
REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA
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RELATIVE MODULAR UNIFORM APPROXIMATION BY
MEANS OF THE POWER SERIES METHOD WITH

APPLICATIONS

KULDIP RAJ AND ANU CHOUDHARY

Abstract. We introduce the notion of relative convergence by means of a four
dimensional matrix in the sense of the power series method, which includes
Abel’s as well as Borel’s methods, to prove a Korovkin type approximation
theorem by using the test functions {1, y, z, y2 + z2} and a double sequence
of positive linear operators defined on modular spaces. We also endeavor to
examine some applications related to this new type of approximation.

1. Introduction and preliminaries

Korovkin type approximation plays an important role in summability theory.
The classical Bohman–Korovkin theorem establishes the uniform convergence in
the space C[a, b] of all continuous real valued functions defined on the interval
[a, b], for a sequence of positive linear operators acting on C[a, b] assuming the
convergence only on the test functions 1, x, and x2. In case of the space of con-
tinuous 2π-periodic real valued functions the convergence is considered on the test
functions 1, cosx, and sin x. In 1953, Korovkin discovered this property, which is
a now a matter of interest for several mathematicians. Many mathematicians have
worked on generalizing the Korovkin theorems in several ways. Initially, Bardaro
and Mantellini [3] obtained some approximation theorems by means of positive
linear operators defined on modular spaces. Later on, they studied the classical
Korovkin theorem in multivariate modular function spaces [4]. In [15] Karakuş
and Demirci used matrix summability to obtain approximation results on modu-
lar spaces. The statistical version of Korovkin’s theorem has been presented by
Mursaleen and Alotaibi in [21] and Belen et al. in [7]. In summability theory the
power series method of convergence is very prominent as it includes both Abel’s
and Borel’s methods of convergence. From the existing literature we found that
there is no comparison between statistical A-approximation process and the power
series method. Since these two methods of convergence are totally different, it is
clear from the literature study that there is no particular matrix A such that the
corresponding statistical method generalizes the power series method. These two
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methods have their own importance and are independent of each other. Most of
the authors studied these two methods independently. Orhan and Demirci [23]
studied the concept of statistical A-summability in modular spaces. In [22] they
studied the problem of approximation to a function by means of a double sequence
of positive linear operators on modular spaces by using the concept of statistical
convergence. In [2], Bardaro et al. proved a Korovkin type approximation theorem
with respect to Ψ-A-statistical convergence. Recently, Yılmaz et al. [30] defined
a new type of modular convergence by using the notion of relative convergence
and proved some results on the approximation theorems. Further, Demirci and
Orhan [12] studied the statistical relative approximation problem by means of dou-
ble sequence of positive linear operator defined on modular spaces. Yurdakdim [31]
defined power series modular convergence and studied Korovkin-type approxima-
tion results. In [28] Tas discussed some results concerning Mastroianni operators
by the power series method. In this paper, we study the problem of approximation
to a function using a double sequence of positive linear operators on a modular
space by means of relative convergence, four dimensional regular summability ma-
trix method, and the concept of power series convergence which is stronger than
the Pringsheim convergence.

Many other versions of the Korovkin theorem have been studied by several au-
thors. Likewise, Bardaro et al. [6] studied some version of abstract Korovkin type
theorem on modular spaces with respect to the filter convergence on positive linear
operators. Mursaleen and Mohiuddine [20] proved the Korovkin type approxima-
tion theorem with respect to almost convergence and statistical convergence by
using the test functions {1, e−x, e−2x}. Alotaibi et al. [1] used the notion of σ-
convergence of double sequences to prove an approximation theorem.

We now recall some basic definitions and notations used in this paper.
A double sequence x = (xk,l) has Pringsheim limit L (denoted by P - lim x = L)

provided that given ε > 0 there exists K ∈ N such that |xk,l − L| < ε whenever
k, l > K (see [24]). A double sequence x = (xk,l) is bounded if there exists a
positive number K such that |xk,l| < K for all k and l. Some initial work on
double sequences is due to Bromwich [8]. Later on, the double sequences were
studied in [14, 18, 19, 25, 26, 29].

Let qi,j be a double sequence of non-negative numbers with q00 > 0 and such
that the power series

q(c, d) =
∞∑

i,j=0
qi,jc

idj

has radius of convergence R ∈ (0,∞] with c, d ∈ (0, R]. Let x = (xi,j) be a double
sequence of real numbers. If

lim
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjxi,j = L

for all c, d ∈ (0, R), then x = (xi,j) is said to be convergent to L in the sense of the
power series method.
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Example 1.1. Let

x = {xi,j} =
{

0, j is not a multiple of 3,
1, otherwise;

qi,j = 1 ∀i, j ∈ N, |c| < 1, and |d| < 1. So we get

q(c, d) =
∞∑

i,j=0
cidj =

∞∑
i=0

ci
∞∑
j=0

dj = 1
1− d

∞∑
i=0

ci = 1
1− d

1
1− c .

Then

lim
c,d→1−

1
q(c, d)

∞∑
i,j=0

qijc
idjxij = lim

c,d→1−
(1− d)(1− c)

∞∑
i=0

ci
∞∑
j=0

d3j

= lim
c,d→1−

(1− d)(1− c) 1
1− d3

∞∑
i=0

ci

= lim
c,d→1−

(1− d)(1− c)
(1− d3)(1− c)

= 1
3 .

So the given double sequence is convergent to 1
3 in the sense of the power series

method but it is not convergent in the Pringsheim sense.

By the above example one can easily say that the power series method is stronger
than ordinary convergence. If for any non-negative integers α, β one has that

lim
c,d→R−

∞∑
i=0

qi,αc
i

q(c,d)
= 0 and lim

c,d→R−

∞∑
j=0

qβ,jd
j

q(c,d)
= 0, (1.1)

then the power series method for double sequences is said to be regular.
Let H = [k, l] be a bounded interval of the real line R provided with Lebesgue

measure. Let C(H2) denote the space of all continuous real valued functions on
H2 = [k, l] × [k, l]. By X(H2) we denote the space of all real valued measurable
functions on H2 with equality almost everywhere, and by C∞(H2) we denote the
space of all infinitely differentiable functions on H2.

The concept of uniform convergence of a sequence of functions relative to a scale
function was introduced by Moore [17]. Then, Chittenden [10] defined it as follows:

A sequence (fi) of functions defined on an interval H = (a ≤ x ≤ b) is said to
converge relatively to a limit function f , if there exists a scale function σ(x) such
that for every ε > 0

|fi(x)− f(x)| < ε|σ(x)|
holds uniformly in x on the interval H for every i > iε. Uniform convergence is
the special case of relative convergence in which the scale function is a non-zero
constant. For more details see [9, 10, 11].
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A functional ρ : X(H2)→ [0,+∞] is said to be modular on X(H2) if it satisfies
the following conditions:

(i) ρ(f) = 0 if and only if f = 0 a.e. in H2,
(ii) ρ(−f) = ρ(f) for every f ∈ X(H2),
(iii) ρ(αf +βg) ≤ ρ(f) +ρ(g) for every f, g ∈ X(H2) and for any α, β ≥ 0 with

α+ β = 1.
In [4, 5] Bardaro et al. have given the concept of Q-quasi convex and Q-quasi

semiconvex modular. They proved that if there exists a constant Q ≥ 1 such that

ρ(αf + βg) ≤ Qαρ(Qf) +Qβρ(Qg)

holds for every f, g ∈ X(H2), α, β ≥ 0 with α+β = 1, then a modular ρ is Q-quasi
convex. If Q = 1 then ρ is called convex. Furthermore, if

ρ(αf) ≤ Qαρ(Qf)

hold for every f ∈ X(H2) and α ∈ (0, 1], then ρ is said to be Q-quasi semiconvex.
From the above definitions one can say that every Q-quasi convex modular is Q-
quasi semiconvex.

Let A = (aklij) be a four dimensional matrix for all k, l, i, j ∈ N and x = (xi,j)
be a double sequence. Then the sum

yk,l =
∞,∞∑
i,j=1,1

aklijxi,j

is called the A-means of the double sequence (xi,j). A double sequence (xi,j) is
said to be A-summable to the limit L if the A-means exist for all k, l in the sense
of Pringsheim’s convergence

P - lim
p,q→∞

p,q∑
i,j=0,0

aklijxi,j = yk,l

and
P - lim

k,l→∞
yk,l = L.

A four dimensional matrix A = (aklij) is said to be RH-regular or bounded regular
(see [13, 27]) if it maps every bounded P -convergent sequence into a P -convergent
sequence with the same P -limit. The Robinson-Hamilton conditions state that the
four dimensional matrix A = (aklij) is RH-regular if and only if
(RH1) P - lim

k,l
aklij = 0 for each (i, j) ∈ N2;

(RH2) P - lim
k,l

∑
i,j∈N2

aklij = 1;

(RH3) P - lim
k,l

∞∑
i=1
|aklij | = 0 for each j;

(RH4) P - lim
k,l

∞∑
j=1
|aklij | = 0 for each i;
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(RH5)
∑

(i,j)∈N2

|aklij | is P -convergent;

(RH6) there exist finite positive integers r and s such that
∑
i,j>s

|aklij | < r holds

for every (k, l) ∈ N2.
Let us consider vector subspaces Lρ(H2) and Eρ(H2) of X(H2). Lρ(H2) is called
the modular space generated by ρ and Eρ(H2) is called the space of finite elements
of Lρ(H2). These are defined as follows:

Lρ(H2) =
{
f ∈ X(H2) : lim

η→0+
ρ(ηf) = 0

}
and

Eρ(H2) =
{
f ∈ Lρ(H2) : ρ(ηf) < +∞ for all η > 0

}
.

Note that if ρ is Q-quasi semiconvex, then the space{
f ∈ X(H2) : ρ(ηf) < +∞ for some η > 0

}
coincides with Lρ(H2).

A double sequence {fi,j} of functions whose terms belong to Lρ(H2) is said to
be relatively modularly convergent to a function f ∈ Lρ(H2), iff there exists a scale
function σ(y, z) ∈ X(H2), |σ(y, z)| 6= 0, such that

P - lim
i,j

ρ

(
η0

(
fi,j − f
σ(y, z)

))
= 0 for some η0 > 0. (1.2)

A double sequence {fi,j} is relatively F -norm convergent (relatively strongly con-
vergent) to f iff

P - lim
i,j

ρ

(
η

(
fi,j − f
σ(y, z)

))
= 0 for every η > 0. (1.3)

One can note that (1.2) and (1.3) are equivalent iff the modular ρ satisfies the ∆2
condition, that is, there exists a constant M > 0 such that

ρ(2f) ≤M(ρf)

for every f ∈ X(H2). A relative strong convergence of the double sequence {fi,j} to

f is equivalent to the condition P - lim
i,j

ρ

(
2Kη

(
fi,j − f
σ(y, z)

))
= 0, for all K = 1, 2, . . .

and for some η > 0. If {fi,j} is relatively modularly convergent to f , then the ∆2
condition implies by induction that

ρ

(
2Kη

(
fi,j − f
σ(y, z)

))
≤MKρ

(
η

(
fi,j − f
σ(y, z)

))
.

Hence, we get P - lim
i,j

ρ

(
2Kη

(
fi,j − f
σ(y, z)

))
= 0.

A double sequence {fi,j} of functions whose terms belong to Lρ(H2) is said to
be relatively modularly convergent to a function f ∈ Lρ(H2) in the sense of the
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power series method iff there exists a scale function σ(y, z) ∈ X(H2), |σ(y, z)| 6= 0,
such that

lim
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
η0

(
fi,j − f
σ(y, z)

))
= 0 for some η0 > 0.

A sequence {fi,j} is relatively F -norm convergent in the sense of the power series
method (relatively strongly convergent in the sense of the power series method) to
f iff

lim
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
η

(
fi,j − f
σ(y, z)

))
= 0 for every η > 0.

If a scale function σ(y, z) is a non zero constant then the modular convergence
in the sense of the power series method is the special case of relative modular
convergence in the sense of the power series method.

Several properties of the modular ρ are discussed below:

(a) ρ is finite if χB ∈ Lρ(H2) whenever B is a measurable subset of H2 such
that µ(B) <∞.

(b) ρ is absolutely finite if ρ is finite and for every ε > 0, η > 0 there exists
a δ > 0 such that ρ(ηχA) < ε for any measurable subset A ⊂ H2 with
µ(A) < δ.

(c) ρ is strongly finite if χH2 ∈ Eρ(H2).
(d) ρ is monotone if ρ(f) ≤ ρ(g) for |f | ≤ |g|.
(e) ρ is absolutely continuous if for every f ∈ X(H2) with ρ(f) < +∞ there

exists β > 0 and for every ε > 0 there is δ > 0 such that ρ(βfχA) < ε
whenever A is any measurable subset of H2 with µ(A) < δ.

(f) If the modular ρ is monotone and finite, then C(H2) ⊂ Lρ(H2).
(g) If the modular ρ is monotone and strongly finite, then C(H2) ⊂ Eρ(H2).
(h) If the modular ρ is monotone, absolutely finite and absolutely continuous,

then C∞(H2) = Lρ(H2).

When ρ is monotone and finite modular on X(H2), one can construct a subset
G satisfying C∞(H2) ⊂ G ⊂ Lρ(H2).

Let S = {Si,j} be a sequence of positive linear operators fromG intoX(H2), XS ⊂
G containing C∞(H2), A = (aklij) a non-negative RH-regular summability matrix
method, and σ(y, z) ∈ X(H2) an unbounded function with σ(y, z) 6= 0 such that

lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
η

( ∞,∞∑
i,j=1,1

aklijSi,jg − g

σ(y, z)

))
≤ Tρ(ηg) (1.4)

holds for every g ∈ XS, η > 0, and for an absolute positive constant T . By
Si,j(f ; y, z), we denote the value of Si,jf at a point (y, z) ∈ H2.

Throughout the paper the operator S = {Si,j} fulfills condition (1.1).
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2. Main results

Theorem 2.1. Let S = {Si,j} be a double sequence of positive linear operators
from G into X(H2) satisfying (1.4), A = (aklij) be a non-negative RH-regular
summability matrix method, ρ a strongly finite, monotone, absolutely continuous,
Q quasi-convex modular on X(H2), and σm(y, z) an unbounded function satisfying
|σm(y, z)| ≥ bm > 0 for m = 0, 1, 2, 3. Assume that

lim
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
η

( ∞,∞∑
i,j=1,1

aklijSi,j(em)− em

σm(y, z)

))
= 0 for every η > 0

(2.1)
and m = 0, 1, 2, 3, where e0(y, z) = 1, e1(y, z) = y, e2(y, z) = z, and e3(y, z) =
y2 + z2. Now let f ∈ Lρ(H2) be such that f − h ∈ XS for every h ∈ C∞(H2).
Then, we have

lim
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
η0

( ∞,∞∑
i,j=1,1

aklijSi,jf − f

σ(y, z)

))
= 0 for some η0 > 0,

(2.2)
where σ(y, z) = max{|σm(y, z)|;m = 0, 1, 2, 3}.

Proof. Let h ∈ C(H2) ∩G. We first show

lim
(c,d)→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
γ

( ∞,∞∑
i,j=1,1

aklijSi,jh− h

σ(y, z)

))
= 0 for some γ > 0.

(2.3)
Since h is continuous, as h ∈ C(H2) ∩ G, for given ε > 0 there exists a number
N > 0 such that for all (v, w), (y, z) ∈ H2 satisfiying |v − y| < N and |w − z| < N
we have

|h(v, w)− h(y, z)| < ε. (2.4)
Also one can see that for all (v, w), (y, z) ∈ H2 satisfying |v−y| > N and |w−z| > N
and ν = sup

(y,z)∈H2
|h(y, z)|, we have

|h(v, w)− h(y, z)| ≤ 2ν
N2 {(v − y)2 + (w − z)2}. (2.5)

Now from (2.4) and (2.5), we have

|h(v, w)− h(y, z)| < ε+ 2ν
N2 {(v − y)2 + (w − z)2}.

This implies

−ε− 2ν
N2 {(v−y)2+(w−z)2} < h(v, w)−h(y, z) < ε+ 2ν

N2 {(v−y)2+(w−z)2}. (2.6)
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Since {Si,j} is a sequence of positive linear operators, by applying
∞,∞∑
i,j=1,1

aklijSi,j

to (2.6), for every i, j ∈ N, we have

−ε
∞,∞∑
i,j=1,1

aklijSi,j(e0; y, z)− 2ν
N2

∞,∞∑
i,j=1,1

aklijSi,j((v − y)2 + (w − z)2; y, z)

<

∞,∞∑
i,j=1,1

aklijSi,j(h; y, z)− h(y, z)
∞,∞∑
i,j=1,1

aklijSi,j(e0; y, z)

< ε

∞,∞∑
i,j=1,1

aklijSi,j(e0; y, z) + 2ν
N2

∞,∞∑
i,j=1,1

aklijSi,j
(
(v − y)2 + (w − z)2; y, z

)
.

Hence,∣∣∣∣ ∞,∞∑
i,j=1,1

aklijSi,j(h; y, z)− h(y, z)
∣∣∣∣

≤
∣∣∣∣ ∞,∞∑
i,j=1,1

aklijSi,j(h; y, z)− h(y, z)
∞,∞∑
i,j=1,1

aklijSi,j(e0; y, z)
∣∣∣∣

+
∣∣∣∣h(y, z)

∞,∞∑
i,j=1,1

aklijSi,j(e0; y, z)− h(y, z)
∣∣∣∣

≤ ε
∞,∞∑
i,j=1,1

aklijSi,j(e0; y, z) + ν

∣∣∣∣ ∞,∞∑
i,j=1,1

aklijSi,j(e0; y, z)− e0(y, z)
∣∣∣∣

+ 2ν
N2

∞,∞∑
i,j=1,1

aklijSi,j((v − y)2 + (w − z)2; y, z).

Thus, for J = max{|y|, |z|} we have∣∣∣∣ ∞,∞∑
i,j=1,1

aklijSi,j(h; y, z)− h(y, z)
∣∣∣∣

≤ ε+
{
ε+ ν + 4ν

N2 J
2
}∣∣∣∣ ∞,∞∑

i,j=1,1
aklijSi,j(e0; y, z)− e0(y, z)

∣∣∣∣
+ 4ν
N2 J

∣∣∣∣ ∞,∞∑
i,j=1,1

aklijSi,j(e1; y, z)− e1(y, z)
∣∣∣∣

+ 4ν
N2 J

∣∣∣∣ ∞,∞∑
i,j=1,1

aklijSi,j(e2; y, z)− e2(y, z)
∣∣∣∣

+ 2ν
N2

∣∣∣∣ ∞,∞∑
i,j=1,1

aklijSi,j(e3; y, z)− e3(y, z)
∣∣∣∣.
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So by multiplying both sides of the above inequality by 1
|σ(y,z)| and for any γ > 0,

we have

γ

∣∣∣∣
∞,∞∑
i,j=1,1

aklijSi,j(h; y, z)− h(y, z)

σ(y, z)

∣∣∣∣
≤ γε

|σ(y, z)| + Pγ

{∣∣∣∣
∞,∞∑
i,j=1,1

aklijSi,j(e0; y, z)− e0(y, z)

σ(y, z)

∣∣∣∣}

+
∣∣∣∣
∞,∞∑
i,j=1,1

aklijSi,j(e1; y, z)− e1(y, z)

σ(y, z)

∣∣∣∣
+
∣∣∣∣
∞,∞∑
i,j=1,1

aklijSi,j(e2; y, z)− e2(y, z)

σ(y, z)

∣∣∣∣
+
∣∣∣∣
∞,∞∑
i,j=1,1

aklijSi,j(e3; y, z)− e3(y, z)

σ(y, z)

∣∣∣∣,
where P = max{ε + ν + 4ν

N2 J
2, 4ν
N2 J,

2ν
N2 }. Now we apply the modular ρ to both

sides of the above inequality. Since σ(y, z) = max{|σm(y, z)|;m = 0, 1, 2, 3} and ρ
is monotone,

ρ

(
γ

( ∞,∞∑
i,j=1,1

aklijSi,jh− h

σ(y, z)

))
≤ ρ
(
γ

ε

|σ(y, z)| + γP

∣∣∣∣
∞,∞∑
i,j=1,1

aklijSi,je0 − e0

σ0(y, z)

∣∣∣∣
+ γP

∣∣∣∣
∞,∞∑
i,j=1,1

aklijSi,je1 − e1

σ1(y, z)

∣∣∣∣
+ γP

∣∣∣∣
∞,∞∑
i,j=1,1

aklijSi,je2 − e2

σ2(y, z)

∣∣∣∣
+ γP

∣∣∣∣
∞,∞∑
i,j=1,1

aklijSi,je3 − e3

σ3(y, z)

∣∣∣∣).
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Thus, we can write

ρ

(
γ

( ∞,∞∑
i,j=1,1

aklijSi,jh− h

σ(y, z)

))
≤ ρ
(

5γε
σ(y, z)

)

+ ρ

(
5γP

( ∞,∞∑
i,j=1,1

aklijSi,je0 − e0

σ0(y, z)

))

+ ρ

(
5γP

( ∞,∞∑
i,j=1,1

aklijSi,je1 − e1

σ1(y, z)

))

+ ρ

(
5γP

( ∞,∞∑
i,j=1,1

aklijSi,je2 − e2

σ2(y, z)

))

+ ρ

(
5γP

( ∞,∞∑
i,j=1,1

aklijSi,je3 − e3

σ3(y, z)

))
.

Since ρ is Q-quasi convex and strongly finite, for ε ∈ (0, 1] we have

ρ

(
γ

( ∞,∞∑
i,j=1,1

aklijSi,jh− h

σ(y, z)

))
≤ Qερ

(
5γQ
σ(y, z)

)

+ ρ

(
5γP

( ∞,∞∑
i,j=1,1

aklijSi,je0 − e0

σ0(y, z)

))

+ ρ

(
5γP

( ∞,∞∑
i,j=1,1

aklijSi,je1 − e1

σ1(y, z)

))

+ ρ

(
5γP

( ∞,∞∑
i,j=1,1

aklijSi,je2 − e2

σ2(y, z)

))

+ ρ

(
5γP

( ∞,∞∑
i,j=1,1

aklijSi,je3 − e3

σ3(y, z)

))
.
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Without loss of generality for ε ∈ (0, 1], one can write

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

[
γ

( ∞,∞∑
i,j=1,1

aklijSi,jh− h

σ(y, z)

)]

≤ Qερ
(

5γQ
σ(y, z)

)
+ 1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

[
5γP

( ∞,∞∑
i,j=1,1

aklijSi,je0 − e0

σ0(y, z)

)]

+ 1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

[
5γP

( ∞,∞∑
i,j=1,1

aklijSi,je1 − e1

σ1(y, z)

)]

+ 1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

[
5γP

( ∞,∞∑
i,j=1,1

aklijSi,je2 − e2

σ2(y, z)

)]

+ 1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

[
5γP

( ∞,∞∑
i,j=1,1

aklijSi,je3 − e3

σ3(y, z)

)]
.

Now taking limit as c, d→ R− to both sides and by using hypothesis (2.1), we get

lim
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
γ

( ∞,∞∑
i,j=1,1

aklijSi,jh− h

σ(y, z)

))
= 0.

Clearly (2.3) holds for every h ∈ C∞(H2). Now let f ∈ Lρ(H2) satisfying f − h ∈
XS for every h ∈ C∞(H2). Since µ(H2) < ∞ and ρ is absolutely continuous and
strongly finite, it is known that ρ is absolutely finite on X(H2). Now by using
these properties of the modular ρ, one can see from [5, 16] that the space C∞(H2)
is modularly dense in Lρ(H2), i.e. there exists a sequence {hl,n} ⊂ C∞(H2) such
that

P - lim
l,n

ρ(3η∗0(hl,n − f)) = 0, for some η0 > 0.

By this, we have that for every ε > 0 there is a positive number l0 = l0(ε) so that

ρ(3η∗0(hl,n − f)) < ε for every l, n ≥ l0. (2.7)
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Now since Si,j is a positive linear operator, we may write

η∗0

∣∣∣∣ ∞,∞∑
i,j=1,1

aklijSi,j(f ; y, z)− f(y, z)
∣∣∣∣ ≤ η∗0∣∣∣∣ ∞,∞∑

i,j=1,1
aklijSi,j(f − hl0,l0 ; y, z)

∣∣∣∣
+ η∗0

∣∣∣∣ ∞,∞∑
i,j=1,1

aklijSi,j(hl0,l0 ; y, z)− hl0,l0(y, z)
∣∣∣∣

+ η∗0
∣∣hl0,l0(y, z)− f(y, z)

∣∣
for every y, z ∈ H and i, j ∈ N. By applying the modular ρ to both sides of the
above inequality and using the monotonicity of ρ and also multiplying both sides
of the above inequality by 1

|σ(y,z)| , we get

ρ

(
η∗0

( ∞,∞∑
i,j=1,1

aklijSi,jf − f

σ(y, z)

))
≤ ρ
(

3η∗0

∞,∞∑
i,j=1,1

aklijSi,j(f − hl0,l0)

σ(y, z)

)

+ ρ

(
3η∗0

∞,∞∑
i,j=1,1

aklijSi,jhl0,l0 − hl0,l0

σ(y, z)

)
+ ρ

(
3η∗0
(
hl0,l0 − f
σ(y, z)

))
.

By observing that |σ(y, z)| ≥ b > 0 (b = max{bm : m = 0, 1, 2, 3}), we can write

ρ

(
η∗0

( ∞,∞∑
i,j=1,1

aklijSi,jf − f

σ(y, z)

))
≤ ρ
(

3η∗0

∞,∞∑
i,j=1,1

aklijSi,j(f − hl0,l0)

σ(y, z)

)

+ ρ

(
3η∗0

∞,∞∑
i,j=1,1

aklijSi,jhl0,l0 − hl0,l0

σ(y, z)

)
+ ρ

(
3η∗0
b

(
hl0,l0 − f

))
.

By using the above inequality and (2.7), we get

ρ

(
η∗0

( ∞,∞∑
i,j=1,1

aklijSi,jf − f

σ(y, z)

))
≤ ε+ ρ

(
3η∗0

∞,∞∑
i,j=1,1

aklijSi,j(f − hl0,l0)

σ(y, z)

)

+ ρ

(
3η∗0

∞,∞∑
i,j=1,1

aklijSi,jhl0,l0 − hl0,l0

σ(y, z)

)
.
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Hence, by using the fact that hl0,l0 ∈ C∞(H2) and f − hl0,l0 ∈ XS, we have

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
η0

( ∞,∞∑
i,j=1,1

aklijSi,jf − f

σ(y, z)

))

≤ ε+ 1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
3η∗0

∞,∞∑
i,j=1,1

aklijSi,j(f − hl0,l0)

σ(y, z)

)

+ 1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
3η∗0

∞,∞∑
i,j=1,1

aklijSi,jhl0,l0 − hl0,l0

σ(y, z)

)
.

Taking limit superior as c, d→ R− on both sides, and by using (1.4), we get

lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
η0

( ∞,∞∑
i,j=1,1

aklijSi,jf − f

σ(y, z)

))
≤ ε+ Tρ

[
3η∗0
(
f − hl0,l0

)]

+ lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
3η∗0

∞,∞∑
i,j=1,1

aklijSi,jhl0,l0 − hl0,l0

σ(y, z)

)
.

This implies that

lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
η0

( ∞,∞∑
i,j=1,1

aklijSi,jf − f

σ(y, z)

))

≤ ε+ Tε+ lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
3η∗0

∞,∞∑
i,j=1,1

aklijSi,jhl0,l0 − hl0,l0

σ(y, z)

)
.

By (2.3), we have

lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
3η∗0

∞,∞∑
i,j=1,1

aklijSi,jhl0,l0 − hl0,l0

σ(y, z)

)
= 0
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⇒ lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
η0

( ∞,∞∑
i,j=1,1

aklijSi,jf − f

σ(y, z)

))
≤ ε+ Tε.

As ε is an arbitrary positive real number, we have

lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
3η∗0

∞,∞∑
i,j=1,1

aklijSi,jf − f

σ(y, z)

)
= 0.

Moreover, 1
q(c,d)

∞∑
i,j=0

qi,jc
idjρ

(
3η∗0

∞,∞∑
i,j=1,1

aklijSi,jf − f

σ(y, z)

)
is non negative, so we get

lim
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
3η∗0

∞,∞∑
i,j=1,1

aklijSi,jf − f

σ(y, z)

)
= 0.

Hence the proof is finished. �

Theorem 2.2. Suppose that ρ, σ(y, z), A = (aklij), and S = {Si,j} are as in The-
orem 2.1. If the modular ρ satisfies the ∆2 condition, then the following statements
are equivalent:

(i) lim
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
η

( ∞,∞∑
i,j=1,1

aklijSi,jem − em

σm(y, z)

))
= 0

for every η > 0 and m = 0, 1, 2, 3.

(ii) lim
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
η

( ∞,∞∑
i,j=1,1

aklijSi,jf − f

σ(y, z)

))
= 0

for every η > 0 provided that f ∈ Lρ(H2) such that f − g ∈ XS for every
g ∈ C∞(H2).

Condition (1.4) reduces to

lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρ

(
η

( ∞,∞∑
i,j=1,1

aklijSi,jg

))
≤ Tρ(ηh) (2.8)

for every g ∈ XS, η > 0 and for an absolute positive constant T , if one replaces the
scale function by a non-zero constant.

Corollary 2.3. Let S = {Si,j} be a double sequence of positive linear operators
from G into X(H2) satisfying (2.8), A = (aklij) be an identity matrix, ρ be a
strongly finite, monotone, absolutely continuous and Q-quasi convex modular on
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X(H2). If {Si,jem} is strongly convergent to em in the sense of the power series,
for each m = 0, 1, 2, 3, then {Si,jf} is modularly convergent to f in the sense of
the power series provided f ∈ Lρ(H2) such that f −h ∈ XS for every h ∈ C∞(H2).

Corollary 2.4. Let S = {Si,j}, A = (aklij) be an identity matrix, and ρ be the same
as in Corollary 2.3. If ρ satisfies the ∆2 condition, then the following statements
are equivalent:

(i) {Si,jem} is strongly convergent to em in the sense of the power series
method, for each m = 0, 1, 2, 3.

(ii) {Si,jf} is strongly convergent to f in the sense of the power series method,
for f ∈ Lρ(H2) such that f − h ∈ XS for every h ∈ C∞(H2).

If the power series convergence reduces to the Pringsheim convergence, then
(1.4) becomes

P - lim sup
i,j

ρ

(
η

( ∞,∞∑
i,j=1,1

aklijSi,jg

σ(y, z)

))
≤ Tρ(ηg) (2.9)

for every g ∈ XS, η > 0 and for an absolute positive constant T .

Corollary 2.5. Let S = {Si,j} be a double sequence of positive linear operators
from G into X(H2) satisfying (2.9), A = (aklij) be an identity matrix, ρ be a
strongly finite, monotone, absolutely continuous and Q-quasi convex modular on
X(H2). Moreover, let σm(y, z) be an unbounded function satisfying |σm(y, z)| ≥
bm > 0, for m = 0, 1, 2, 3. If {Si,jem} is relatively strongly convergent to em, for
each m = 0, 1, 2, 3, then {Si,jf} is relatively modularly convergent to f provided
f ∈ Lρ(H2) such that f − h ∈ XS for every h ∈ C∞(H2).

Corollary 2.6. Let S = {Si,j}, A = (aklij), ρ, and σm(y, z), for m = 0, 1, 2, 3, be
the same as in Corollary 2.5. If ρ satisfies the ∆2 condition, then the following are
equivalent:

(i) {Si,jem} is relatively strongly convergent to em, for each m = 0, 1, 2, 3.
(ii) {Si,jf} is relatively strongly convergent to f , for f ∈ Lρ(H2) such that

f − h ∈ XS for every h ∈ C∞(H2).

Example 2.7. Let ξ : [0,∞) → [0,∞) be a continuous function such that the
following conditions hold:

(i) ξ is convex.
(ii) ξ = 0, ξ(v) ≥ 0 for v > 0, and lim

v→∞
ξ(v) =∞.

Consider A = (aklij) an identity matrix, H = [0, 1] and a functional ρξ on
X(H2) defined by

ρξ(f) =
∫ 1

0

∫ 1

0
ξ(|f(y, z)|) dydz

for f ∈ X(H2). Here ρξ is a convex modular on X(H2). Suppose that
Lρξ(H

2) = {f ∈ X(H2) : ρξ(ηf) < +∞, for some η > 0}
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is an Orlicz space generated by ξ. Now consider the bivariate Bernstein–Kantorovich
operator U = {Ui,j} on the space Lρξ(H2), which is defined as follows:

Uij(f ; y, z) =
i∑

m=0

j∑
n=0

p(i,j)
m,n (y, z)(i+1)(j+1)×

∫ (m+1)/(i+1)

m/(i+1)

∫ (n+1)/(j+1)

n/(j+1)
f(r, s) dsdr

for y, z ∈ H, where p(i,j)
m,n (y, z) is defined by

p(i,j)
m,n (y, z) =

(
i

m

)(
j

n

)
ymzn(1− y)i−m(1− z)j−n,

and

i∑
m=0

j∑
n=0

p(i,j)
m,n (y, z) = 1. (2.10)

Note that the operator Ui,j maps the Orlicz space Lρξ(H2) into itself. Since (2.10)
is satisfied, we can use the Jensen inequality. Therefore, for every f ∈ Lρξ(H2),
there is an absolute constant D > 0 such that

ρξ
(
Ui,jf

σ(y, z)

)
≤ Dρξ(f)

as in the proof of Lemma 5.1 in [3].
Now for XU = Lρξ(H2), property (2.9) is satisfied and for any function f ∈

Lρξ(H2) such that f−h ∈ XU for every h ∈ C∞(H2), {Ui,jf} is relatively modularly
convergent to f . We define a sequence of positive linear operators W = {Wi,j} on
Lρξ(H2) by using the operator Ui,j as follows:

Wi,j(f ; y, z) = (1 + hi,j(y, z))Ui,j(f ; y, z) (2.11)

for f ∈ Lρξ(H2), (y, z) ∈ [0, 1]× [0, 1] and i, j ∈ N, where {hi,j(y, z)} is a sequence
of zeros and ones which is not modularly convergent but relatively modularly con-
vergent to 0 in the sense of the power series method. By using [3, Lemma 5.1] for
every g ∈ XW = Lρξ(H2), all η > 0 and for an absolute positive constant F , we get

lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρξ

(
η
Wi,jg

σ(y, z)

)
≤ Fρξ

(
2ηg
)
.
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Observe that
Wi,j(e0; y, z) = (1 + hi,j(y, z)),

Wi,j(e1; y, z) = (1 + hi,j(y, z))
(

iy

i+ 1 + 1
2(i+ 1)

)
,

Wi,j(e2; y, z) = (1 + hi,j(y, z))
(

jz

j + 1 + 1
2(j + 1)

)
,

Wi,j(e3; y, z) = (1 + hi,j(y, z))
(
i(i− 1)y2

(i+ 1)2 + 2iy
(i+ 1)2 + 1

3(i+ 1)2

+ j(j − 1)z2

(j + 1)2 + 2jz
(j + 1)2 + 1

3(j + 1)2

)
.

So for any η > 0 we have

η

∣∣∣∣Wi,j(e0; y, z)− e0(y, z)
σ(y, z)

∣∣∣∣ = η

(
|1 + hi,j(y, z)− 1|

σ(y, z)

)
= η

(
hi,j(y, z)
σ(y, z)

)
.

This implies

ρξ
[
η

(
Wi,j(e0; y, z)− e0(y, z)

σ(y, z)

)]
= ρξ

(
η
hi,j(y, z)
σ(y, z)

)
=
∫ 1

0

∫ 1

0
ξ

(
η
hi,j(y, z)
σ(y, z)

)
dydz

= ξ

(
η
hi,j(y, z)
σ(y, z)

)
= hi,j(y, z)

σ(y, z) ξ(η).

Since {hi,j(y, z)} converges relatively modularly to 0 in the sense of the power
series method, for every η > 0, we have

lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρξ

(
η

(
Wi,j(e0)− e0

σ(y, z)

))

= lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idj

hi,j(y, z)
σ(y, z) ξ(η)

= 0.
Moreover,

η

∣∣∣∣Wi,j(e1; y, z)− e1(y, z)
σ(y, z)

∣∣∣∣ = η

∣∣∣∣y
(

i
i+1 + ihi,j(y,z)

i+1 − 1
)

+ 1
2(i+1) + hi,j(y,z)

2(i+1)

σ(y, z)

∣∣∣∣
≤ η

{ 3
2(i+1) + hi,j(y, z)

( 2i+1
2(i+1)

)
σ(y, z)

}
.
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Thus,

ρξ
[
η
(Wi,j(e1; y, z)− e1(y, z)

σ(y, z)
)]
≤ ρξ

(
η

{ 3
2(i+1) + hi,j(y, z)

( 2i+1
2(i+1)

)
σ(y, z)

})

≤ hi,j(y, z)
σ(y, z) ρξ

[
η

(
2i+ 1
i+ 1

)]
+
ρξ
(
η 3

(i+1)

)
σ(y, z) .

As { 2i+1
i+1 } is convergent, there exists a constant M > 0 such that

{
2i+1
i+1 ≤M

}
for

every i ∈ N. Then by using the monotonicity of ρξ, for any η > 0 we have

ρξ
[
η
(2i+ 1
i+ 1

)]
≤ ρξ(ηM).

This implies

ρξ
[
η
(Wi,j(e1)− e1

σ(y, z)
)]
≤ hi,j(y, z)

σ(y, z) ρξ(ηM) +
ρξ
(

3η
(i+1)

)
σ(y, z)

= hi,j(y, z)
σ(y, z) ξ(ηM) +

ξ

(
3η

(i+1)

)
σ(y, z) .

Since ξ is continuous, we have

lim
i
ξ

(
3η

(i+ 1)

)
= ξ

(
lim
i

3η
(i+ 1)

)
= ξ(0) = 0.

Hence, we get that
ξ( 3η

(i+1) )
σ(y, z) is convergent to 0 in the sense of the power series

method. Therefore,

lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρξ

(
ηWi,j(e1)− e1

σ(y, z)

)

≤ lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idj
[
hi,j(y, z)
σ(y, z) ξ(ηM) +

ξ

(
3η

(i+1)

)
σ(y, z)

]

= ξ(ηM) lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idj

hi,j(y, z)
σ(y, z)

+ lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idj

ξ

(
3η

(i+1)

)
σ(y, z)

= 0.
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Similarly, we have lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρξ

(
ηWi,j(e2)− e2

σ(y, z)

)
= 0.

Finally,

η

∣∣∣∣Wi,j(e3; y, z)− e3(y, z)
σ(y, z)

∣∣∣∣
= η

σ(y, z)

∣∣∣∣y2i(i− 1)
(i+ 1)2 + 2iy

(i+ 1)2 + 1
3(i+ 1)2 + z2j(j − 1)

(j + 1)2 + 2jz
(j + 1)2 + 1

3(j + 1)2

+ hi,j(y, z)
i(i− 1)
(i+ 1)2 y

2 + 2iyhi,j(y, z)
(i+ 1)2 + hi,j(y, z)

3(i+ 1)2 + j(j − 1)
(j + 1)2 z

2hi,j(y, z)

+ 2izhi,j(y, z)
(j + 1)2 + hi,j(y, z)

3(j + 1)2 − y
2 − z2

∣∣∣∣
= η

σ(y, z)

∣∣∣∣y2
[
i(i− 1)
(i+ 1)2 + hi,j(y, z)i(i− 1)

(i+ 1)2 − 1
]

+ y

[
2i

(i+ 1)2 + hi,j(y, z)2i
(i+ 1)2

]
+ z2

[
j(j − 1)
(j + 1)2 + hi,j(y, z)j(j − 1)

(j + 1)2 − 1
]

+ z

[
2j

(j + 1)2 + hi,j(y, z)2j
(j + 1)2

]
+ 1

3(i+ 1)2

+ 1
3(j + 1)2 + hi,j(y, z)

3(i+ 1)2 + hi,j(y, z)
3j(i+ 1)2

∣∣∣∣
= η

{
15i+ 4

σ(y, z)3(i+ 1)2 + 15j + 4
σ(y, z)3(j + 1)2 + hi,j(y, z)

σ(y, z)

[
3i2 + 3i+ 1

3(i+ 1)2 + 3j2 + 3j + 1
3(j + 1)2

]}
.

Since
{

3i2+3i+1
3(i+1)2

}
and

{
3j2+3j+1
3(j+1)2

}
are convergent, there exist constants X,Z > 0

such that
∣∣ 3i2+3i+1

3(i+1)2

∣∣ ≤ X, for every i ∈ N, and
∣∣ 3j2+3j+1

3(j+1)2

∣∣ ≤ Z, for every j ∈ N.
Now by using the definition of {hi,j(y, z)} and by the monotonicity of ρξ, we have

ρξ
[
η

(
Wi,j(e3; y, z)− e3(y, z)

σ(y, z)

)]

≤ ρξ
[2η

(
15i+4

3(i+1)2

)
+ 2η

(
15j+4

3(j+1)2

)
σ(y, z)

]
+ ρξ

[2ηhi,j(y, z)
[

3i2+3i+1
3(i+1)2 + 3j2+3j+1

3(j+1)2

]
σ(y, z)

]

≤ ρξ
[η( 30i+8

3(i+1)2

)
+ η

(
30j+8

3(j+1)2

)
σ(y, z)

]
+ ρξ

[
2ηhi,j(y, z)(X + Z)

σ(y, z)

]
.

This implies

ρξ
[
η

(
Wi,j(e3; y, z)− e3(y, z)

σ(y, z)

)]
≤
ξ

(
η

[
30i+8

3(i+1)2 + 30j+8
3(j+1)2

])
σ(y, z)

+ hi,j(y, z)
σ(y, z) ξ(2η[X + Z]).
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Since ξ is continuous, we have

lim
i,j→∞

ξ

(
η

[
30i+ 8

3(i+ 1)2 + 30j + 8
3(j + 1)2

])
= ξ

(
η lim
i,j→∞

[
30i+ 8

3(i+ 1)2 + 30j + 8
3(j + 1)2

])
= ξ(0)
= 0.

Thus,

ξ

(
η

[
30i+8

3(i+1)2 + 30j+8
3(j+1)2

])
σ(y, z)

is convergent to 0 in the sense of the power series method. So by using this and by
the definition of {hi,j(y, z)} we have

lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρξ

(
η

(
Wi,j(e3)− e3

σ(y, z)

))
= 0 for every η > 0.

Hence, we can conclude that the sequence W = {Wi,j} satisfies all the assump-
tions of Theorem 2.1. Therefore,

lim sup
c,d→R−

1
q(c, d)

∞∑
i,j=0

qi,jc
idjρξ

(
η0

(
Wi,j(f)− f
σ(y, z)

))
= 0 for every η0 > 0

holds for every f ∈ Lρξ(H2) such that f − h ∈ XW for every h ∈ C∞(H2).

Remark 2.8. (i) For R = 1, q(c, d) = 1
(1−c)

1
(1−d) and i, j ≥ 0, qi,j = 1, the power

series method coincides with Abel’s method.
(ii) For R = ∞, q(c, d) = eced and for i, j ≥ 0, qi,j = 1

i!
1
j! , the power series

method coincides with Borel’s method.
So we can prove all the theorems of this paper for Abel and Borel convergence.
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