the path aPxla+Px,  contradicts the choice of P in (1). 
If a' E N ( x f ) ,  then the path x l ~ a x ? x , x , i - ) a + x , ~ ~ x -  contradicts the choice 
of P in (1). We conclude a+ @ N ( x l )  U N ( x , f ) .  

If a E xS+Pxr, then we reach the same conclusion by considering the 
path Q instead of P. I 

Now set 

and 

R = R1 U R2, S SI U S?; 

Claim 2. d ( x l )  = IRI and d(x:) = ISI. 

Proof of Claim 2. We have N ( x l )  = R: U R2 and R: fl R2 = 0. So 

The claim d(x:) = IS1 is proved in the same way. 
d(xi) = IR:I + IR2I = IRiI + IR2I = IRI. 

Claim 3. R n S = 0. 

Proof of Claim 3. Assume R n S # 0 and let a E R f l  S .  First 
suppose a E xl$x,. By definition, x, @ R,  so {a ,  a'} C_ xlf 'x , .  This means 
a E R1 f l  S1, so a+ E N(x1)  and a E N(x: ) .  Then xlPax:>x,x,Fa+xI 
is a Hamilton cycle, a contradiction. 
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If a E x:Pxr,  then the same conclusion is obtained by considering the 
path Q. I 

Claim 4. If a E A - { x r , x s } ,  then {a ,a+}  R U S .  

Proof of Claim 4. Let a E A - { x , , x s }  and assume {a ,a+}  C R U S. 
Again, we only consider the case a E xlf 'xs;  the case a E x:Px, 
is proved similarly by considering the path Q. Since a # xs, 
{a ,a f }  C x l ~ x S ,  hence {a ,a+}  R 1  U S1. By Claim 1, a 4 R 1  
and a+ 4 SI.  Therefore, we have a E S1 and a+ E R , .  This 
means a E N ( x : )  and a++ E N ( x l )  fl x I P x , .  We can construct 
the cycle x lPax~Pxnx ,Pa++x~  of length n - 1, a contradic- 
tion. 

Proof of Claim 5. First we assume A: f l  A # 0, say a+ E A: fl A. 
Then a E N(x , )  fl x l ~ x ,  and a+ E N ( x )  fl xI&, for some x E V ( H ) .  
This implies a+ # XI.  The path xlPax,PxafPx- contradicts the choice of 
P in (1). 

Next, assume A; f l  A # 0, say a -  E A; f l  A. Then a E N ( x , )  fl 
xIPx, and a-  E N ( x )  f l  xI&, for some x E V ( H ) .  This implies a # xl, 
and the path xli'a-x?x,a?x- contradicts the choice of P in (1) again. 

We can prove A> f l  A = 0 and A; n A = 0 in the same way, by 
considering the path Q instead of P I 

We call a vertex x E V ( H )  good if A: f l  A, = 0. Then xn is a good 
vertex since Ax', f l  AXn C Ax', fl A = 0. 

Suppose x E V ( H )  is a good vertex. Let A, - {x,,xs} = { a l , .  . . , akc,,}. 

For i = 1,. . . , k ( x ) ,  there exists a vertex bi E {ai, a:} such that bi 4 
R U S, by Claim 4. Since A: f l  A, = 0, we have bi # bj  if i # j .  Let 

Then IR U S1 = Y - k ( x )  - [(x). Let 6(x) = IA, n {x , ,x , } l .  Then we 
have 0 5 S(x) 5 2 and lAxl = k ( x )  + 6(x). Therefore, 

Let a ( x )  = IV(H)I - 1 - d H ( x )  = n - Y - 1 - d H ( x )  (0 5 a ( x )  5 
n - Y - 1). Then k ( x )  = &(x) - n + Y + 1 + a ( x )  - 6(x), and so 
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we have 

On the other hand, ( R  U Sl = IRI + IS\ = d(x1) + d(xT), by Claims 2 
and 3, and this means 

Since a3(G) 2 n and {xlr x : , x }  is an independent set, we have n - e ( x )  - 
1 - a ( x )  + 6(x )  2 n,  or S(x)  2 1 + a ( x )  + t(x). Thus we have proved 
the following claim. 

Claim 6. 
qx). In particular, 2 2 6(x,) 2 1 + a(xn )  + [ (xn)  

If x E V ( H )  is a good vertex, then 2 2 S(x) 2 1 + a ( x )  + 

Claim 7. A fl A +  = 0. 

Proof of Claim 7. Assume A n A+ # 0, say a+ E A n A'. First sup- 
pose a € x,?x,. Let a € A, and a+ € A, for x , y  € V ( H ) .  By Claim 5 ,  
x,y  # x,. We consider two cases. 

Case 7.1. y E xpx,,.  If x -  E N ( x , ) ,  then the existence of the path 
x l i ) u x ~ y a + f i x - x , ~ y +  contradicts the choice of P in (1). Therefore, we 
have x- 4. N ( x , ) .  If x # x : ,  then a ( x , )  2 1. This implies a ( x , )  = 1, 
e(x, )  = 0, and 6(x , )  = 2, by Claim 6. If x = x:, then x ,  = x -  E N ( x , ) ,  
hence we have S(x,) 5 1.. This implies S(x , )  = 1 and a(&) = e(x , )  = 0, 
again by Claim 6. Therefore, we have 4?(x,) = 0 in either case. By 
Claim 5 ,  {a ,a+}  n (A; U A x n )  = 0. Since 4 ( x n )  = 0, this implies 
{a ,a+}  C_ R U S .  By Claim 4, this means a 4. A - { x , , ~ , } ,  hence a = x,. 
So a+ E Ax', n A, which contradicts Claim 5. 

Case 7.2. x E y'fix,. If y -  E N ( x , ) ,  then the path x~?ux 
Pya+?y-x,Px+ contradicts the choice of P in (1). Hence we have 
y -  @ N(x , ) .  This implies e(x,) = 0, and by the same argument as in 
Case 7.1 we obtain a contradiction. 

If a E x:Fxr, we consider the path Q to reach similar contradictions. a 
By Claim 7, all vertices in H are good. 

Claim 8. IA - Ax" - {xr ,xs} l  5 1 and IA - A,: - {xr ,xs} l  I 1. 
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Proof of Claim 8. Assume JA - AXn - {x,,x,}l 2 2, say a ,  b E A - 
A,* - { x r , x S } ,  a # b. By Claim 4 we have {a ,a+}  
R U S. Let a' E {a ,a+}  and b' E {b,b+} such that {a',b'} fl ( R  U S) = 

0. By Claim 7 we have u' # b'. By Claim 5 and the assumption that 
a 4 A," we have {a ,a+}  f l  (A: U A,") = 0, and hence a' 4 Ax', U A,". 
This means a' E x I P x ,  - (R U S )  - (A: U A,"). Similarly, we obtain 
b' E x I k r  - (R U S) - (A: U A,") and hence ( (x , )  2 2. By Claim 6 
this gives S(x , )  2 1 + a(x,) + ( ( x , )  2 3, a contradiction. 

R U S and{b,b+} 

By the same arguments we can show IA - A,: - {xr ,x ,} l  5 1. I 

Claim 9. 
ylPobyn-, in H with a E N ( y l )  and b E N(y,-,).  

For any distinct a ,  b E A, there exists a Hamilton path Pub = 

Proof of Claim 9. We consider three cases, one of which is trivial. 

Case 9.1. {a ,b}  fl { x , , x , }  = 0. By Claim 8, {a ,b}  fl Ax" # 0 and 
{a ,b}  fl A,: # 0. We may assume a E A,". If b E A,;, then x,Px: 
is a required Hamilton path in H .  So we may assume {a ,b}  fl A,: = {a}  
and hence {a ,b}  fl A," = {a}. 

Let b E A,  ( x  # x:,x,).  Since b E A - Ax" - ( x r , x S } ,  it follows that 
{b ,b+}  R U S ,  by Claim 4, and {b,b+} fl (A: U A,") = 0. This im- 
plies q x , )  2 1. Therefore, we have S(x , )  = 2, a(x,) = 0, and ( ( x , )  = 1 
by Claim 6. Since a(x,) = 0, we have x -  E N ( x , ) .  Then x:?x-x,Px is 
a required Hamilton path in H. 

Case 9.2. I{a,b} fl {x,,x,}l = 1. We may assume a = x ,  and b # x,. If 
b E Axn,  then x : 6 x ,  is a required Hamilton path. Thus we may assume 
b 6! A,,,. Then we have ( ( x , )  2 1 and hence a(x,) = 0 and 6(x,) = 2. 
Let b E A, - {xr,xs}. If x # x:, then x- E N ( x , )  since (.u(x,) = 0, 
and x:Px-x ,Px is a required Hamilton path. If x = xrf, then we have 
a = x ,  E N ( x , )  since 6(x,) = 2, and x,,Px: is a required path. 

Case 9.3. {a ,  b}  = {x, ,  x,} .  This case is trivial. 

This completes the proof of Claim 9. I 

By Claim 9 we can describe the structure of G as follows: G contains a cycle 
C = xlPx,xI and a path H = x:i)x, satisfying V(H) = G - V(C) and 
IV(H)I 2 2, such that, if we set A = N G ( H ) ,  then for any distinct a ,  b E A, 
there exists a Hamilton path Pat, = yl?abyn-r in H with a E N ( y 1 )  and 
b E N (  y,-,). This means that we can use the following result, established 
implicitly in the proof of Bauer et al. [ l ,  Theorem 51 (already cited in 
Theorem 2). 
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Theorem 10. (Bauer et al. [ 11). Let G be a 2-connected graph on n vertices 
with a g ( G )  L n. Suppose G contains a cycle C and a nontrivial component 
H (ie., IV(H)I 2 2) of G - V(C) .  Then one of the following holds. 

(a) there is a cycle C’ in G such that IV(C’) fl V(H)I  2 1, IV(C’) fl 
V(C)l 2 IV(C)l - 1, and the vertices in V(C’) f l  V ( H )  form a path 
in C‘, or 

(b) there exists a nonempty subset S 6 V ( G )  such that G - S contains 
more than IS1 nontrivial components. 

If we apply Theorem 10 to our situation, then we observe that possibility (a) 
cannot occur. If there exists a cycle C’ with IV(C’) fl V(C)l 2 IV(C)l - 1, 
IV(C’) n V(H)I 2 1, and the vertices in V(C’) fl V ( H )  form a path in 
C’, then, by Claim 9, we can form a cycle CO with (V(C0) fl V(C)l 2 
IV(C)l - 1 and V ( H )  C V(CO), hence IV(Co)l 2 n - 1 ,  a contradiction. 
This proves the following claim. 

Claim 10. 
contains more than IS1 nontrivial components. 

There exists a nonempty subset S C V ( G )  such that G - S 

The 2-connected graphs G on n vertices with a3(G) 2 n that satisfy the 
condition in Claim 10 are characterized in Bauer, Schmeichel, and Veldman 
[2]. Since the proof is rather short, we reproduce it here. 

Let S C_ V ( G )  be a nonempty cut set such that G - S contains at least 
IS1 + 1 nontrivial components. Let s = IS!. Since G is 2-connected, we 
have s 2 2. Let H I ,  H2,.  . . , H,+1+/ (j  2 0) be the nontrivial components 
of G - S and let n, = IV(H,)I (i = 1,. . . , s + 1 + j ) ,  where we assume 
2 5 nl 5 n2 5 . . .  5 ~ l . ~ + l + ~ .  Let t be the number of trivial components of 
G - S. 

By counting the number of neighbors of vertices in the three smallest 
components of G - S we see 

n 5 a3(G)  5 n l  - 1 + n2 - 1 + n3 - 1 - min(3,t) + 3s 

Since n = n1  + n2 + ... + ns+l+j + s + t ,  we obtain 

2(s + j - 2) 5 n4 + . . .  + 5 2s - t - min(3,t) - 3 ,  (3) 

implying that 2 j  I 1 - t - min(3, t}. We conclude that j = t = 0. 
If s = 2, then we have G E Y2,1(n). 
If s = 3 ,  then (3) implies n4 5 3, hence G E .3&(n). 
Finally, if s 2 4, then (3) implies n, = 2 and n,+l 5 3. If n,+l = 3, then 

G E %,g(n), and if n,+l = 2, then G E 72,4(n). 

This settles Case 4 and hence completes the proof of Theorem 6. I 
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Proof of Corollary 8. Let G ,  C, and A be as defined in the statement 
of the corollary. Since none of the graphs in F ( n )  contains a dominating 
cycle, we have c(G)  2 p ( G )  - 1,  by Theorem 5.  Suppose a ,  b E ( V ( G )  - 
V ( C ) )  U A+ such that ab E E(G). Since C is a dominating cycle, we can 
assume that a E A+ and b E V ( G )  - V ( C ) ,  or a, b E A'. 

First suppose a E A +  and b E V ( G )  - V(C) .  By the definition of A, 
there exist an xu E V ( G )  - V ( C )  such that a- E N(x,). If b = xu ,  then 
b a t a - b  is a cycle of length IV(C)l + 1 contradicting the choice of C as a 
longest cycle. And if b f x,, then b a k x ,  is a path of length IV(C)l + 2, 
contradicting p ( G )  5 c(G) + 1. 

Next suppose a ,  b E A', hence a - ,  b- E A. There exist x,,xb E 
V ( G )  - V ( C )  such that a- E N ( x , )  and b -  E N ( x b ) .  Suppose a and 
b are neighbors on the cycle, say b' = a .  Then x,a-?b-xb is a cycle of 
length IV(C)I + 1 (if x,  = xb), or a path of length IV(C)l + 2 (if x, # X b ) .  

In both cases we have a contradiction. So we can assume that a and b are 
not neighbors on the cycle. Then x,a-Eba?b-xb is a cycle of length 
IV(C)l + 1 (if xu = xb), or a path of length IV(C)l + 2 (if x,  # xb). s o  
also in this last case, we always obtain a contradiction. 

This shows that there exists no pair a ,  b E (V(G)  - V ( C ) )  U A' such 
that ab E E(G), thus proving Corollary 8. I 
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