RELATIVE LUBIN-TATE GROUPS

EHUD DE SHALIT

ABSTRACT. We construct a class of formal groups that generalizes Lubin-Tate groups. We formulate the major properties of these groups and indicate their relation to local class field theory.

The aim of this note is to introduce a certain family of formal groups generalizing Lubin-Tate groups. Although the construction, basic properties and relation with local class field theory are all similar to Lubin-Tate theory, the author is unaware of previous references to these groups. We remark, however, that they are complementary in some sense to the formal groups studied by Honda in [2]. Since we want to keep this note short, all the proofs are omitted. The reader who is acquainted with Lubin-Tate theory as in [4 or 5] will be able to supply them without any difficulties.

I would like to acknowledge my debt to K. Iwasawa. His beautiful exposition of local class field theory [3] motivated this note.

1. Let k be a finite extension of \mathbf{Q}_p , $\nu: k^{\times} \to \mathbf{Z}$ the normalized valuation (normalized in the sense that $\nu(k^{\times}) = \mathbf{Z}$), \mathcal{O} and φ its ring of integers and maximal ideal, and $\overline{k} = \mathcal{O}/\varphi$ the residue field, a finite field of characteristics p and q elements. k^{alg} denotes an algebraic closure of k and k^{ur} the maximal unramified extension of k in it. We also fix a completion of k^{alg} , Ω , and let K be the closure of k^{ur} in it. We write φ for the Frobenius automorphism of k^{ur}/k , characterized by $\varphi(x) \equiv x^q \mod \varphi^{\mathrm{ur}}$, for all $x \in \mathcal{O}^{\mathrm{ur}}$. It extends by continuity to an automorphism of K/k, still denoted by φ . If k' is another finite extension of \mathbf{Q}_p , the corresponding objects will be denoted by ', e.g. φ', q' , etc.

If A is any ring, $A[[X_1, \ldots, X_n]]$ will denote the power series ring in X_i . If f and g are elements of it, $f \equiv g \mod \deg m$ means that the power series f - g involves only monomials of degree at least m.

2. Fix the field k. For each integer d let Σ_d be the set of all $\xi \in k$, $\nu(\xi) = d$. Fix also d > 0 and let k' be the unique unramified extension of k of degree d. Let $\xi \in \Sigma_d$ and consider

$$\mathcal{F}_{\xi} = \{f \in \mathcal{O}'[[X]] | f \equiv \pi' X \operatorname{mod} \deg 2, \ N_{k'/k}(\pi') = \xi \text{ and } f \equiv X^q \operatorname{mod} \wp' \}.$$

THEOREM 1. For each $f \in \mathcal{F}_{\xi}$ there is a unique one-dimensional commutative formal group law $F_f \in \mathcal{O}'[[X,Y]]$ satisfying $F_f^{\varphi} \circ f = f \circ F_f$. In others words, f is a homomorphism of F_f to F_f^{φ} .

Received by the editors March 2, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 12B25.

Key words and phrases. Formal groups, class field theory.

Note that if $f \in \mathcal{F}_{\xi}$, $f^{\varphi} \in \mathcal{F}_{\xi}$ also, and necessarily $F_{f}^{\varphi} = F_{\varphi(f)}$. If d = 1, we are in the situation considered by Lubin and Tate. In general, we call F_{f} a relative Lubin-Tate group (relative to the extension k'/k).

3.

THEOREM 2. Let $f = \pi'X + \cdots$, $g = \pi''X + \cdots$ be in \mathcal{F}_{ξ} . Let $a \in \mathcal{O}'$ be an element for which $a^{\varphi-1} = \pi''/\pi'$. Then there exists a unique power series $[a]_{f,g} \in \mathcal{O}'[[X]]$ for which

(i) $[a]_{f,g} \equiv aX \mod \deg 2$,

(ii) $[a]_{f,g}^{\varphi} \circ f = g \circ [a]_{f,g}.$

 $[a]_{f,g}$ is therefore in Hom (F_f, F_g) . If $h = \pi'''X + \cdots$ and $b^{\varphi-1} = \pi'''/\pi''$, $[ba]_{f,h} = [b]_{g,h} \circ [a]_{f,g}$. Moreover, the map $a \mapsto [a]_{f,g}$ is an additive injective homomorphism from $\{a \in \mathcal{O}' | a^{\varphi-1} = \pi''/\pi'\}$ to Hom (F_f, F_g) . If f = g it is a ring homomorphism $\mathcal{O} \to \operatorname{End}(F_f)$, $a \mapsto [a]_f = [a]_{f,f}$.

COROLLARY. If $f, g \in \mathcal{F}_{\xi}$, F_f and F_g are isomorphic.

4. Pick $\xi, \xi' \in \Sigma_d$ and set $v = \xi/\xi'$. Let u be a unit of k' such that $N_{k'/k}(u) = v$, $\theta_1 \in K$ such that $\theta_1^{\varphi}/\theta_1 = u$, and $f \in \mathcal{F}_{\xi}$.

THEOREM 3. There exists a unique power series $\theta(X) \in \mathcal{O}_K[[X]]$ satisfying (i) $\varphi^d(\theta) = \theta \circ [v]_f$,

(ii) $\theta(X) \equiv \theta_1 X \mod \deg 2$.

Put $f' = \theta^{\varphi} \circ f \circ \theta^{-1}$. Then $f' \in \mathcal{F}_{\xi'}$ and θ is an isomorphism of F_f onto $F_{f'}$ over \mathcal{O}_K .

5.

DEFINITION. For $i \geq 0$ and $f \in \mathcal{F}_{\xi}$, let $f^{(i)} = \varphi^{i-1}(f) \circ \cdots \circ \varphi(f) \circ f$. Then $f^{(i)} \in \operatorname{Hom}(F_f, F_f^{\varphi^i})$ and (if $\xi \in \Sigma_d$) $f^{(d)} = [\xi]_f \in \operatorname{End}(F_f)$. Note also that $\varphi^j(f^{(i)}) \circ f^{(j)} = f^{(i+j)}$.

Let M be the valuation ideal of Ω , and M_f the commutative group whose underlying set is M and the addition is given by F_f . With $\xi \in \Sigma_d$, $f \in \mathcal{F}_{\xi}$ and π a prime element of \mathcal{O} , define for any $n \geq 0$

$$egin{aligned} W_f^n &= \{lpha \in M_f | [a]_f(lpha) = 0 ext{ for all } a \in arphi^{n+1} \} \ &= \{lpha \in M_f | [\pi^{n+1}](lpha) = 0 \} \ &= \operatorname{Ker}(f^{(n+1)} \colon M_f o M_{arphi^{n+1}(f)}). \end{aligned}$$

PROPOSITION 1. (i) W_f^n is a finite sub- \mathcal{O} -module of M_f and has q^{n+1} elements. $W_f^n \subseteq W_f^{n+1}$.

(ii) If $\alpha \in W_f^n$ but $\alpha \notin W_f^{n-1}$, $a \mapsto [a]_f(\alpha)$ gives an isomorphism $\mathcal{O}/\wp^{n+1} \cong W_f^n$.

(iii) $W_f = \bigcup W_f^n \cong k/\mathcal{O}$ (noncanonically) and is the set of all \mathcal{O} -torsion in M_f .

6. Coleman's norm operator (see [1]). Let $R = \mathcal{O}'[[X]], \xi \in \Sigma_d$, and $f \in \mathcal{F}_{\xi}$.

PROPOSITION 2. There exists a unique multiplicative operator $\mathcal{N}: R \to R$ ($\mathcal{N} = \mathcal{N}_f$, to emphasize the dependence on f), such that

$$(\mathcal{N}h)\circ f(X)=\prod_{\alpha\in W_f^0}h(X[+]_f\alpha)\qquad \forall h\in R.$$

It enjoys the additional properties:

(i) $\mathcal{N}h \equiv h^{\varphi} \mod \varphi',$ (ii) $\mathcal{N}_{f}\varphi = \varphi \circ \mathcal{N}_{f} \circ \varphi^{-1}, i.e. \ \mathcal{N}_{f}\varphi(h^{\varphi}) = (\mathcal{N}_{f}h)^{\varphi},$ (iii) Let $\mathcal{N}_{f}^{(i)}h = \mathcal{N}_{\varphi^{i-1}(f)} \circ \cdots \circ \mathcal{N}_{\varphi(f)} \circ \mathcal{N}_{f}(h).$ Then $(\mathcal{N}_{f}^{(i)}h) \circ f^{(i)}(X) = \prod_{\alpha \in W_{f}^{i-1}} h(X[+]_{f}\alpha).$

(iv) If $h \in R$ and $h \equiv 1 \mod \wp'^i$ $(i \ge 1)$, then $\mathcal{N}h \equiv 1 \mod \wp'^{i+1}$. 7.

PROPOSITION 3. The field $k'(W_f^n)$ is the same for all $f \in \mathcal{F}_{\xi}$. Call it k_{ξ}^n , and put $k_{\xi}^{-1} = k'$. Then for $n \geq 0$, k_{ξ}^n is a totally ramified extension of k' of degree $(q-1)q^n$, and it is abelian over k. Any α in W_f^n but not in W_f^{n-1} , for any $f \in \mathcal{F}_{\xi}$, generates k_{ξ}^n over k' and is a prime element for it.

Much more can be said about those fields (see $\S10$).

8. Coleman power series [1].

THEOREM 4. Fix $\xi \in \Sigma_d$, $f \in \mathcal{F}_{\xi}$ and $\alpha \in W^n_{\varphi^{-n}(f)}$, $\alpha \notin W^{n-1}_{\varphi^{-n}(f)}$. For $0 \leq i \leq n$ let $\alpha_i = (\varphi^{-n}(f))^{(n-i)}(\alpha) = \varphi^{-i-1}(f) \circ \cdots \circ \varphi^{-n}(f)(\alpha) \in W^i_{\varphi^{-i}(f)}$. Let c be a unit of k^n_{ξ} and $c_i = N_{n,i}(c)$ $(N_{n,i}$ denoting the norm from k^n_{ξ} to k^i_{ξ}). Then there is a power series g in R such that

$$arphi^{-i}(g)(lpha_i)=c_i \qquad (0\leq i\leq n),$$

COROLLARY. Suppose α_i is an element of $W^i_{\varphi^{-i}(f)}$ not in $W^{i-1}_{\varphi^{-i}(f)}$ $(i \ge 0)$ and $f^{\varphi^{-i}}(\alpha_i) = \alpha_{i-1}$. Suppose also c_0, c_1, \ldots is a norm-compatible sequence of units in k^i_{ξ} , i.e. $N_{n,i}(c_n) = c_i$. Then there exists a unique g in R such that $g^{\varphi^{-i}}(\alpha_i) = c_i$ for all i.

9.

EXAMPLE. Let K be a quadratic imaginary field, let F be a finite extension of K, and let E be an elliptic curve defined over F with complex multiplication by the full ring of integers of K. As explained in [6], if we choose a Weierstrass model of E over the integers of F we get a formal group law $\hat{E}(X,Y)$ defined over the ring generated (over Z) by the coefficients in the Weierstrass equation. Let p be a prime of K and P a prime of F dividing p. Assume E has good reduction at P, and that P is not ramified in F/K. It is then a consequence of the theory of complex multiplication that \hat{E} , as a formal group defined over \mathcal{O}_P (the integers of F_P), is a relative Lubin-Tate group with respect to the (unramified) extension F_P/K_p .

10. The relation between Lubin-Tate groups and local class field theory can now be easily generalized. A full description of it (and actually derivation of local class field theory from the formal group point of view) can be found in [3]. We only make the following remarks. The fields $k_{\xi} = \bigcup k_{\xi}^n = k'(W_f)$ (for any $f \in \mathcal{F}_{\xi}$) are the maximal abelian extensions of k with residue field equal to the extension of degree d of \overline{k} . They are distinct for different ξ as can be seen from the observation that the group of universal norms from k_{ξ} to k is just the cyclic group generated by ξ .

If $\xi \in \Sigma_1^d$, i.e. is a *d*th power in *k*, then \mathcal{F}_{ξ} contains an *f* from $\mathcal{O}[[X]]$. In this case k_{ξ} is the compositum of a totally ramified extension of *k* and *k'*. However, this is not always the case, because $\Sigma_d \neq \Sigma_1^d$ in general.

REFERENCES

- 1. R. Coleman, Division values in local fields, Invent. Math. 53 (1979), 91-116.
- 2. T. Honda, Formal groups and zeta functions, Osaka. J. Math. 5 (1968) 199-213.
- 3. K. Iwasawa, Local class field theory, Oxford Univ. Press, London (to appear).
- J. Lubin and J. Tate, Formal complex multiplication in local fields, Ann. of Math. (2) 81 (1965), 380-387.
- 5. J. P. Serre, *Local class field theory*, Algebraic Number Theory (Cassels and Frohlich, eds.), Academic Press, New York, 1967.
- 6. J. Tate, The arithmetic of elliptic curves, Invent. Math 23 (1974), 179-206.

DEPARTMENT OF MATHEMATICS, FINE HALL, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540

Current address: Department of Mathematics, Science Center, 1 Oxford Street, Harvard University, Cambridge, Massachusetts 02138