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Relative Multiplicative Extended
Kalman Filter for Observable
GPS-Denied Navigation

Daniel P. Koch1, David O. Wheeler2,
Randal W. Beard2, Timothy W. McLain1,
and Kevin M. Brink3

Abstract

This work presents a multiplicative extended Kalman filter (MEKF) for estimating the relative state of a
multirotor vehicle operating in a GPS-denied environment. The filter fuses data from an inertial measurement
unit and altimeter with relative-pose updates from a keyframe-based visual odometry or laser scan-matching
algorithm. Because the global position and heading states of the vehicle are unobservable in the absence of global
measurements such as GPS, the filter in this paper estimates the state with respect to a local frame that is
colocated with the odometry keyframe. As a result, the odometry update provides nearly-direct measurements
of the relative vehicle pose, making those states observable. Recent publications have rigorously documented
the theoretical advantages of such an observable parameterization, including improved consistency, accuracy, and
system robustness, and have demonstrated the effectiveness of such an approach during prolonged multirotor flight
tests. This paper complements this prior work by providing a complete, self-contained, tutorial derivation of the
relative MEKF, which has been thoroughly motivated but only briefly described to date. This paper presents
several improvements and extensions to the filter while clearly defining all quaternion conventions and properties
used, including several new useful properties relating to error quaternions and their Euler-angle decomposition.
Finally, this paper derives the filter both for traditional dynamics defined with respect to an inertial frame, and
for robocentric dynamics defined with respect to the vehicle’s body frame, and provides insights into the subtle
differences that arise between the two formulations.

Keywords

Sensor fusion, vision-aided inertial navigation, multiplicative extended Kalman filter, aerial robotics

1 Introduction

GPS-denied navigation for small unmanned aircraft
systems (UAS) is an active and rich field of research with
significant practical applications such as infrastructure
inspection and security. Most UAS fuse GPS with
accelerometer and rate-gyro data to provide accurate
global state estimates suitable for feedback control.
When GPS is not available, however, additional
sensors such as cameras or lidars are required.
Because of the size, weight, and power constraints
and fast vehicle dynamics associated with small
UAS, many such systems incorporate these additional
sensors using filter-based estimation techniques rather
than traditional full simultaneous localization and
mapping (SLAM) algorithms. Filter-based approaches
are computationally efficient and ensure smooth, timely
state estimates for control.

In the absence of GPS updates, many filtering
methods utilize incremental odometry measurements
from either visual odometry or laser scan matching.
These odometry measurements can be computed frame-
to-frame, or several measurements can be computed
with respect to the same keyframe image or scan.
The keyframe image or scan is updated when
there is insufficient overlap with current images or

scans to compute reliable odometry measurements.
Keyframe-based approaches have the advantage of
reducing temporal drift in the odometry measurements
(Leutenegger et al., 2015).

Despite having only incremental measurements
available, the majority of GPS-denied navigation
approaches directly estimate the vehicle’s global pose
with respect to some fixed origin. Without global
position measurements, however, the vehicle’s global
pose and heading are unobservable (Martinelli, 2012;
Weiss et al., 2012; Jones et al., 2007). As a result,
global filters can suffer from inconsistent and unbounded
state uncertainties, erratic state jumps when applying
relative measurements, and the inability to directly
apply intermittent global information without causing
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Fig. 1. Block diagram of the general relative navigation
system architecture. Flight critical estimation and control
is performed with respect to a local frame. The framework
is described in more detail by Wheeler et al. (2017).

large state jumps (Julier and Uhlmann, 2001; Bailey
and Durrant-Whyte, 2006; Kottas et al., 2013; Wheeler
et al., 2018). In contrast, the relative navigation
approach estimates only the relative state of the vehicle
with respect to the location of the most recent odometry
keyframe (Leishman et al., 2014b). As a result,
the odometry provides direct measurements of the
position and heading states, making them observable by
construction and thereby ensure consistent and bounded
state estimates. Each time a new keyframe is declared,
the current state and covariance estimates are passed
to a back-end map that concatenates them as edges
in a pose graph to reconstruct the global path of the
vehicle. The position and heading states in the filter
are then reset to zero and estimation continues. The
relative navigation architecture is illustrated graphically
in Figure 1, and parallels ideas found in the SLAM
literature (Chong and Kleeman, 1999; Kim et al., 2010).

Recent simulation results have shown that using the
relative navigation framework to ensure observability
provides significant advantages in terms of consistency
of the estimated relative and global states, as
well as some improvement in accuracy and system
robustness when incorporating intermittent global
information (Wheeler et al., 2018). Futhermore,
recent multirotor hardware flight test results have
demonstrated the effectiveness of relative navigation
for prolonged GPS-degraded navigation of small UAS
(Wheeler et al., 2017). This paper compliments
(Wheeler et al., 2018) and (Wheeler et al., 2017) by
providing a complete, self-contained, tutorial derivation
of the relative state-estimation filter used in those
papers to obtain hardware results. While those papers
provide thorough theoretical and practical motivation
for the relative navigation approach, the core relative
estimator component itself has only been briefly
described in the literature to date.

The purpose of this paper is to fill that gap.
The flight tests presented by Wheeler et al. (2018)
and Wheeler et al. (2017) successfully leveraged
the relative multiplicative extended Kalman filter
(RMEKF) presented in this paper. While that work
demonstrated the effectiveness of the relative navigation

framework and gave an overview of the various
components, it did not describe the RMEKF in
detail. The RMEKF builds upon the multiplicative
Kalman filter (MEKF), which uses a quaternion to
represent attitude and quaternion multiplication to
define attitude error. The RMEKF extends the MEKF
by defining the UAS state to be with respect to a local
coordinate frame associated with the current keyframe
image. To accommodate this relative state, the RMEKF
introduces an additional keyframe reset step that is
applied each time a new keyframe is declared.

This paper contributes to the literature in three
ways. First, the paper provides a tutorial derivation
of the MEKF for UAS state estimation given
Hamilton quaternions. Second, the paper presents a
complete derivation of the RMEKF for multirotor UAS,
including several important extensions to the original
presentation by Leishman and McLain (2014). Third,
the paper provides a thorough derivation of the RMEKF
for both inertial and body-fixed (robocentric) state
representations, highlighting the subtle but important
differences that exist between the two methods. The
following paragraphs describe these contributions in
further detail and relate how they compare to the
existing literature.

MEKF Tutorial. Significant portions of the paper are
tutorial in nature, clearly motivating why an indirect or
error state formulation is necessary when quaternions
are used to represent attitude, and providing complete
explanations of each step in the derivation of the
filter equations. The MEKF was first introduced by
Lefferts et al. (1982), and several in-depth discussions
and derivations of MEKF implementations have been
published (Trawny and Roumeliotis, 2005; Markley,
2003; Sola, 2016). Some of these valuable publications
are of similar scope to the current work, but this
paper provides several meaningful extensions. First, this
paper derives an estimator for the full state of a UAS
(position, velocity, attitude, accelerometer biases, and
gyroscope biases), while most previous MEKF papers
of similar scope focus only on the attitude and bias
estimation. Sola (2016) does derive a full-state MEKF,
but this paper provides the derivation for a unique set
of propagation and measurement models. Second, this
paper derives the MEKF using the Hamilton quaternion
convention as opposed to the JPL convention used
in some other works. While the choice of quaternion
convention does not fundamentally change the problem,
Hamilton quaternions are commonly used in the
robotics literature and subtle but important differences
arise. This paper provides a contrasting perspective to
help deepen understanding of quaternions, and aims
to clarify some of the confusion that can arise due to
the varying conventions used in different works that
are not always explicitly defined. Third, the tutorial
nature of this paper provides sufficient context for
the derivation of several new properties relating to
quaternions, their error representations, and their Euler-
angle decomposition. These properties play a key role in

2
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the derivation of the RMEKF to allow partial attitude
updates.

RMEKF Derivation. Another purpose of this
paper is to provide a thorough derivation of the
RMEKF estimator successfully used by Wheeler et al.
(2017) for prolonged UAS navigation in GPS-degraded
environments. The RMEKF presented in this paper
extends the original RMEKF derivation by Leishman
and McLain (2014) in several important ways that
have proven necessary for prolonged flight. First, this
paper presents a new visual odometry measurement
model, laser scan-matching measurement model, and
keyframe reset operation, that together ensure the
state remains observable in GPS-denied environments.
Second, several novel properties of error quaternions
are derived that enable partial updates to quaternion
states and their covariances. Third, new terms are added
to the state vector in this paper to correctly account
for uncertainty in the roll, pitch, and altitude of the
vehicle at the time a keyframe is declared. Finally,
smaller differences include reversing the direction of the
odometry measurement model to avoid unnecessarily
coupling heading uncertainty into the update, and
estimating the global height of the vehicle above ground
rather than treating altitude as a relative state.

Inertial and Body-Fixed Dynamics. Another
unique contribution of this paper is the derivation of
the RMEKF when the state is defined with respect
to either an inertial frame or a body-fixed robocentric
frame. Vehicle dynamics are traditionally expressed in
an inertially-fixed, gravity-aligned frame (see Leishman
et al. (2014b) and Leishman and McLain (2014)). This
makes sense especially when the sensors are inertial
sensors like GPS. However, expressing the dynamics
in a robocentric frame is often more natural when
using robocentric sensors like cameras and laser range
finders, and can help address some of the inconsistency
issues of EKF-SLAM (Castellanos et al. (2007); Bloesch
et al. (2015)) when only relative states are required.
A related contribution of this paper is a presentation
of the subtle differences that arise between using
an inertial and robocentric reference frame. These
differences can cause confusion in the literature where
a side-by-side comparison does not currently exist. For
example, in addition to the change in dynamics, subtle
changes appear in the quaternion integration, error state
definition, measurement models, and keyframe reset
operations. By presenting both formulations side-by-
side, these differences are clearly explained.

The final contribution of this paper is a complete,
self-contained derivation of the filter and all relevant
quaternion properties. The definitions of quaternions
and error states used across the current estimation
literature differ in subtle ways. When these definitions
are not thoroughly documented, it becomes difficult
to correctly leverage properties from multiple sources.
With its tutorial nature and step-by-step explanations,
this paper is designed to present a complete, self-
contained derivation with respect to a consistent,
explicitly stated definition. This allows the reader

to understand, implement, and potentially modify
the RMEKF for new vehicles or applications. Note
that while the keyframe reset step and several
measurement models are specific to relative navigation,
the propagation equations and general filter structure
are equally relevant for other applications, such as
GPS/INS navigation.

Section 2 summarizes the notation used throughout
the paper. Section 3 provides an overview of the
quaternion definitions used in the paper. Specifically,
Section 3.8 derives several relevant, new properties
of error quaternions. Section 4 outlines the structure
of the MEKF. The keyframe reset step is described
in Section 5, and an overview of the complete
RMEKF algorithm is given. Section 6 derives the
specific filter equations for inertial relative navigation
(iRN), and Section 7 derives the equations for body-
fixed robocentric relative navigation (bRN). Finally,
Sections 8 and 9 respectively present results and
conclusions.

2 Nomenclature

The following variables, operators, and notation are
defined and motivated throughout the paper and are
summarized here for convenience. Let B denote the
vehicle’s body frame and I denote an inertial frame.

State variables
x state
xv vector component of state
xq quaternion component of state
cpba position of b with respect to a, expressed in c
pba position of b with respect to a, expressed in a
qba quaternion that rotates from a to b
v velocity of B with respect to I, expressed in B

(v , BvB
I )

ω angular velocity of B with respect to I,

expressed in B (ω , BωB
I )

a acceleration of B with respect to I, expressed

in B (a , BaB
I )

βω rate gyro biases, expressed in B
βa accelerometer biases, expressed in B
µ specific linear drag coefficient
η zero-mean Gaussian process noise
υ zero-mean Gaussian input noise

Error state variables
δx error state
δxv vector component of error state
δxθ attitude component of error state
δp position error state
δq quaternion error state
δθ attitude error state (minimal representation)

3



4

Filter variables
u input
z measurement
r measurement residual
P state covariance
Q process noise covariance
R measurement noise covariance
S residual covariance
K Kalman gain

F,G propagation Jacobians
H measurement Jacobian
N keyframe reset Jacobian
Np position reset Jacobian
Nθ attitude reset Jacobian

Operators

⊗ quaternion multiplication (Hamilton)
⌊·⌋ skew-symmetric matrix
(·)∧ mapping from vector to quaternion
(·)∨ mapping from quaternion to vector
E[·] expected value

R(q) rotation matrix associated with q

Other
ŷ estimate (or expected value) of y

ỹ measurement of y

ẏ time derivative of y

y+ a posteriori value of y

k unit vector
[

0 0 1
]T

Ia×b identity matrix in R
a×b

Πk Projection matrix I3×3 − kkT

g gravity vector gk

3 Quaternion Properties

Quaternions are a common method for representing
attitude due to their improved computational efficiency
and accuracy compared to alternative approaches
(Casey et al., 2013). A variety of definitions exist for
quaternions and their associated operations, leading
to subtle discrepancies and potential confusion. The
various approaches, described in more detail by Sola
(2016), include left-handed vs. right-handed quaternion
multiplication, active vs. passive representations, local-
to-global vs. global-to-local attitude direction, and
quaternion ordering. This section explicitly establishes
the definitions and notation used throughout this paper
and additionally derives several properties required for
the filter’s derivation. This section is not intended as a
complete introduction to quaternions, but rather as a
summary of relevant points.

3.1 Quaternion Conventions

A quaternion q ∈ H is a hyper-complex number of rank
four consisting of a scalar and vector portion as

q = q0 + qxi+ qyj + qzk .

We use the Hamilton definition of the quaternion, with

ij = −ji = k ,

jk = −kj = i ,

ki = −ik = j ,

i2 = j2 = k2 = ijk = −1 .

(1)

For notational convenience we define the vector portion
of the quaternion as

q̄ =
[

qx qy qz
]T

,

and write the quaternion as

q =

[

q̄

q0

]

. (2)

Quaternion multiplication is denoted with the ⊗
operator, and is carried out according to the rules in
(1) and standard algebraic multiplication. Using the
notation in (2), quaternion multiplication can be written
as a matrix multiplication according to

p⊗ q =

[

p0I + ⌊p̄⌋ p̄

−p̄T p0

] [

q̄

q0

]

, (3a)

=

[

q0I− ⌊q̄⌋ q̄

−q̄T q0

] [

p̄

p0

]

, (3b)

where the operator ⌊·⌋ is the skew-symmetric operator

⌊a⌋ =





0 −az ay
az 0 −ax
−ay ax 0





so that a × b = ⌊a⌋b. The skew-symmetric operator
has the property that

⌊a⌋b = −⌊b⌋a . (4)

The conjugate of a quaternion q is denoted by q∗,
and is equal to q but with the elements of the vector
portion negated. The inverse of a quaternion is given by

q−1 =
q∗

‖q‖
.

The quaternions used in this paper all represent
rotations and so are unit quaternions, meaning that
their norm is 1. Therefore, for unit quaternions we have

q−1 = q∗ =

[

−q̄

q0

]

. (5)

Inverting the product of two quaternions results in the
product of the inverse of each quaternion in the opposite
order, as

(p⊗ q)
−1

= q−1 ⊗ p−1 .

3.2 Vector Rotation

In this paper, quaternions are denoted passively,
meaning that they represent the rotation necessary to
express a vector in a different frame. Let quaternion qba
represent the rotation from frame a to frame b and let

4



Koch, Wheeler, Beard, McLain, and Brink 5

ay represent a vector expressed in frame a. As described
by Kuipers (1999), ay can be expressed in frame b using
the quaternion conjugation operation as

[

by

0

]

= (qba)−1 ⊗

[

ay

0

]

⊗ qba . (6)

The term
[

ayT 0
]T

is referred to as the pure quaternion

constructed from ay.
It is convenient to define an equivalent rotation matrix

R(q) such that

[

R(q)y
0

]

= q−1 ⊗

[

y

0

]

⊗ q . (7)

An expression for R(q) can be derived by expanding the
right-hand side of (7) according to (5), (3a), and (3b)
as

[

R(q)y
0

]

=

[

q0I− ⌊q̄⌋ −q̄

q̄T q0

] [

y

0

]

⊗ q

=

[

q0y− ⌊q̄⌋y

q̄Ty

]

⊗ q

=

[

q0I− ⌊q̄⌋ q̄

−q̄T q0

] [

q0y− ⌊q̄⌋y

q̄Ty

]

=

[(

q2
0I− 2q0 ⌊q̄⌋+ q̄q̄T + ⌊q̄⌋2

)

y

0

]

,

(8)

which implies that

R(q) = q2
0I− 2q0 ⌊q̄⌋+ q̄q̄T + ⌊q̄⌋2 .

It can be shown, however, that

⌊q̄⌋2 = q̄q̄T −
(

1− q2
0

)

I ,

so that

R(q) =
(

2q2
0 − 1

)

I− 2q0 ⌊q̄⌋+ 2q̄q̄T . (9)

Rotation matrices exhibit the following properties:

R−1(qba) = RT(qba) = R(qab )

R(qca) = R(qcb)R(qba) (10)

det(R(q)) = 1 .

The formula for vector rotation in equation (6) can
be used to derive the manner in which two rotations are
compounded together. If qba defines the rotation from
frame a to frame b, and qcb the rotation from frame b to
frame c, then to take a vector expressed in frame a and
express it in frame c we have

[

cy

0

]

= (qcb)
−1 ⊗

[

by

0

]

⊗ qcb

= (qcb)
−1 ⊗

(

(qba)−1 ⊗

[

ay

0

]

⊗ qba

)

⊗ qcb

=
(

qba ⊗ qcb
)−1
⊗

[

ay

0

]

⊗
(

qba ⊗ qcb
)

.

We therefore conclude that

qca = qba ⊗ qcb . (11)

Comparing (10) and (11), we see that rotation matrices
and quaternions compound in the opposite order:

R(qba ⊗ qcb) = R(qcb)R(qba) . (12)

When the quaternion conjugation operation is applied
to a quaternion that is not a pure quaternion, the
analysis procedure in equation (8) can be repeated to
show that

q−1 ⊗ p⊗ q =

[

R(q)p̄
p0

]

(13)

for the same rotation matrix R(q) defined by (9).
The result of this operation is that the basis of the
vector portion of p is rotated by the rotation defined
by q. This property is useful when the quaternion is
interpreted according to its axis-angle representation,
and it is desirable to express the axis vector in a different
coordinate frame. This arises in the derivation of some
of the measurement models and Jacobians in this paper.

3.3 Unit Sphere Propagation

Attitude is represented using quaternions of unit length.
Unit quaternions do not form a vector space, but rather
form a group on the unit sphere S3 ⊂ H. The group
operator is quaternion multiplication and the group of
unit quaternions gives a double cover parameterization
of the group of rotations SO(3).

Multiplying a unit quaternion by a non-unit
quaternion will cause the product to leave the unit
sphere. Normalizing the resulting quaternion according
to

q←
q

‖q‖

returns the quaternion to the unit sphere, but
linearization errors are introduced.

To properly rotate a quaternion along the manifold, it
is necessary to represent the rotation in terms of a unit
quaternion. A rotation can be represented using the unit
quaternion as

q =

[

ê sin θ
2

cos θ2

]

, (14)

where ê is a unit vector defining the axis of rotation
and θ is the angle of rotation about that axis. Let
θ , θê ∈ R

3 define the magnitude and direction of
rotation. The mapping from this three-vector rotation
parameterization to a quaternion is denoted by the
operator ∧ : R3 → H and the inverse mapping by the
operator ∨ : H→ R

3. The ∧ operator is defined using
(14) as

θ∧
,

[

θ
‖θ‖ sin ‖θ‖

2

cos ‖θ‖
2

]

. (15)

Rotating a quaternion q along the unit sphere by the
rotation θ is accomplished as q ⊗ θ∧. This is analogous
to the notation q ⊞ θ and q ⊗ exp( θ

2 ) found in the
estimation literature (Hertzberg et al., 2013). The ∨

operator is defined as

q∨ , 2 atan2 (‖q̄‖ , q0)
q̄

‖q̄‖
. (16)
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Fig. 2. Quaternion definitions used in the derivation of the
quaternion time derivative and integration. The same q∆t

is used for both iRN and bRN because it corresponds to the
body-fixed angular velocity ω measured by the rate gyros.

Extracting the underlying rotation between qa and qb
is accomplished as (qa ⊗ (qb)

−1
)∨. This is analogous

to the notation log(qa ⊟ qb) found in the estimation
literature (Hertzberg et al., 2013). As inverse mappings,

it can be shown that θ =
(

θ∧
)∨

and q = (q∨)
∧

.
Eqn. (15) is undefined when ‖θ‖ equals zero,

and in practice becomes numerically unstable as ‖θ‖
approaches zero. There are a number of common
approximations of (15) for a small angle δθ, such as the
second-order Gibbs vector parameterization (Markley,
2003)

δθ∧ ≈
1

√

4 + δθTδθ

[

δθ
2

]

. (17)

The first-order approximation of both (15) and (17) is

δθ∧ ≈

[

1
2δθ
1

]

, (18)

which is useful when deriving first-order Jacobians.
Eqn. (16) can similarly be approximated for a small
quaternion δq as

δq∨ ≈ 2 sign (δq0) δq̄ . (19)

3.4 Time Integration

Several methods can be used to numerically integrate a
quaternion that represents the attitude of a rigid body.
Numerical integration is carried out over a finite time
step ∆t, and is governed by the angular velocity of the
body with respect to an inertial frame as expressed in
the body frame, ω , BωB

I . Let q∆t be an incremental
quaternion and ω0 be the nominal angular velocity.
Zero-order quaternion integration assumes that the
angular velocity is constant over the timestep, ω0 = ωt,
while first-order integration uses linear interpolation,
ω0 = 1

2 (ωt + ωt−1). From (15), we write q∆t as

q∆t = (ω0∆t)
∧

=





ω0

‖ω0‖ sin
(

‖ω0‖∆t
2

)

cos
(

‖ω0‖∆t
2

)



 . (20)

The value of the quaternion qt+∆t at time t+ ∆t can
be expressed as the combination of the quaternion qt at
time t and the incremental quaternion q∆t. The manner

in which these quaternions are combined depends on
whether the attitude quaternion represents the attitude
of the body with respect to an inertial frame (iRN),
or the attitude of an inertial frame with respect to the
body (bRN). As illustrated in Figure 2, the attitude at
time t+ ∆t for these cases is

iRN: qt+∆t = qt ⊗ q∆t ,

bRN: qt+∆t = (q∆t)
−1 ⊗ qt ,

(21)

where the order of compounding follows equation (11).
Substituting (20) into (21) gives

iRN: qt+∆t = qt ⊗





ω0

‖ω0‖ sin
(

‖ω0‖∆t
2

)

cos
(

‖ω0‖∆t
2

)



 , (22a)

bRN: qt+∆t =





− ω0

‖ω0‖ sin
(

‖ω0‖∆t
2

)

cos
(

‖ω0‖∆t
2

)



⊗ qt . (22b)

Integrating according to (22) maintains unit norm,
allowing the attitude to propagate on the unit sphere
S3 ⊂ H. In practice, however, this definition becomes
numerically unstable as ‖ω0‖ approaches zero. As
described by Trawny and Roumeliotis (2005), applying
L’Hospital’s rule to (22a) for iRN shows that

lim
‖ω0‖→0

qt+∆t = qt + ∆t

(

1

2
Ω(ω0)qt

)

, (23)

where

Ω(ω) =

[

−⌊ω⌋ ω

−ωT 0

]

. (24)

Comparing (24) to (3b) shows that (23) can be written
as

qt+∆t = qt + ∆t

(

1

2
qt ⊗

[

ω0

0

])

.

For bRN, a similar analysis can be applied to (22b) to
show

qt+∆t ≈ qt + ∆t

(

1

2

[

−ω0

0

]

⊗ qt

)

.

Note that for bRN both the order of the quaternion
multiplication and the sign of ω0 have been reversed.

In summary, the attitude quaternion is integrated
according to (22) when ‖ω0‖ is sufficiently large to avoid
numerical issues. When ‖ω0‖ is small, the integration is
approximated as

iRN: qt+∆t = qt + ∆t

(

1

2
qt ⊗

[

ω0

0

])

, (25a)

bRN: qt+∆t = qt + ∆t

(

1

2

[

−ω0

0

]

⊗ qt

)

. (25b)

Integrating according to (25) causes the quaternion to
depart from the unit sphere S3; when this method is
used a normalization step therefore follows.

3.5 Attitude Kinematics

The attitude kinematics of a rigid body are described
by the time derivative of the attitude quaternion.
Some authors (Bloesch et al., 2016; Hertzberg et al.,

6
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node, n

nominal body, b̂

true body, b

q̂bn

q̂nb

δqbn

δqnb

qbn

qnb
iRN

bRN

Fig. 3. Error state definitions for inertial and body-fixed
relative navigation. To keep the same intermediate nominal
frame, and as a result have similar error dynamics, the
error state definitions are defined differently.

2013) emphasize the manifold structure of attitude
dynamics by defining q̇ ∈ R

3 as a member of the
associated Lie algebra, while other authors (Trawny and
Roumeliotis, 2005; Markley, 2003) assume a first-order
approximation such that q̇ ∈ R

4. In this paper, while we
use (22) to propagate along the manifold S3, we use the
first-order approximation of the quaternion dynamics
over a finite timestep ∆t for computing the first-order
Jacobian matrices required by the extended Kalman
filter.

The first-order Taylor series approximation of (22),
which assumes 1

2 ‖ω0‖∆t is small∗, yields the same
result as (25). Using (25a), the quaternion time
derivative for iRN is computed as

q̇ = lim
∆t→0

1

∆t

(

qt+∆t − qt
)

q̇ = lim
∆t→0

1

∆t

(

qt + ∆t

(

1

2
qt ⊗

[

ω0

0

])

− qt

)

=
1

2
qt ⊗

[

ω

0

]

.

A similar analysis follows for bRN using (25b).
In summary, attitude quaternion kinematics are
represented by

iRN: q̇ =
1

2
q ⊗

[

ω

0

]

, (26)

bRN: q̇ =
1

2

[

−ω

0

]

⊗ q . (27)

3.6 Error State

Because unit quaternions do not form a vector space,
quaternion error cannot be computed using vector
subtraction. Rather, a true quaternion state q is
represented as the quaternion multiplication of an
estimated quaternion q̂ and quaternion attitude error
δq. By varying the order and direction of the quaternion
multiplication, there are four possible methods to define

attitude error:

Method 1: q , q̂ ⊗ δq , (28a)

Method 2: q , δq ⊗ q̂ , (28b)

Method 3: q , q̂ ⊗ δq−1 ,

Method 4: q , δq−1 ⊗ q̂ .

In this paper, we use (28a) for inertial relative
navigation (iRN) described in Section 6 and use (28b)
for body-fixed relative navigation (bRN) described in
Section 7:

iRN: q , q̂ ⊗ δq , (29a)

bRN: q , δq ⊗ q̂ . (29b)

While using different definitions requires additional
care when deriving the filter, ultimately this minimizes
differences between the dynamics, measurement models,
and keyframe reset steps of iRN and bRN. Figure 3
illustrates the choice of error state definitions and shows
how this selection allows both approaches to keep the
same intermediate nominal body frame b̂. Rearranging
(29), the quaternion error state is defined as

iRN: δq = q̂−1 ⊗ q , (30a)

bRN: δq = q ⊗ q̂−1 . (30b)

Using (12), we can express (29) as

iRN: R(q) = R(δq)R(q̂) , (31a)

bRN: R(q) = R(q̂)R(δq) . (31b)

When representing the attitude uncertainty associ-
ated with a quaternion error, a minimal representation
is required. A quaternion is parameterized with four
numbers, but only three are required to fully param-
eterize an orientation since orientations are associated
with unit quaternions, elements of the three dimensional
group S3. Because the group is three dimensional, the
tangent space at the identity element, or Lie algebra,
will be isomorphic to R

3, and error covariances can be
defined in this 3-dimensional vector space. Accordingly,
we represent the uncertainty in δq as the covariance of
the vector δθ ∈ R

3. The ∧ and ∨ operators of (18) and
(19) define the mapping between the error quaternion
δq and its minimal representation δθ as

δθ = δq∨ ≈ 2 sign(q0)q̄ ,

δq = δθ∧ ≈

[

1
2δθ
1

]

. (32)

By substituting (32) into (9) and ignoring second-order
terms, it follows that

R(δq) ≈ I− ⌊δθ⌋ (33)

and
R(δq−1) = RT(δq) ≈ I + ⌊δθ⌋ . (34)

∗Even for a large ‖ω‖ = 2π rad/s and moderate ∆t = 0.01 s, the

error introduced by linearizing the integration is only on the order
of 10−6 rad.
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3.7 Euler Decomposition

Aircraft attitude is commonly represented using three
angles: roll φ, pitch θ, and yaw ψ. Yaw represents
the rotation about the inertial z-axis (down). Pitch
represents the rotation about the resulting y-axis. Roll
represents the rotation about the x-axis formed after
pitching and yawing. This sequence of rotations, known
as 3-2-1 Euler angles, relates the vehicle’s body frame
to an inertial frame, and can be represented as the
multiplication of three rotation matrices

R(q) = RφRθRψ , (35)

where

Rφ ,





1 0 0
0 cosφ sinφ
0 − sinφ cosφ



 ,

Rθ ,





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



 ,

Rψ ,





cosψ sinψ 0
− sinψ cosψ 0

0 0 1



 .

(36)

Because quaternions are generally less intuitive, they
are often mapped into roll, pitch, and yaw angles for
plotting, analysis, and control. Expanding (35) using (9)
and comparing terms, we obtain

φ = atan

(

2q0qx + 2qyqz
q2
z − q

2
x − q

2
y + q2

0

)

,

θ = asin (2q0qy − 2qxqz) ,

ψ = atan

(

2q0qz + 2qxqy
q2
x − q

2
y − q

2
z + q2

0

)

.

(37)

To map Euler angles into a quaternion, we compose
the attitude quaternion from the roll, pitch, and yaw
components using the order derived in (11) such that

q = qψ ⊗ qθ ⊗ qφ . (38)

Note the order of composition is opposite of (35) as
described by (12). From (14), we get

qφ ,









sin φ
2

0
0

cos φ2









,qθ ,









0
sin θ

2
0

cos θ2









,qψ ,









0
0

sin ψ
2

cos ψ2









. (39)

To show that (38) and (35) are consistent using the
definitions in (39), we need only apply (9) and double-
angle trigonometry identities to (39). For example,

letting k ,
[

0 0 1
]T

, we see that

R(qψ) =

(

2 cos2(
ψ

2
)− 1

)

I− 2 cos(
ψ

2
) sin(

ψ

2
) ⌊k⌋

+ 2 sin2(
ψ

2
)kkT

= cosψI− sinψ ⌊k⌋+ (1− cosψ) kkT

= Rψ .

By substituting (39) into (38), a unit quaternion can be
constructed from roll, pitch, and yaw angles as

qx = cos
ψ

2
cos

θ

2
sin

φ

2
− sin

ψ

2
sin

θ

2
cos

φ

2
,

qy = cos
ψ

2
sin

θ

2
cos

φ

2
+ sin

ψ

2
cos

θ

2
sin

φ

2
,

qz = sin
ψ

2
cos

θ

2
cos

φ

2
− cos

ψ

2
sin

θ

2
sin

φ

2
,

q0 = cos
ψ

2
cos

θ

2
cos

φ

2
+ sin

ψ

2
sin

θ

2
sin

φ

2
.

Appendix A derives the Jacobian that relates errors
in the Euler angle decomposition to the attitude error
state. Defining

∆ ,





φ− φ̂

θ − θ̂

ψ − ψ̂



 ,

the covariance of ∆ is related to the covariance of δθ as

E
[

∆∆T

]

= N∆E
[

δθδθT

]

NT

∆ ,

where N∆ = ∂∆/∂δθ is given for the iRN case by (100)
in Appendix A.

3.8 Error Quaternion Properties

This section presents several properties of error
quaternions that are needed in the derivation of
the Jacobians used in the RMEKF. The first of
these properties relates to the product of two error
quaternions. Using (32) and (3a), and by dropping
second-order terms, we obtain

δqc = δqa ⊗ δqb
[

1
2δθc

1

]

=

[

I + 1
2 ⌊δθa⌋

1
2δθa

− 1
2δθ

T

a 1

] [

1
2δθb

1

]

=

[

1
2δθa + 1

4 ⌊δθa⌋ δθb + 1
2δθb

− 1
4δθ

T

aδθb + 1

]

≈

[

1
2 (δθa + δθb)

1

]

,

from which we can conclude that

δqc = δqa ⊗ δqb
=⇒ δθc ≈ δθa + δθb .

(40)

It can be similarly shown that

δqc = (δqa)−1 ⊗ δqb =⇒ δθc ≈ −δθa + δθb ,

δqc = δqa ⊗ (δqb)
−1 =⇒ δθc ≈ δθa − δθb .

For the next property, we recall from Section 3.2
that quaternion conjugation operating on an arbitrary
quaternion rotates the basis of the vector portion of that
quaternion. Using equation (13) with (32), we see that

δqb = q−1 ⊗ δqa ⊗ q

=⇒ δθb ≈ R(q)δθa .
(41)

In addition, (40) and (41) can be combined to verify
that, for example,

δqc = δqa ⊗ q−1 ⊗ δqb ⊗ q

=⇒ δθc ≈ δθa + R(q)δθb . (42)

8
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4 Multiplicative Extended Kalman
Filter

With the quaternion notation and properties estab-
lished, we are prepared to outline the proposed esti-
mation framework: a continuous-discrete, indirect, mul-
tiplicative extended Kalman filter (MEKF). For gen-
erality, in this section we derive the MEKF without
defining the specific state, input, and measurement
variables. This derivation will be made more concrete in
Sections 6 and 7, where the actual implementations with
specific variable definitions are presented. This section
is predominantly a review of techniques found in the
literature, but introduces notation that helps to clarify
the derivation.

A Kalman filter provides the optimal, maximum-
likelihood state estimate for a linear system under
Gaussian noise. It recursively estimates the evolution of
the system state x as a function of the current state
estimate x̂ = E[x], input u, and measurement z. A
Kalman filter also maintains an estimate of the state
uncertainty, represented by the covariance matrix P,
typically defined as

P = E
[

(x− E [x]) (x− E [x])
T

]

. (43)

The extended Kalman filter (EKF) is an extension
of the Kalman filter for systems with nonlinear
dynamics and/or nonlinear measurement models.
The EKF linearizes the system about the current
maximum-likelihood state estimate. While optimality
and convergence are no longer guaranteed as opposed to
a linear Kalman filter, EKFs are widely used in practice
for their robust performance and straightforward
implementation. If the state x includes a quaternion,
however, (43) is fundamentally flawed. First, quaternion
subtraction is not well-defined as described in
Section 3.6, and second, (43) is never full rank because
quaternions are not a minimal representation. These
issues are addressed using an error-state, or indirect,
formulation of the Kalman filter.

The indirect Kalman filter tracks the error state δx
and its uncertainty. Unlike the state x, the error state
is defined as an element of a vector space by using a
minimal attitude representation. The error state is a
measure of the discrepancy between the true state x

and a nominal state xnom, where xnom can be defined
in a number of different ways, as described by Farrell
(2008). When the system dynamics are especially well-
modeled, such as for a spacecraft in orbit, xnom may
be a predetermined feedforward state estimate. More
commonly, the nominal state is the maximum likelihood
state estimate xnom = E [x]. In this case, measurements
provide feedback to update the nominal state, forcing
the expected value of the error state to zero. Some
indirect Kalman filter implementations differentiate
between fast and slow measurements, and only update
the nominal state for the slow measurements (Farrell,
2008; Maybeck, 1979). For such systems, xnom 6= E [x]
at the fast rate, so that the expected error state is non-
zero and must be propagated. For the derivation in this
paper, the nominal state is updated equivalently for

every measurement, ensuring that xnom = x̂ = E[x] at
any given time.

Let xv and xq represent vector and quaternion
portions of the state x, and δxv and δxθ be the
corresponding elements of the error-state δx. We define
these error-state elements as

δxv , xv − x̂v , (44a)

δxθ , δq∨ , (44b)

where δq is defined by (30) using xq and x̂q. This results
in the property

E[δx] = 0 , (45)

as derived in Appendix B.1. Because the error state
is part of a vector space, and as a result of (45), the
indirect Kalman filter represents state uncertainty with
the well-defined covariance

P = E
[

(δx− E [δx]) (δx− E [δx])
T

]

= E
[

δxδxT
]

. (46)

As a note on interpretation, in this formulation
the unknown true state is modeled as a random
variable centered around the current state estimate.
More specifically, the vector and quaternion portions of
the true state are modeled as random variables using
the inverse of (44) as

xv = x̂v + δxv ,

iRN: xq = x̂q ⊗ (δxθ)
∧
,

bRN: xq = (δxθ)
∧ ⊗ x̂q ,

where δxv and δxθ are elements of the Gaussian random
vector

δx ∼ N (0,P) .

Kalman filters are decomposed into two steps:
the propagation step and the update step, which
are described in Sections 4.1 and 4.2. Section 4.3
discusses a method to handle delayed or out-of-order
measurements. In general, the MEKF can use either an
inertial or body-fixed coordinate frame. Several nuanced
differences exist, however, and are highlighted as iRN-
or bRN-specific.

4.1 Propagation

Consider the continuous-time system

ẋ = f(x,u + υ) + η , (47)

where υ ∼ N (0,Qu) and η ∼ N (0,Qx) are zero-
mean Gaussian random variables. More specifically, we
assume that η and υ are uncorrelated,

E
[

ηυT
]

= 0 , (48)

and that the input and process noise are not correlated
in time:

E
[

η(t)η(τ)T
]

= Qxδ(t− τ) ,

E
[

υ(t)υ(τ)T
]

= Quδ(t− τ) ,
(49)

9
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where δ(t) is the Dirac delta function.
In the propagation step, the filter propagates the state

estimates forward according to the nominal propagation
dynamics as

˙̂x = f(x̂,u) . (50)

When x is part of a vector space, the Jacobians needed
for propagating the covariance are obtained from the
first-order Taylor series expansion of the error-state
dynamics as

δẋ = f(x,u + υ) + η − f(x̂,u) (51a)

≈ f(x̂,u) +
∂f

∂x

∣

∣

∣

∣

x̂,u

δx +
∂f

∂u

∣

∣

∣

∣

x̂,u

υ + η − f(x̂,u)

=
∂f

∂x

∣

∣

∣

∣

x̂,u

δx +
∂f

∂u

∣

∣

∣

∣

x̂,u

υ + η . (51b)

When the state x includes quaternion terms, however,
the error-state dynamics cannot be formed by simple
subtraction as in (51a). In fact, as described in
Section 3.6, the error state δx is of lower dimension than
x. Noting that x is a function of x̂ and δx according to
(44), the dynamics of the error state can be expressed
generally as a single function

δẋ = f̄(δx,υ, x̂,u) + η , (52)

where only δx, υ, and η are stochastic variables†. The
function f̄ then handles the quaternion portions of the
state appropriately. We show in Appendix B.2 that
f̄(E[δx], E[υ], x̂,u) = 0. The Jacobians for the covari-
ance propagation are computed from the first-order
Taylor series expansion of (52) about (E[δx], E[υ], x̂,u)
as

δẋ ≈ f̄(E[δx], E[υ], x̂,u) + η

+ F(δx− E[δx]) + G(υ − E[υ])

= Fδx + Gυ + η , (53)

where

F =
∂ f̄(δx,υ, x̂,u)

∂δx

∣

∣

∣

∣

E[δx],E[υ],x̂,u

and

G =
∂ f̄(δx,υ, x̂,u)

∂υ

∣

∣

∣

∣

E[δx],E[υ],x̂,u

,

with E[δx] = E[υ] = 0. Note that (53) has the form of
(51b), but the Jacobian terms differentiate the error-
state dynamics with respect to the error state and input
noise, rather than with respect to the state and input.

The error-state covariance propagation is given by
differentiating (46) with respect to time and utilizing
the linearized error dynamics from (53) as

Ṗ = E
[

δẋδxT + δxδẋT
]

= E
[

FδxδxT + GυδxT + ηδxT
]

+ E
[

δxδxTFT + δxυTGT + δxηT

]

= FP + PFT + E
[

GυδxT + δxυTGT

]

+ E
[

ηδxT + δxηT
]

. (54)

To simplify terms, we solve the differential equation in
(53) with initial conditions δx0 to obtain

δx(t) = e
Ft

δx0 +

∫ t

0

e
F(t−τ)

Gυ(τ)dτ +

∫ t

0

e
F(t−τ)

η(τ)dτ .

(55)

Using (55) and the properties (48) and (49), we see that

E
[

δxυTGT

]

= E
[

eFtδx0υTGT

]

+ E

[
∫ t

0

eF(t−τ)Gυ(τ)υT(t)GTdτ

]

+ E

[
∫ t

0

eF(t−τ)η(τ)υT(t)GTdτ

]

= E

[
∫ t

0

eF(t−τ)GQuδ(t− τ)GTdτ

]

=
1

2
GQuGT (56)

where the 1
2 is because the bounds of integration only

use half of the area inside of the delta function. Similarly,

E
[

δxηT
]

=
1

2
Qx . (57)

Because Qu and Qx are symmetric, combining (54),
(56), and (57) we have that P evolves between
measurements as

Ṗ = FP + PFT + GQuGT + Qx . (58)

In summary, during the propagation step, x̂ is
propagated forward using (50) and the error covariance
is propagated forward using (58). Also, since the
evolution of δx is given by (53) and E[δx](0) = 0, we
have that E[δx](t) = 0 over the propagation window.

4.2 Measurement Update

For the update step, consider the measurement

z = h(x,ηz) , (59)

where ηz ∼ N (0,R) represents measurement noise.
This measurement noise is usually additive if the
measurement is a vector quantity, but if the measured
quantity is a quaternion the noise is applied through
quaternion multiplication.

The residual r is the discrepancy between the true
measurement and the predicted measurement

ẑ = h(x̂,0) .

Conventionally a vector-space measurement is assumed,
such that (59) is simplified as

z = h(x) + ηz .

In this case, the residual is found by subtraction,

r = z− h(x̂) ,

†Note our slight abuse of notation in that η in (52) is of the same

dimensionality as the error vector, while in (47) η is of the same
dimensionality as the state vector.
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and is modeled as

r = h(x) + ηz − h(x̂) .

Jacobians are then computed using the first-order
Taylor-series expansion as

r ≈ h(x̂) +
∂h(x)

∂x

∣

∣

∣

∣

x̂

δx + ηz − h(x̂)

=
∂h(x)

∂x

∣

∣

∣

∣

x̂

δx + ηz . (60)

These measurement and residual models share similar
shortcomings with the conventional error-state dynam-
ics presented in (51), namely they do not hold for
quaternion measurements and (60) assumes the state
x is of the same dimensionality as δx.

These issues can be addressed by expressing the
residual model as a single function, paralleling the
approach taken for the propagation step in Section 4.1.
Again noting that x is a function of x̂ and δx, the
residual is modeled as a function

r = h̄(δx,ηz, x̂) ,

where only the first two variables are stochastic. For
measurements zv of vector values, the residual value is
computed by subtraction as

r = zv − h(x̂,0) , (61)

and is modeled as

h̄(δx,ηz, x̂) = h(x,ηz)− h(x̂,0) , (62)

where x can be rewritten in terms of δx and x̂ according
to (29) and by rearranging (44a). For measurements zq

of quaternion values, the residual value is computed
as the three-vector minimal representation of the
error between the observed and expected quaternions
according to (30) as

iRN: r =
(

h(x̂,0)−1 ⊗ zq

)∨
,

bRN: r =
(

zq ⊗ h(x̂,0)−1
)∨
,

(63)

and is modeled as

iRN: h̄(δx,ηz, x̂) =
(

h(x̂,0)−1 ⊗ h(x,ηz)
)∨
,

bRN: h̄(δx,ηz, x̂) =
(

h(x,ηz)⊗ h(x̂,0)−1
)∨
,
(64)

where again x can be rewritten in terms of δx and x̂

according to (29) and (44a).
It follows from (62) and (64) that the residual

models have the property h̄(E[δx], E[ηz], x̂) = 0. The
measurement models in this paper are chosen so that
the noise is additive in the residual space, implying that
∂r
∂η

z

= I. The measurement Jacobians are computed

using the first-order Taylor-series expansion of h̄ about
(E[δx], E[ηz], x̂) as

r ≈ h̄(E[δx], E[ηz], x̂) + H (δx− E[δx])

+ I(ηz − E[ηz])

= Hδx + ηz ,

where

H =
∂h̄(δx,ηz, x̂)

∂δx

∣

∣

∣

∣

E[δx],E[η
z
],x̂

and E[δx] = E[ηz] = 0.

Assuming the measurement noise, error state, and
input noise are uncorrelated, the residual uncertainty
is

S , E[rrT]

= E[HδxδxTHT + ηzηT

z ]

= HPHT + R . (65)

The Kalman gain uses the residual and state uncertainty
to find the extent to which the residual should be trusted
and applied. Using the residual covariance, the Kalman
gain is

K = PHTS−1 . (66)

In fusing the information provided by the measure-
ment, the a posteriori estimate of the error state,
denoted with a +, is

δx+ = δx + Kr ,

implying that

E[δx+] = Kr .

With the additional information provided by the
measurement update, the error state is no longer zero-
mean, violating the property in (45). Let xv and xq

again be vector and quaternion states within x, and
let ∆v and ∆θ be the corresponding portions of the
Kalman update Kr. To ensure the error state remains
zero mean, the Kalman update Kr is used to adjust x̂

as

x̂+
v = x̂v + ∆v

iRN: x̂+
q = x̂q ⊗∆θ∧ (67a)

bRN: x̂+
q = ∆θ∧ ⊗ x̂q . (67b)

where (67a) and (67b) are specific to the quaternion
error-state definition used.

Finally, the covariance is updated conventionally as

P+ = (I−KH) P .

In practice we use the Joseph form Kalman update,

P+ = (I−KH) P (I−KH)
T

+ KRKT , (68)

because it improves numerical stability and ensures that
the covariance matrix remains symmetric (Bar-Shalom
et al., 2002).

In summary, during the update step the measurement
residual (61) or (63) provides additional information
causing a non-zero E[δx]. Using the Kalman gain (66),
x̂ is updated according to (67) to ensure E[δx] remains
zero mean. The error-state covariance is updated
according to (68).
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4.3 Delayed Out-of-Order Measurements

The Kalman filter assumes the state evolves according
to a Markov process. As such, state estimates for
all previous time steps are marginalized. This makes
it difficult to compute a residual for delayed or
out-of-order measurements when they finally arrive.
In practice, delayed measurements are common. For
example, visual odometry algorithms may require
hundreds of milliseconds to perform the computer vision
operations necessary to compute a measurement. Ideally
this measurement is used to constrain the state of the
vehicle when the image was taken, not to constrain the
state of the vehicle when the measurement arrives.

To address delayed measurements, we use priority
queues to save the last T seconds of inputs,
measurements, states, and error-state covariances
ordered by time. If a delayed measurement arrives
with a time stamp more than T seconds old, we
discard the measurement. Otherwise, we discard all
saved states and error-state covariances that have a
time stamp later than the time stamp of the incoming
delayed measurement. At this point, we are left with
the state and covariance estimate at the instant the
delayed measurement should have arrived. We apply
the measurement normally, and then use the input and
measurement queues to re-propagate the MEKF to the
current time instance. This approach provides the same
state estimate as if all measurements had arrived at the
correct time. Handling delayed messages in this way may
not be practical for all processors. Similar methods are
described by Bopardikar et al. (2013) and Shen et al.
(2014).

5 Relative Navigation

Section 4 provided a general overview of the indirect
MEKF. This section describes how the MEKF is
adapted to the relative navigation framework.

Conventional filtering approaches directly estimate
the vehicle’s global state with respect to some inertially-
fixed origin, such as the GPS origin or the vehicle’s
starting location; however, when only relative position
measurements such as those obtained from visual
odometry or laser scan matching are available, the
vehicle’s global position and heading are unobservable
(Martinelli, 2012; Weiss et al., 2012; Jones et al.,
2007). Over time, directly estimating these unobservable
states leads to inconsistent and unbounded state
uncertainties, which can degrade accuracy and cause
irregular state jumps in the filter (Julier and Uhlmann,
2001; Bailey and Durrant-Whyte, 2006; Kottas et al.,
2013). Methods for mitigating these issues have been
proposed (Bailey and Durrant-Whyte, 2006; Kottas
et al., 2013; Castellanos et al., 2007), but the core
underlying issue of unobservable states can be avoided
entirely by reformulating the problem in terms of
relative states (Wheeler et al., 2018).

The relative navigation approach maintains observ-
ability of the filter states by estimating the pose of the
vehicle with respect to a local coordinate frame referred
to as the node frame. This node frame is positioned at

zero altitude directly below the most recent odometry
keyframe, but is gravity-aligned (i.e. the heading is
aligned with the vehicle’s heading when the keyframe
was declared, but there is no pitch or roll). As a result,
the odometry provides nearly-direct measurements of
the position and heading of the vehicle with respect to
the current node frame, making those states observable
by construction.

Because of the way the node frame is defined, the
roll and pitch components of the vehicle’s attitude (φ,
θ), as well as the vehicle’s altitude pz, are estimated
as if they were defined with respect to a global origin.
These states are not affected when transitioning from
one node frame to another and so are, in effect,
independent of the current node frame. On the other
hand, the horizontal position and heading states (px,
py, and ψ) define how the vehicle has moved since
the last node frame, and are termed relative states.
Each time a new keyframe is declared, a new node
frame is also declared and the relative states (px, py,
and ψ) are reset to zero. The covariances associated
with the relative states are also reset to zero, since the
vehicle is, by definition, at the location of the node
frame and so there is no uncertainty in these states.
This is illustrated in Figure 4. The non-relative states
(roll, pitch, altitude, body-fixed velocities, and body-
fixed IMU biases) and their covariances are unchanged
by the keyframe reset operation. Note that resetting
the heading component of the state and covariance
is non-trivial when attitude is parameterized with a
quaternion. Prior to the reset, the vehicle’s current
relative pose estimate and covariance are passed to a
back-end pose-graph map that concatenates the relative
poses into an estimate of the vehicle’s global path and
current global pose (Wheeler et al., 2018).

We describe the keyframe reset operation mathemat-
ically as follows. Let n(x) define the keyframe reset
operation. The estimated state is reset as

x̂+ = n(x̂) . (69)

The error state after the reset, δx+, is the difference
between x+ and x̂+ as defined by (44). Again recalling
that since x is a function of δx and x̂, we can express
the error state after the reset as a single function

δx+ = n̄(δx, x̂) .

This allows the covariance to be updated as

P+ = NPNT , (70)

where

N =
∂n̄(δx, x̂)

∂δx

∣

∣

∣

∣

E[δx],x̂

.

The details of the reset operation n(x) and the Jacobian
N are presented in Section 6.3 for iRN and in Section
7.3 for bRN.

This formulation provides several advantages in terms
of estimator performance. One of these advantages is
that when the covariance associated with the relative
states is reset to zero, uncertainty is in essence removed

12
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py

px

ψ

n

(a) Before reset

n

n

(b) After reset

Fig. 4. Illustration of the keyframe reset operation as
viewed from above. Before the reset (4a), there is some
error between the estimated pose (blue) and the true pose
(green), with the estimated uncertainty represented by the
blue covariance ellipse. When the reset occurs, the vehicle
is, by definition, at the location of the keyframe. As a
result, after the reset (4b), both the relative states and the
corresponding elements of the covariance matrix are set
identically to zero and there is no error.

from the filter and delegated to the back-end map,
which helps to maintain filter consistency (Barfoot and
Furgale, 2014). As a result, the covariance in the filter
also remains bounded. In addition, since the distances
between keyframes are relatively small, the state error
remains small, avoiding significant linearization errors
that can cause inconsistency in a global estimator
(Castellanos et al., 2007).

While reconstructing the global pose estimate
requires implementing a back-end pose-graph map, this
architecture has also been shown to improve consistency
and accuracy of the final global pose estimate over global
filter approaches, even in the absence of additional
pose-graph constraints such as loop closures (Wheeler
et al., 2018). It also has the advantage of avoiding large,
potentially destabilizing state jumps when new global
information becomes available. The requirement to
implement this pose-graph map is also not a particularly
onerous one, seeing as some global filter approaches
already use a back-end batch-processed map to provide
updates to their global filter (Shen et al., 2014; Weiss
and Siegwart, 2011).

The various steps for implementing an RMEKF are
summarized in Algorithm 1, along with references to the
key equations. The specific implementation equations
are derived in Section 6 for inertial relative navigation
and in Section 7 for body-fixed robocentric relative
navigation.

6 Inertial Relative Navigation (iRN)

Inertial relative navigation (iRN) estimates the vehicle’s
position and attitude with respect to the current node
frame. While the current node frame changes regularly,
each is gravity-aligned and inertially defined. For this
reason, typical UAS dynamics from the GPS/INS
literature are applicable. Section 6.1 outlines the input,
state, and dynamics for the system, including the error-
state dynamics. Section 6.2 defines the measurement

Algorithm 1 Relative multiplicative extended Kalman
filter (RMEKF)

1: Initialize: x̂ = x0

2: Initialize: P = P0

3: for Each new available input u do

4: Propagate nominal state x̂ using (50)
5: Propagate error-state covariance P using (58)
6: for i in sensors do

7: if Measurement is available from sensor i then

8: Compute residual r using (61) or (63)
9: Compute residual uncertainty S using (65)

10: Compute Kalman gain K using (66)
11: Use Kr to update x̂ using (67)
12: Update error-state covariance P using (68)

13: if New keyframe is declared then

14: Save x̂ and P as edge in pose-graph back end
15: Reset state using (69)
16: Reset uncertainty using (70)

models and Section 6.3 outlines the keyframe reset
step. In general, the derivations in this section improve
upon the mathematical rigor of the derivations in prior
work (Leishman and McLain, 2014) and provide some
corrections. New contributions that extend that work
are noted in their respective sections.

6.1 State Dynamics

This section derives the state propagation model used
in the filter. Section 6.1.1 defines the state vector.
Section 6.1.2 discusses how measurements from an
inertial measurement unit (IMU) are incorporated into
the propagation model, and Section 6.1.3 defines the
state propagation model and derives the associated
Jacobians.

6.1.1 State Vector. Vectors use a forward-right-down
coordinate frame, with axes labeled x, y, and z. In this
paper, the position vector cpba denotes the position of
frame b with respect to frame a, expressed in frame c.
Unless otherwise noted, position vectors are expressed in
the originating frame, i.e. frames a and c are the same.
When this is the case the prescript is usually omitted
for brevity, so that pba , apba. However, the prescript is
occasionally included for clarity.

Inertial relative navigation estimates the position and
attitude of the vehicle’s body frame b with respect to
and expressed in the current node frame n, denoted by
the pose (pbn,q

b
n). Let frame k represent the vehicle’s

body frame at the instant in time that the current
keyframe image was taken. The estimator tracks the
pose of k with respect to and expressed in n, denoted as
(pkn,q

k
n), which is an extension to prior work (Leishman

and McLain, 2014). As illustrated in Figure 5a, the
keyframe states (pkn,q

k
n) include the altitude, roll, and

pitch of the vehicle at the moment a keyframe is
declared. Since the vehicle state is not a vector when
it contains quaternion elements, we define the state as
the tuple

x ,
(

pbn, qbn, v, βω, βa, pkn, qkn, µ
)
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n

k
b

pkn
pbn

(a) Before reset

n

k

n

k, b

pkn,p
b
n

(b) After reset

Fig. 5. Illustration of the keyframe reset operation as
viewed from the side. (a) pk

n and qk
n encode the roll, pitch,

and altitude of the vehicle when the keyframe was declared.
(b) After a reset, the keyframe and body states are
identical.

with x ∈ R
3 ×H× R

3 × R
3 × R

3 × R
3 ×H× R, where

v ∈ R
3 is the vehicle’s inertial velocity expressed in

the body frame (i.e. v , bvbI where I is an inertial
frame), βω ∈ R

3 and βa ∈ R
3 are unknown biases for

the gyro and accelerometer, and µ ∈ R is the lateral drag
coefficient. The error-state vector δx ∈ R

22 is defined as

δx =
[

δpbn
T

δθbn
T

δvT δβω
T δβa

T δpkn
T

δθkn
T

δµ

]T

.

6.1.2 Mechanization. Let ω , bωb
I and a , babI

respectively define the true body-fixed angular rates
and accelerations as measured by an ideal IMU. For
brevity we omit specifying the frames and write ω and
a throughout the paper.

An IMU provides measurements ω̃ and ã that are
corrupted by unknown biases βω and βa and zero-
mean Gaussian noise processes υω and υa, such that
the measured values could be modeled as

ω̃ = ω + βω + υω

ã = a + βa + υa . (71a)

Recognizing that the actual measured values ω̃ and ã

are fixed at a given timestep and that the noise terms
are considered to be uncorrelated in time, the unknown
true values are modeled as random variables as

ω = ω̃ − βω − υω (72a)

a = ã − βa − υa , (72b)

where ω, a, βω, βa, υω, and υa are random variables
and ω̃ and ã are considered as constants. The nominal
value of the angular rate used for propagation is then
the expected value of the true angular rate

ω̂ , E[ω]

= E[ω̃ − βω − υω]

= ω̃ − β̂ω , (73)

and the nominal value of the acceleration used
for propagation is the expected value of the true
acceleration

â , E[a]

= E[ã − βa − υa]

= ã − β̂a . (74)

FT

FG

FD

v

g

Fig. 6. Free body diagram describing the forces acting on
a multirotor. The principal forces are gravity FG, thrust
FT , and drag FD. The vector v represents the velocity of
the vehicle, and g represents the gravity vector. The
gravity force acts in the direction of gravity, the thrust
force acts perpendicular to the plane of the rotors, and the
simplified drag force acts opposite the velocity vector.

IMU data can be treated either as a system input or
as a measurement, in a trade-off based on IMU quality
and model accuracy. When a reliable vehicle model is
available, the controller’s output (e.g. motor commands)
can be used as an input to the observer to propagate the
state forward. In this case, IMU data are incorporated
as measurement updates providing feedback. This
approach leverages the most information but requires
careful characterization of the vehicle’s dynamics.
Another common approach, known as mechanization,
treats the IMU measurements directly as inputs to
the filter dynamics, which replaces the vehicle-specific
dynamics with kinematic equations. This simplifies
the propagation dynamics and eliminates sensitivity to
modeling errors, but does not use any information about
how the vehicle behaves.

For the filter design in this paper, the angular
velocity measured by the rate gyros ω̃ is treated as an
input to the propagation equations. Following Leishman
et al. (2014a), the z component of the accelerometer
measurement is also treated as an input, while the x
and y components are used as measurement updates.
The following paragraphs explain the derivation and
justification for this approach.

Using Newton’s second law, the velocity dynamics can
be modeled as

v̇ = ⌊v⌋ω +
1

m

∑

BF , (75)

where m is the mass of the vehicle and BF are the
forces acting on the vehicle expressed in the body frame.
As illustrated in Figure 6, the principal forces that act
on a multirotor are gravity BFG = mR(qbn)g, thrust
BFT = Tk, and the simplified drag force BFD = −µ0v,

where k ,
[

0 0 1
]T

, T is the total rotor thrust, µ0 is
the nominal drag coefficient, and g = gk with g being
the standard acceleration due to gravity. Substituting
these forces into (75) yields

v̇ = ⌊v⌋ω +
1

m

(

BFG + BFT + BFD

)

= ⌊v⌋ω + R(qbn)g +
T

m
k−

µ0

m
v . (76)

While technically correct, the dynamics in (76) are
challenging to use in practice because the thrust T
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is difficult to model and so is generally unknown.
This difficulty is addressed through mechanization by
utilizing the accelerometer measurements directly in the
propagation model. As explained by Leishman et al.
(2014a), accelerometers measure the specific force (not
including gravity) expressed in the body frame, so that

a =
1

m

∑

BF− BFG

=
1

m

(

BFT + BFD

)

=
T

m
k−

µ0

m
v . (77)

Substituting (77) into (76) yields the common
mechanization dynamics

v̇ = ⌊v⌋ω + R(qbn)g + a . (78)

Equation (78) eliminates the need for modeling
complicated vehicle dynamics, but ignores information
about the dynamics that might improve estimator
performance by building up cross-correlation terms in
the covariance matrix P.

In practice, we have found the most success using a
combination of (76) and (78). Noting that the unknown
thrust term in (76) appears only in the z component,
a hybrid propagation model is obtained by substituting
only the z component of (77) into (76) to obtain

v̇ = ⌊v⌋ω + R(qbn)g + azk− µΠkv , (79)

where az = kTa, µ , µ0/m is the specific drag
coefficient, and

Πk , I− kkT

is a projection matrix that projects onto the plane
normal to the k axis.

As a result of this hybrid approach, we consider the
gyroscope and z-axis accelerometer measurements as
system inputs, while using the horizontal accelerometer
measurements as feedback in the update step. The
system input and input noise are therefore defined as

u =

[

ω̃

ãz

]

, υ =

[

υω

υaz

]

,

where ãz = kTã and υaz
= kTυa.

6.1.3 Propagation Model. The system dynamics are
modeled as

ṗbn = RT(qbn)v (80a)

q̇bn =
1

2
qbn ⊗

[

ω

0

]

(80b)

v̇ = ⌊v⌋ω + R(qbn)g + azk− µΠkv + ηv (80c)

β̇ω = ηβ
ω

β̇a = ηβ
a

ṗkn = 0

q̇kn = 0

µ̇ = 0 ,

where ω is given by (72a), az is given by the z
component of (72b), and ηv, ηβ

ω

, and ηβ
a

are zero-
mean Gaussian noise processes for the corresponding
states. The state pbn is propagated according to a
standard kinematic model, qbn is propagated according
to (26) and the discussion in Section 3.4, and v is
propagated according to (79). The dynamics for the bias
states βω and βa are modeled as random walks, while
the keyframe states pkn and qkn represent the relative
pose of static coordinate frames and therefore do not
change. The drag term µ is constant and so has zero
dynamics, but uncertainty in this state is considered by
assigning it a non-zero initial covariance.

The state estimate is propagated by substituting the
expected values of the state, input, and process noise
terms into (80) as

˙̂pbn = RT(q̂bn)v̂

˙̂qbn =
1

2
q̂bn ⊗

[

ω̂

0

]

(81a)

˙̂v = ⌊v̂⌋ ω̂ + R(q̂bn)g + âzk− µ̂Πkv̂

˙̂
βω = 0

˙̂
βa = 0

˙̂pkn = 0

˙̂qkn = 0

˙̂µ = 0 ,

where ω̂ is given by (73) and âz is given by the z
component of (74).

The error-state dynamics are found by relating (80)
and (81) using the error-state definition (44). The first-
order approximation of the error-state dynamics are

δṗbn ≈ −RT(q̂bn) ⌊v̂⌋ δθbn + RT(q̂bn)δv

δθ̇
b

n ≈ −
⌊

ω̃ − β̂ω

⌋

δθbn − δβω − υω

δv̇ ≈
⌊

R(q̂bn)g
⌋

δθbn +
(

−
⌊

ω̃ − β̂ω

⌋

− µ̂Πk

)

δv

− ⌊v̂⌋ δβω − kkTδβa −Πkv̂δµ

− ⌊v̂⌋υω − kηaz
+ ηv

δβ̇ω = ηβ
ω

δβ̇a = ηβ
a

δṗkn = 0

δθ̇
k

n = 0

δµ̇ = 0

and are derived in Appendix C. Differentiating the error
state dynamics with respect to the error state and input
noise results in the following propagation Jacobians:

F =













0 −RT(q̂b

n
)⌊v̂⌋ RT(q̂b

n
) 0 0 0 0 0

0 −⌊ω̃−β̂
ω⌋ 0 −I 0 0 0 0

0 ⌊R(q̂b

n
)g⌋ −⌊ω̃−β̂

ω⌋−µ̂Πk −⌊v̂⌋ −kkT 0 0 −Πkv̂

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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and

G =









0 0
−I 0

−⌊v̂⌋ −k
0 0
0 0
0 0
0 0
0 0









.

6.2 Measurement Models

The accelerometer, altimeter, and visual odometry or
laser scan matching algorithm provide measurements
to constrain state estimates. For each sensor, the
measurement model, residual model, and residual
Jacobians are defined.

6.2.1 Accelerometer. Because the z portion of the
accelerometer measurement is used as an input to the
propagation, the update step uses only the x and y
components of ã, such that

zacc = I2×3 ã .

The accelerometer measurement model can be derived
from (71a) and (77) as

hacc(x,u + υ) = I2×3 (a + βa + υa)

= I2×3

(

T

m
k−

µ0

m
v + βa + υa

)

= I2×3 (−µv + βa + υa) , (82)

where the thrust term T
m

k drops out because I2×3
T
m

k =
0. We can expand this model in terms of δx and
x̂ according to (44) and drop second-order terms‡ to
obtain

hacc(x,u+υ)=I2×3

(

−(µ̂+δµ) (v̂+δv)

+β̂a+δβa+υa

)

≈I2×3

(

−µ̂v̂−µ̂δv−δµv̂

+β̂a+δβa+υa

)

.

From (82), the estimated measurement is

hacc(x̂,u) = I2×3

(

−µ̂v̂ + β̂a

)

.

For a given acceleration measurement zacc, the residual
is

racc = zacc − hacc(x̂,u) ,

and is modeled as

racc = hacc(x,u + υ)− hacc(x̂,u)

= I2×3 (−µ̂δv− v̂δµ+ δβa + υa) .

The measurement Jacobian is therefore

Hacc = I2×3

[

0 0 −µ̂I 0 I 0 0 −v̂
]

.

The measurement noise is the x and y components of
the accelerometer noise,

Racc = I2×3E
[

υaυT

a

]

IT

2×3 .

node, n

keyframe body, k

current body, b

current camera, c

keyframe camera, kc

pkn,q
k
n

pbn,q
b
n

pkck ,q
kc
k

pcb,q
c
b

pckc,q
c
kc

Fig. 7. Transforms associated with the visual odometry
measurement model for iRN. The transform (pc

kc, qc
kc) is

the output of the visual odometry algorithm. The
transform (pc

b, qc
b) defines the pose of the camera frame

with respect to the vehicle’s center of mass, and is assumed
to be fixed and known. The frame k represents the pose of
the body at the time of the keyframe, and the frame kc

represents the pose of the camera at that time. As a result,
pkc

k = pc
b and qkc

k = qc
b.

6.2.2 Altimeter. The altimeter model is for an
ultrasonic range finder, which reports the nearest return
in its conical field of view. As a result, the sensor reports
height above ground regardless of the current attitude of
the vehicle, as long as roll and pitch angles are moderate.
The measurement model and its estimate are

halt(x) = −kTpbn + ηalt (83)

halt(x̂) = −kTp̂bn .

For a given altimeter measurement zalt, the residual is

ralt = zalt − halt(x̂) ,

which is modeled as

ralt = halt(x)− halt(x̂)

= −kTpbn + ηalt + kTp̂bn

= −kTδpbn + ηalt

resulting in the measurement Jacobian

Halt =
[

−kT 0 0 0 0 0 0 0
]

.

6.2.3 Visual Odometry Translation. Incorporating
measurements from visual odometry algorithms
is somewhat more involved than the previous
measurement models. Figure 7 outlines the relationship
between the visual odometry output and the state. The
visual odometry output (pckc,q

c
kc) relates the current

camera frame to the keyframe camera frame. The
transform (pcb,q

c
b) express the pose of the camera frame

with respect to the vehicle’s center of mass. Commonly
the camera frame used in visual odometry algorithms
is derived from the image plane such that the camera

‡Because the Jacobians are evaluated at δx = υ = 0, any second-
order terms in these variables will vanish. We take advantage of

this fact to simplify the derivation by dropping these second-order
terms earlier.
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frame’s z-axis references forward motion (depth). In this
case, qcb encodes the mapping from the body frame’s
forward-right-down coordinate frame to the coordinate
frame used by the camera. The transform (pcb,q

c
b)

can be found through offline calibration or online as
described by Leishman and McLain (2014). In this
paper we assume that the camera is rigidly mounted to
the body and (pcb,q

c
b) is static and known. In addition,

since (pkck ,q
kc
k ) also represents the transform between

the body and camera, but at the time of the keyframe,
pkck = pcb and qkck = qcb.

Figure 7 can be used to informally understand how
defining a relative state improves observability. The
pose (pkn,q

k
n) encodes the roll, pitch, and altitude of

the vehicle when the keyframe is declared, all of which
are observable using an altimeter and IMU. This fact,
in connection with assuming (pcb,q

c
b) is known, ensures

that the measurements (pckc,q
c
kc) constrain the vehicle’s

current pose (pbn,q
b
n).

Using Figure 7, the relative translation measurement
is modeled as

hvot(x) = kcpckc + ηvot

= − kcpkck −
kcpkn + kcpbn + kcpcb + ηvot

= −R(qkck ) kpkck

−R(qkck )R(qkn) npkn + R(qkck )R(qkn) npbn

+ R(qkck )R(qkn)RT(qbn) bpcb + ηvot .

Dropping prescripts and recalling that pkck = pcb and
qkck = qcb, this becomes

hvot(x) = −R(qcb)p
c
b

+ R(qcb)R(qkn)(pbn − pkn)

+ R(qcb)R(qkn)RT(qbn)pcb + ηvot . (84)

We expand this model according to (44) and (31a), then
use (33) and (34) to obtain

hvot(x) = −R(qc
b)pc

b

+ R(qc
b)R(δq

k
n)R(q̂k

n)(p̂b
n + δp

b
n − p̂

k
n − δp

k
n)

+ R(qc
b)R(δq

k
n)R(q̂k

n)RT(q̂b
n)RT(δq

b
n)pc

b + η
vot

≈ −R(qc
b)pc

b

+ R(qc
b)(I−⌊δθ

k
n⌋)R(q̂k

n)(p̂b
n+δp

b
n−p̂

k
n−δp

k
n)

+ R(qc
b)(I−⌊δθ

k
n⌋)R(q̂k

n)RT(q̂b
n)(I+⌊δθ

b
n⌋)pc

b

+ η
vot

.

Expanding and removing second-order terms,

hvot(x) ≈ −R(qcb)p
c
b

+ R(qcb)R(q̂kn)(p̂bn + δpbn − p̂kn − δp
k
n)

−R(qcb)
⌊

δθkn

⌋

R(q̂kn)(p̂bn − p̂kn)

+ R(qcb)R(q̂kn)RT(q̂bn)pcb

−R(qcb)
⌊

δθkn

⌋

R(q̂kn)RT(q̂bn)pcb

+ R(qcb)R(q̂kn)RT(q̂bn)
⌊

δθbn

⌋

pcb + ηvot .

The estimated measurement model is

hvot(x̂) = −R(qcb)p
c
b + R(qcb)R(q̂kn)(p̂bn − p̂kn)

+ R(qcb)R(q̂kn)RT(q̂bn)pcb .

For a given relative position measurement zvot, the
residual is

rvot = zvot − hvot(x̂) ,

which is modeled as

rvot = hvot(x)− hvot(x̂)

= R(qcb)R(q̂kn)(δpbn − δp
k
n)

−R(qcb)
⌊

δθkn

⌋

R(q̂kn)(p̂bn − p̂kn)

−R(qcb)
⌊

δθkn

⌋

R(q̂kn)RT(q̂bn)pcb

+ R(qcb)R(q̂kn)RT(q̂bn)
⌊

δθbn

⌋

pcb + ηvot

= R(qcb)R(q̂kn)(δpbn − δp
k
n)

+ R(qcb)
⌊

R(q̂kn)(p̂bn − p̂kn)
⌋

δθkn

+ R(qcb)
⌊

R(q̂kn)RT(q̂bn)pcb

⌋

δθkn

−R(qcb)R(q̂kn)RT(q̂bn) ⌊pcb⌋ δθ
b
n + ηvot .

Differentiating, we obtain the residual Jacobian

Hvot =
[

H1 H2 0 0 0 H3 H4 0
]

,

where

H1 = R(qcb)R(q̂kn) ,

H2 = −R(qcb)R(q̂kn)RT(q̂bn) ⌊pcb⌋ ,

H3 = −R(qcb)R(q̂kn) ,

H4 = R(qcb)
⌊

R(q̂kn)
(

p̂bn − p̂kn + RT(q̂bn)pcb

)⌋

.

6.2.4 Visual Odometry Rotation. The relative rota-
tion measurement model also follows from Figure 7.
Specifically,

hvor(x) = qckc

= (qcb)
−1 ⊗ (qkn)−1 ⊗ qbn ⊗ qcb ⊗ (ηvor)

∧ . (85)

We expand this according to (30a) as

hvor(x)

= (qc
b)−1 ⊗ (q̂k

n ⊗ δq
k
n)−1 ⊗ q̂

b
n ⊗ δq

b
n ⊗ q

c
b ⊗ (η

vor
)∧

= (qc
b)−1 ⊗ (δq

k
n)−1 ⊗ (q̂k

n)−1 ⊗ q̂
b
n ⊗ δq

b
n ⊗ q

c
b ⊗ (η

vor
)∧

.

The estimated measurement model is

hvor(x̂) = (qcb)
−1 ⊗ (q̂kn)−1 ⊗ q̂bn ⊗ qcb .

For a given relative attitude measurement zvor, from
(64) the residual is modeled as

rvor =
(

hvor(x̂)−1 ⊗ zvor

)∨
,

which is modeled and then simplified using (41) and (42)
as

rvor =
(

hvor(x̂)−1 ⊗ hvor(x)
)∨

=
(

(qcb)
−1 ⊗ (q̂bn)−1 ⊗ q̂kn ⊗ qcb ⊗ (qcb)

−1 ⊗ (δqkn)−1⊗

⊗ (q̂kn)−1 ⊗ q̂bn ⊗ δq
b
n ⊗ qcb ⊗ (ηvor)

∧
)∨

=
(

(qcb)
−1 ⊗

(

(q̂bn)−1 ⊗
(

q̂kn ⊗ (δqkn)−1 ⊗ (q̂kn)−1
)

⊗

⊗ q̂bn ⊗ δq
b
n

)

⊗ qcb

)∨

+ ηvor

= R(qcb)
(

−R(qbn)RT(qkn)δθkn + δθbn

)

+ ηvor .
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The measurement Jacobian is

Hvor =
[

0, R(qcb),0,0,0,0,−R(qcb)R(qbn)RT(qkn),0
]

.

The derivation of this Jacobian is a new contribution
compared to prior work (Leishman and McLain, 2014).

6.2.5 Laser Scan Matcher. The laser scan matcher
measurement model is a novel contribution of this
work. Laser scan matching algorithms, such as the
iterative closest point (ICP) algorithm (Censi, 2008),
compute the planar translation and heading change
of a laser scanner between the keyframe and current
scans. Because the out-of-plane motion of UAVs (roll
and pitch) introduces distortions that are not modeled
by the scan-matching algorithm, in practice laser scans
are commonly tilt-compensated before they are passed
to the scan matcher (Shen et al., 2011; Tomic et al.,
2012). Tilt compensation orthorectifies the laser scan
by projecting it onto a level horizontal plane, using
the 2.5D-world assumption that all scanned surfaces
are vertically uniform. Scan returns from the floor or
ceiling are also often removed during this process. The
2.5D assumption is commonly violated in the real world,
but in urban environments this approach has been
demonstrated to provide acceptable performance (Shen
et al., 2011).

To perform tilt-compensation on a laser scan, we first
compute the quaternion qoc that rotates points expressed
in the rolled and pitched laser frame c (including any
roll or pitch in the body-to-sensor transform) to the
orthorectified frame o as

qoc = (qcb)
−1(qθb

n

⊗ qφb
n

)−1 ,

where qθb
n

and qφb
n

are computed from qbn using
equations (37) and (39). Then for a laser scan S =
{(r, θ)} represented as a set of range/bearing tuples
(r, θ), the tilt-compensated scan S ′ is computed as

S ′ =
{

x ∈ R
2

∣

∣ x = I2×3R(qoc)





r cos θ
r sin θ

0



∀ (r, θ) ∈ S
}

.

For the orthorectification of the keyframe scan, we note
that because qkn = qθb

n

⊗ qφb
n

(as shown in Section 6.3)

and qkck = qcb, the rotation qoc is equivalent to

qoc = (qcb)
−1 ⊗ (qkn)−1 .

The associated rotation matrix is given by

R(qoc) = R((qcb)
−1 ⊗ (qkn)−1)

= RT(qkn)RT(qcb) .

In the following discussion we derive the translation
and heading portions of the measurement model
independently, but they can be combined into a single
update by stacking the two measurement model vectors
and Jacobian matrices.

The translation measurement model is constructed
by expressing the visual odometry measurement model
of equation (84) in the orthorectified frame associated

with the keyframe, and then extracting the x and y
components:

hlt(x) = I2×3R(qoc)hvot(x) + ηlt

= I2×3RT(qkn)RT(qcb)hvot(x) + ηlt

= I2×3RT(qkn)RT(qcb)
(

−R(qcb)p
c
b

+ R(qcb)R(qkn)(pbn − pkn)

+ R(qcb)R(qkn)R⊤(qbn)pcb

)

+ ηlt

= I2×3

(

−RT(qkn)pcb

+ pbn − pkn + RT(qbn)pcb

)

+ ηlt .

We expand using (44), (31a), and (34) then drop second-
order terms to obtain

hlt(x) = I2×3

(

− R
T(q̂k

n)RT(δq
k
n)pc

b + p̂
b
n + δp

b
n

− p̂
k
n − δp

b
n + R

T(q̂b
n)RT(qb

n)pc
b

)

+ η
lt

≈ I2×3

(

− R
T(q̂k

n)
(

I +
⌊

δθ
k
n

⌋)

p
c
b + p̂

b
n + δp

b
n

− p̂
k
n − δp

b
n + R

T(q̂b
n)

(

I +
⌊

δθ
b
n

⌋)

p
c
b

)

+ η
lt

= I2×3

(

− R
T(q̂k

n)pc
b + p̂

b
n − p̂

k
n + R

T(q̂b
n)pc

b

)

+ I2×3

(

R
T(q̂k

n) ⌊p
c
b⌋ δθ

k
n + δp

b
n − δp

k
n

− R
T(q̂b

n) ⌊p
c
b⌋ δθ

b
n

)

+ η
lt

.

The estimated measurement model is

hlt(x̂) = I2×3

(

−RT(q̂kn)pcb + p̂bn − p̂kn + RT(q̂bn)pcb

)

,

and the residual is

rlt = zlt − hlt(x̂) ,

which is modeled as

rlt = hlt(x)− hlt(x̂)

= I2×3

(

RT(q̂kn) ⌊pcb⌋ δθ
k
n + δpbn − δp

k
n

−RT(q̂bn) ⌊pcb⌋ δθ
b
n

)

+ ηlt .

The measurement Jacobian is

Hlt = I2×3

[

I, −R
T(q̂b

n) ⌊p
c
b⌋ , 0, 0, 0, −I, R

T(q̂k
n) ⌊p

c
b⌋ , 0

]

.

The derivation of the heading portion of the
measurement model follows a similar strategy. Recalling
from Section 3.2 that the quaternion conjugation
operation can be used to express the vector portion of
a quaternion in another coordinate frame, we construct
the heading measurement model by first rotating the
visual odometry rotation model from equation (85) into
the orthorectified frame:

qlr = (qoc)
−1 ⊗ hvor(x)⊗ qoc

= qkn ⊗ qcb ⊗ hvor(x)⊗ (qcb)
−1 ⊗ (qkn)−1

= qkn ⊗ qcb ⊗ (qcb)
−1 ⊗ (qkn)−1

⊗ qbn ⊗ qcb ⊗ (qcb)
−1 ⊗ (qkn)−1

= qbn ⊗ (qkn)−1 .
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The heading measurement model is then the yaw
component of qlr:

hlr(x) = ψ(qlr) + ηlr

, ψlr + ηlr .

The estimated measurement model is

hlr(x̂) = ψ(q̂lr)

, ψ̂lr ,

where
q̂lr = q̂bn ⊗ (q̂kn)−1 .

The residual is given by

rlr = zlr − hlr(x̂) ,

which is modeled as

rlr = hlr(x)− hlr(x̂)

= ψlr + ηlr − ψ̂lr

= kT∆lr + ηlr ,

where

∆lr =





φlr − φ̂lr

θlr − θ̂lr

ψlr − ψ̂lr





as in Appendix A. We can then compute the Jacobian
of the residual using the chain rule as

Hlr =
∂rlr

∂δx

=
∂rlr

∂∆lr

∂∆lr

∂δθlr

∂δθlr

∂δx

= kTN∆lr

∂δθlr

∂δx
, (86)

where N∆lr
is given by equation (100) in Appendix A.

We compute δθlr using (30a), (29a), (40), and (41) as

δqlr = (q̂lr)
−1 ⊗ qlr

= (q̂bn ⊗ (q̂kn)−1)−1 ⊗ qbn ⊗ (qkn)−1

= q̂kn ⊗ (q̂bn)−1

⊗ q̂bn ⊗ δq
b
n ⊗ (δqkn)−1 ⊗ (q̂kn)−1

= q̂kn ⊗ δq
b
n ⊗ (δqkn)−1 ⊗ (q̂kn)−1

=⇒ δθlr = RT(q̂kn)
(

δθbn − δθ
k
n

)

,

which we take the partial derivatives of and substitute
into (86) to obtain

Hlr = kTN∆lr

[

0,RT(q̂kn),0,0,0,0,−RT(q̂kn),0
]

.

6.3 Keyframe Reset

When a new keyframe is established, the relative part
of the state is reset, as described in Section 5. As
shown in Figure 5b, the new node frame is positioned
at zero altitude directly below the vehicle’s current true
position such that the position portions of the state are

reset as

pbn
+

= pkn
+

=





0
0
pbnz





and estimated as

p̂bn
+ = p̂kn

+ =





0
0
p̂bnz



 . (87)

As such, the error state reset is

δpbn
+

= δpkn
+

=





0
0

δpbnz





and
∂δpbn

+

∂δpbn
=
∂δpkn

+

∂δpbn
= kkT .

The other vector portions of the state, including v, βω,
βa, and µ, do not change.

Resetting the yaw portion of the attitude states is
slightly more complicated. Each new node frame is
established such that the vehicle’s yaw is identically
zero. Setting ψ = 0 in (39), we see that

q̂bn
+ = q̂kn

+ = qθ̂ ⊗ qφ̂ (88)

=











cos θ̂2 sin φ̂
2

sin θ̂
2 cos φ̂2

− sin θ̂
2 sin φ̂

2

cos θ̂2 cos φ̂2











, (89)

where φ̂ and θ̂ are computed from q̂bn using (37).
The covariance update for the attitude error states is
governed by

Nθ =
∂δθbn

+

∂δθbn
=
∂δθkn

+

∂δθbn

=





1 sin φ̂ tan θ̂ cos φ̂ tan θ̂

0 cos2 φ̂ − cos φ̂ sin φ̂

0 − cos φ̂ sin φ̂ sin2 φ̂



 ,

which is derived in Appendix E. When roll and pitch
are approximately zero, we note that

Nθ ≈





1 0 0
0 1 0
0 0 0



 .

In summary, the keyframe reset requires updating the
state estimate according to (87) and (89) and updating
the covariance according to (70) where

N =

























kkT 0 0 0 0 0 0 0

0 Nθ 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

kkT 0 0 0 0 0 0 0

0 Nθ 0 0 0 0 0 0

0 0 0 0 0 0 0 1

























.
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7 Body-fixed Relative Navigation
(bRN)

While defining the vehicle’s pose with respect to an
inertially defined origin uses more conventional dynamic
equations and results in more intuitive state estimates,
an increasing number of estimators use body-fixed or
robocentric state definitions. In the body-fixed case,
the position and attitude of an inertially-fixed origin
is estimated with respect to the current vehicle’s
pose. Body-fixed state definitions have been shown to
improve filter consistency (Castellanos et al., 2007) and
facilitate local guidance and control algorithms (Yu and
Beard, 2013; Owen and Montano, 2006). For example,
the obstacle avoidance and visual-servoing problems
requires a vehicle to make navigation decisions after
estimating the pose of objects with respect to its current
pose. When an inertial representation of the state is
desired, the body-fixed state and its covariance can be
readily transformed into an inertial frame as described
in Appendix G.

The relative estimator in the relative navigation
architecture can be formulated using a body-fixed state
definition. In this case, body-fixed relative navigation
(bRN) estimates the state of the node frame with
respect to the current body. As before, when a
new keyframe is declared, the horizontal position and
heading states are reset. The principal difference is
that body-fixed dynamics are used and attitude error
is defined differently.

Unless explicitly specified, the equations and
definitions in Section 6 are also assumed for bRN.
This section follows the same outline as Section 6, first
describing the input, state, and dynamics for the system
in Section 7.1, and then defining the measurement
models and keyframe reset in Sections 7.2 and 7.3
respectively. The derivations in this section represent
a novel contribution not contained in prior work.

7.1 State Dynamics

Body-fixed relative navigation estimates the pose of
the node frame n with respect to and expressed in
the current body frame b, denoted as (bpnb ,q

n
b ). The

states bpnb and npbn represent the same displacement,
but are pointed in opposite directions and are expressed
in different frames. Specifically,

bpnb = −R(qbn) npbn . (90)

The states qnb and qbn are inverses of each other:

qnb =
(

qbn
)

−1 . (91)

The estimator also tracks the pose of frame n with
respect to and expressed in frame k, denoted as
(kpnk ,q

n
k ) and shown in Figure 8. For bRN, the vehicle’s

state is the tuple

x , (pnb , qnb , v, βω, βa, pnk , qnk , µ) ,

while the input remains unchanged from Section 6.1.
The state dynamics are

ṗnb = −⌊ω⌋pnb − v

q̇nb = −
1

2

[

ω

0

]

⊗ qnb (92a)

v̇ = ⌊v⌋ω + RT(qnb )g + azk− µΠkv + ηv(92b)

β̇ω = ηβ
ω

β̇a = ηβ
a

ṗnk = 0

q̇nk = 0

µ̇ = 0 ,

where derivations for the position and attitude dynamics
are found in Appendix D, and where ω is given by (72a)
and az is given by the z component of (72b). Note that
(92b) only differs from (80c) by a single transpose.

For bRN, the error-state vector δx ∈ R
22 is defined as

δx =
[

δpnb
T δθnb

T
δvT δβω

T δβa
T δpnk

T δθnk
T
δµ

]T

.

The first-order approximation of the error-state
dynamics, also derived in Appendix D, is

δṗ
n
b ≈ −

⌊

ω̃ − β̂ω

⌋

δp
n
b − δv − ⌊p̂

n
b ⌋ δβω − ⌊p̂

n
b ⌋ υω

δθ̇
n

b ≈ −
⌊

ω̃ − β̂ω

⌋

δθ
n
b + δβω + υω

δv̇ ≈ −
⌊

R
T(q̂n

b )g
⌋

δθ
n
b +

(

−
⌊

ω̃ − β̂ω

⌋

− µ̂Πk

)

δv

− ⌊v̂⌋ δβω − kk
T
δβa − Πkv̂δµ − ⌊v̂⌋ υω

− kηaz
+ ηv

δβ̇ω = ηβ
ω

δβ̇a = ηβa

δṗ
n
k = 0

δθ̇
n

k = 0

δµ̇ = 0 .

Differentiating the error-state dynamics with respect to
the error state and input noise results in the following
propagation Jacobians:

F =











−⌊ω̂⌋ 0 −I −⌊p̂n

b
⌋ 0 0 0 0

0 −⌊ω̂⌋ 0 I 0 0 0 0

0 −⌊RT(q̂n

b
)g⌋ −⌊ω̂⌋−µ̂Πk −⌊v̂⌋ −kkT 0 0 −Πkv̂

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0











and

G =









−⌊p̂n

b
⌋ 0

I 0
−⌊v̂⌋ −k

0 0
0 0
0 0
0 0
0 0









,

where ω̂ is defined in (73).

7.2 Measurement Models

The measurement models differ when using a body-fixed
parameterization as outlined below.

7.2.1 Accelerometer. Because the accelerometer
model is independent of attitude and position, the
model remains unchanged for bRN. See Section 6.2.1.
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node, n

keyframe body, k

current body, b

current camera, c

keyframe camera, kc

pnk ,q
n
k

pnb ,q
n
b

pkck ,q
kc
k

pcb,q
c
b

pkcc ,q
kc
c

Fig. 8. Transforms associated with the visual odometry
measurement model for bRN. Note that (pn

b , qn
b ), (pn

k , qn
k ),

and (pkc
c , qkc

c ) are reversed from Figure 7. Again, pkc
k = pc

b

and qkc
k = qc

b.

7.2.2 Altimeter. As described in Section 6.2.2, the
sonar altimeter measures height-above-ground. By
relating (90) and (83), the vehicle’s altitude is

halt(x) = kTR(qnb )pnb + ηalt ,

where the rotation expresses the height in an inertial
frame. The estimated measurement model is

halt(x̂) = kTR(q̂nb )p̂nb .

For a given altimeter measurement zalt, the residual is

ralt = zalt − halt(x̂)

which is approximated using (31b), (44a), (33), and (4)
as

ralt = halt(x) − halt(x̂)

= k
T
R(qn

b )pn
b + ηalt − k

T
R(q̂n

b )p̂n
b

= k
T
R(q̂n

b )R(δq
n
b )(p̂n

b + δp
n
b ) + ηalt − k

T
R(q̂n

b )p̂n
b

≈ k
T
R(q̂n

b ) (I − ⌊δθ
n
b ⌋) (p̂n

b + δp
n
b ) + ηalt − k

T
R(q̂n

b )p̂n
b

≈ k
T
R(q̂n

b )δp
n
b − k

T
R(q̂n

b ) ⌊δθ
n
b ⌋ p̂

n
b + ηalt

= k
T
R(q̂n

b )δp
n
b + k

T
R(q̂n

b ) ⌊p̂
n
b ⌋ δθ

n
b + ηalt ,

resulting in the measurement Jacobian

Halt =
[

kTR(q̂nb ),kTR(q̂nb ) ⌊p̂nb ⌋ ,0,0,0,0,0, 0
]

.

7.2.3 Visual Odometry Translation. Figure 8 presents
the relative position and attitude measurement model
for bRN. Note that the direction of (pnb ,q

n
b ), (pnk ,q

n
k ),

and (pkcc ,q
kc
c ) are reversed when compared to Figure 7.

A relative measurement can generally be measured
either direction. Defining the measurement to point
in the same direction as the state estimate avoids
unnecessary coupling of the heading estimate into the
translation measurement model, which in practice has
shown to improve performance.

From Figure 8, the relative position update is

hvot(x) = cpkcc + ηvot

= − cpcb + cpnb −
cpnk + cpkck + ηvot

= −R(qcb)
bpcb + R(qcb)

bpnb

−R(qcb)R
T(qnb )R(qnk ) kpnk

+ R(qcb)R
T(qnb )R(qnk ) kpkck + ηvot .

Dropping prescripts and recalling that pkck = pcb and
qkck = qcb, this becomes

hvot(x) = R(qcb) (pnb − pcb)

+ R(qcb)R
T(qnb )R(qnk ) (pcb − pnk ) + ηvot .

Expanding according to (44), (31b), (33), and (34) gives

hvot(x)

=R(qc
b) (p̂n

b +δp
n
b −p

c
b)

+R(qc
b)RT(δq

n
b )RT(q̂n

b )R(q̂n
k )R(δq

n
k ) (pc

b−p̂
n
k −δp

n
k )

+η
vot

=R(qc
b) (p̂n

b +δp
n
b −p

c
b)

+R(qc
b) (I+⌊δθ

n
b ⌋) R

T(q̂n
b )R(q̂n

k ) (I−⌊δθ
n
k ⌋) (pc

b−p̂
n
k −δp

n
k )

+η
vot

.

Expanding and removing higher-order terms,

hvot(x) ≈ R(qc
b) (p̂n

b + δp
n
b − p

c
b)

+ R(qc
b)RT(q̂n

b )R(q̂n
k ) (pc

b − p̂
n
k − δp

n
k )

+ R(qc
b) ⌊δθ

n
b ⌋ R

T(q̂n
b )R(q̂n

k ) (pc
b − p̂

n
k )

− R(qc
b)RT(q̂n

b )R(q̂n
k ) ⌊δθ

n
k ⌋ (pc

b − p̂
n
k ) + η

vot
.

The estimated measurement model is

hvot(x̂) = R(qcb) (p̂nb − pcb)

+ R(qcb)R
T(q̂nb )R(q̂nk ) (pcb − p̂nk ) .

We then model the residual according to (62) as

rvot = hvot(x) − hvot(x̂)

= R(qc
b)δp

n
b − R(qc

b)RT(q̂n
b )R(q̂n

k )δp
n
k

+ R(qc
b) ⌊δθ

n
b ⌋ R

T(q̂n
b )R(q̂n

k ) (pc
b − p̂

n
k )

− R(qc
b)RT(q̂n

b )R(q̂n
k ) ⌊δθ

n
k ⌋ (pc

b − p̂
n
k ) + η

vot

= R(qc
b)δp

n
b − R(qc

b)
⌊

R
T(q̂n

b )R(q̂n
k ) (pc

b − p̂
n
k )

⌋

δθ
n
b

− R(qc
b)RT(q̂n

b )R(q̂n
k )δp

n
k

+ R(qc
b)RT(q̂n

b )R(q̂n
k ) ⌊p

c
b − p̂

n
k ⌋ δθ

n
k + η

vot
,

resulting in the residual Jacobian

Hvot =
[

H1 H2 0 0 0 H3 H4 0
]

where

H1 = R(qcb) ,

H2 = −R(qcb)
⌊

RT(q̂nb )R(q̂nk ) (pcb − p̂nk )
⌋

,

H3 = −R(qcb)R
T(q̂nb )R(q̂nk ) ,

H4 = R(qcb)R
T(q̂nb )R(q̂nk ) ⌊pcb − p̂nk⌋ .

7.2.4 Visual Odometry Rotation. The relative rota-
tion measurement model also follows from Figure 8.
Specifically,

hvor(x) = qkcc

= (ηvor)
∨ ⊗ (qcb)

−1 ⊗ qnb ⊗ (qnk )−1 ⊗ qcb

= (ηvor)
∨ ⊗ (qcb)

−1 ⊗ δqnb ⊗ q̂nb⊗

⊗ (q̂nk )−1 ⊗ (δqnk )−1 ⊗ qcb .
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The estimated measurement model is

hvor(x̂) = (qcb)
−1 ⊗ q̂nb ⊗ (q̂nk )−1 ⊗ qcb .

For a given relative attitude measurement zvor, the
residual is

rvor =
(

zvor ⊗ hvor(x̂)−1
)∨

,

which is modeled and then simplified using (41) and (42)
as

rvor =
(

hvor(x)⊗ hvor(x̂)−1
)∨

=
(

(ηvor)
∨ ⊗ (qcb)

−1 ⊗ δqnb ⊗ q̂nb ⊗ (q̂nk )−1⊗

⊗ (δqnk )−1 ⊗ qcb ⊗ (qcb)
−1 ⊗ q̂nk ⊗ (q̂nb )−1 ⊗ qcb

)∨

=
(

(ηvor)
∨ ⊗ (qcb)

−1 ⊗ δqnb ⊗
(

q̂nb⊗

⊗
(

(q̂nk )−1 ⊗ (δqnk )−1 ⊗ q̂nk
)

⊗ (q̂nb )−1
)

⊗ qcb

)∨

= R(qcb)
(

δθnb −RT(qnb )R(qnk )δθnk

)

+ ηvor

= R(qcb)δθ
n
b −R(qcb)R

T(qnb )R(qnk )δθnk + ηvor ,

resulting in the measurement Jacobian

Hvor =
[

0,R(qcb),0,0,0,0,−R(qcb)R
T(qnb )R(qnk ), 0

]

.

7.2.5 Laser Scan Matcher. As with the iRN case, laser
scans are orthorectified before being passed to the scan
matcher. The quaternion qoc that describes the rotation
from the laser frame c to the orthorectified frame o is
given by

qoc = (qcb)
−1 ⊗ (qθb

n

⊗ qφb
n

)−1

= (qcb)
−1 ⊗ qob ,

where qbn = (qnb )−1, qθb
n

and qφb
n

are computed from qbn
using equations (37), and qob is defined as

qob , (qθb
n

⊗ qφb
n

)−1 .

The orthorectified laser scan S ′ is then computed from
the original laser scan S = {(r, θ)} as

S ′ =
{

x ∈ R
2

∣

∣ x = I2×3R(qoc)





r cos θ
r sin θ

0



∀ (r, θ) ∈ S
}

.

We note that the rotation matrix associated with qoc can
be written as

R(qoc) = R((qcb)
−1 ⊗ qob)

= R(qob)R
T(qcb) .

The translation portion of the measurement is
modeled as the x and y component of visual odometry
translation model in Section 7.2.3, after it has been
rotated into the orthorectified frame:

hlt(x) = I2×3R(qoc)hvot(x) + ηlt

= I2×3R(qob)R
T(qcb)

(

R(qcb) (pnb − pcb)

+ R(qcb)R
T(qnb )R(qnk ) (pcb − pnk )

)

+ ηlt

= I2×3R(qob)
(

pnb − pcb

+ RT(qnb )R(qnk ) (pcb − pnk )
)

+ ηlt . (93)

The estimated measurement model is

hlt(x̂) = I2×3R(q̂ob)
(

p̂nb − pcb

+ RT(q̂nb )R(q̂nk ) (pcb − p̂nk )
)

.

The residual Jacobian is derived in Appendix F, and is
given by

Hlt =
[

H1 H2 0 0 0 H3 H4 0
]

,

where

H1=I2×3R(q̂o
b),

H2=−I2×3R(q̂o
b)

⌊

R
T(q̂n

b )R(q̂n
k ) (pc

b−p̂
n
k )

⌋

+I2×3R(q̂o
b)

⌊

p̂
n
b −p

c
b+R

T(q̂n
b )R(q̂n

k ) (pc
b−p̂

n
k )

⌋

×

[

1 0 0
0 cos φ̂b

n
0

0 − sin φ̂b

n
0

]

N∆b
n

,

H3=−I2×3R(q̂o
b)RT(q̂n

b )R(q̂n
k ),

H4=I2×3R(q̂o
b)RT(q̂n

b )R(q̂n
k ) ⌊p

c
b−p̂

n
k ⌋ .

For the rotation portion of the measurement model,
we first express the visual odometry rotation model in
the orthorectified frame:

qlr = (qoc)
−1 ⊗ hvor(x)⊗ qoc

= ((qcb)
−1 ⊗ qob)

−1

⊗ (qcb)
−1 ⊗ qnb ⊗ (qnk )−1 ⊗ qcb ⊗

(

(qcb)
−1 ⊗ qob

)

= (qob)
−1 ⊗ qnb ⊗ (qnk )−1 ⊗ qob ,

which is estimated as

q̂lr = (q̂ob)
−1 ⊗ q̂nb ⊗ (q̂nk )−1 ⊗ q̂ob .

The measurement model is then the yaw portion of qlr,

hlr(x) = ψ(qlr) + ηlr ,

which is estimated as

hlr(x̂) = ψ(q̂lr) .

The residual Jacobian is derived in Appendix F, and is
given by

Hlr =
[

0 H1 0 0 0 0 H2 0
]

,

where

H1=k
T
N∆lr

R(q̂o
b)

×

(

I+
(

R
T(q̂n

b )R(q̂n
k )−I

)

[

1 0 0
0 cos φ̂b

n
0

0 sin φ̂b

n
0

]

N∆b
n

)

,

H2=−k
T
N∆lr

R(q̂o
b)RT(q̂n

b )R(q̂n
k ).

7.3 Keyframe Reset

The keyframe reset step for bRN is somewhat less
intuitive due to the body-centric representation of
position and orientation states, but can be derived by
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following the iRN reset step. Following (91) and (88),

q̂nb
+ = (q̂bn

+)−1

=
(

q̂θ̂ ⊗ q̂φ̂

)−1

=











− cos θ̂2 sin φ̂
2

− sin θ̂
2 cos φ̂2

sin θ̂
2 sin φ̂

2

cos θ̂2 cos φ̂2











,

where φ and θ are computed from q̂bn = (q̂nb )−1 using
(37). Note that even though bRN expresses attitude
in the body frame, the angles φ, θ, and ψ continue to
represent conventional roll, pitch, and yaw Euler angles
which express the orientation of a body with respect to
an inertial frame. The Jacobian for the attitude reset is
derived in Appendix E, and happens to be identical to
that for the iRN attitude reset:

∂δθnb
+

∂δθnb
=
∂δθbn

+

∂δθbn
= Nθ .

The derivation for the position reset is more involved,
and is given in Appendix E. The resulting reset
operation is

p̂nb
+ = Npp̂nb ,

where
Np = RT(q̂nb

+)kkTR(q̂nb
+) .

Because frames b and k are at the same location when
the reset occurs, we also have

p̂nk
+ = p̂nb

+ ,

q̂nk
+ = q̂nb

+ .

The total keyframe reset Jacobian, also derived in
Appendix E, is given by

N=





















Np (− ⌊Nppn
b ⌋+Np ⌊pn

b ⌋) Nθ 0 0 0 0 0 0

0 Nθ 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

Np (− ⌊Nppn
b ⌋+Np ⌊pn

b ⌋) Nθ 0 0 0 0 0 0

0 Nθ 0 0 0 0 0 0

0 0 0 0 0 0 0 1





















.

8 Results

The RMEKF was implemented in C++ using the
ROS (Quigley et al., 2009) framework. The following
sections present simulation and hardware results for the
performance of the RMEKF on a multirotor vehicle.
The simulation results in Section 8.1 illustrate the
performance of the estimator under ideal conditions,
where all noise is Gaussian with known covariance and
all biases are known. The hardware results in Section 8.2
demonstrate the performance of the estimator in real-
world conditions, where the Gaussian noise assumption
is not necessarily met and where covariance and biases
are unknown.

The results in this section illustrate the typical
accuracy of the relative state estimates produced by
the RMEKF. Since estimating relative states is a
unique approach, direct comparison to related global
estimation techniques in the literature cannot readily
be accomplished unless the estimator in this paper is
combined with a simple global back end. For those
comparisons, the reader is referred to the companion
work by Wheeler et al. (2018). The more extensive
flight-test results of Wheeler et al. (2017) additionally
demonstrate the practical performance of the RMEKF
for several extended flights of a multirotor platform,
including closing control loops around the estimates.

8.1 Simulation Results

The simulation provided accelerometer, gyro, altimeter,
and visual odometry measurements corrupted by
normally-distributed noise. Slowly-drifting biases were
also added to the simulated IMU data. Sensor
noise (υω, υa, ηvot, ηvor, and ηalt) was sampled
from normal distributions with the following standard
deviations that are typical of low-cost hardware
sensors: σω = 0.13 rad/s, σa = 1.15 m/s2, σvot = 0.02 m,
σvor = 0.01 rad, and σalt = 0.01 m. New keyframes were
established when the vehicle moved more than 0.2 m
or yawed more than 20 degrees. The estimator was
evaluated during various maneuvers ranging from mild
to aggressive, where during the aggressive maneuvers
the vehicle’s speed exceeded 25 m/s and the bank angle
exceeded 45 degrees.

Figures 9 and 10 show a three-second snapshot of the
performance of the iRN and bRN estimator at tracking
the vehicle’s pose, where the small time window was
selected to make the relative state reset visible. During
these three seconds, the vehicle was moving forward at
nearly-constant velocity while maintaining a nominal
height above ground of 1.25 m, and while gradually
slowing its clockwise yaw motion. The vertical gray lines
indicate the time when a new keyframe is declared.
While the state is defined using quaternions, Figure 9b
uses (37) to plot roll, pitch, and yaw angles.

Figure 9 highlights several interesting practicalities of
relative navigation. As discussed in Section 5, Figure 9
illustrates how the forward, right, and yaw states are
reset to zero with each newly-declared keyframe, while
the altitude, roll, and pitch states remain continuous. It
should be noted that while roll and pitch are continuous,
discontinuities appear in each of the four quaternion
states. Because the discontinuities in the relative states
occur at known times, they are easily accounted for
and so in practice do not cause problems with control
stability. Figure 9 also illustrates that keyframes do not
reset at fixed intervals, but rather reset based on how
far the vehicle has traveled since the previous keyframe.
Certain sensors, such as a laser scanner with a long
range and wide field of view, facilitate longer distances
between keyframes.

The RMEKF performed very similarly when using the
body-fixed dynamics presented in Section 7. Figure 10
shows the performance of the bRN estimator for position
states over the same window of time as Figure 9. The
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Fig. 9. Simulation RMEKF estimation performance for
inertial relative navigation (iRN). The vertical gray lines
indicate when a new keyframe is declared.

attitude performance of bRN (not shown) is nearly
identical to the attitude performance of iRN with the
exception of a change in sign for the angles. Note in
Figure 10 that each of the position states experiences
slight discontinuities at the keyframe resets and that
the position estimates do not reset to zero. This is
because the keyframe reset step removes all horizontal
translation from the state but continues to track the
vehicle’s height above ground. Since the bRN position
state is expressed with respect to the rolled and pitched
body frame, some of the height above ground is mapped
into the forward and right components. When the bRN
state estimates are expressed with respect to the current
node frame using (90) and (91), they are nearly identical
to the estimates shown in Figure 9.

8.2 Hardware Results

The vehicle used for hardware results, a hexacopter in
a Y6 configuration, is shown in Figure 11. Attitude
control is performed by a Naze32 autopilot running the
ROSflight§ firmware. IMU data is streamed from the
low-cost MEMS IMU on the autopilot (an InvenSense
MPU-6050) at 500 Hz. Altimeter data is obtained from
a MaxBotix LV-MaxSonar-EZ3 ultrasonic range finder.

All estimation is performed in real-time on the
onboard computer with an Intel i7 processor. Visual

24 24.5 25 25.5 26 26.5 27

time (s)

-0.5

0

0.5

1

1.5

p
o

s
it
io

n
 (

m
)

forward truth

forward estimate

right truth

right estimate

down truth

down estimate

Fig. 10. Simulation RMEKF position estimation
performance for body-fixed relative navigation (bRN). The
bRN attitude performance is nearly identical to the iRN
attitude performance but with the signs negated.

Fig. 11. The vehicle used for the hardware result flight
tests

odometry is also computed on the onboard computer
at 15 Hz from a forward-facing Asus Xtion Pro Live
RGB-D camera, using the depth-enhanced monocular
odometry algorithm (Zhang et al., 2014) modified to
output relative measurements. New keyframes were
established when the vehicle moved more than 0.5 m
or yawed more than 20 degrees, although more
sophisticated keyframe-selection algorithms could be
implemented. A constant, typical value was chosen for
the visual odometry measurement covariance, but future
implementations could take advantage of algorithms
that estimate the covariance from frame to frame
(e.g. Anderson et al. (2019)).

For the comparisons in this paper, truth reference was
provided by a motion capture system. The positioning
accuracy of the motion capture system is on the order
of 0.5 cm or better, and the attitude accuracy is on
the order of 0.1 degrees. A calibration routine was used
to register the quadrotor body frame to the motion-
capture frame. To compare the relative state estimates
with the global motion-capture data, the reference
frames were synchronized by applying the same position
and orientation reset steps described in Sections 6.3
and 7.3 to the motion-capture data each time a visual-
odometry keyframe reset occured. While there are small
timing delays and other error sources inherent in this

§http://rosflight.org
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Fig. 12. Hardware RMEKF estimation performance for
inertial relative navigation (iRN). The vertical gray lines
indicate when a new keyframe is declared.

approach, we believe this “truth” reference to be highly
representative of the true motion and an appropriate
reference source for system evaluation.

Figure 12 shows the estimator performance for the
RMEKF using inertial dynamics (iRN). A typical
10-second window of the flight is shown to make
the relative state reset visible. The estimates track
the truth well. Again, note that the forward and
right position estimates in Figure 12a reset with each
new keyframe, while the down position estimate is
continuous. Similarly, the yaw estimate in Figure 12b

Table 1. RMS error for the hardware results

State Axis RMS error

iRN bRN

Position
forward 0.0306 m 0.0318 m
right 0.0439 m 0.0436 m
down 0.0648 m 0.0414 m

Attitude
roll 0.7983 deg 1.6259 deg
pitch 0.3785 deg 0.5714 deg
yaw 0.2933 deg 0.3422 deg

Velocity
forward 0.1313 m/s 0.1481 m/s
right 0.1483 m/s 0.1784 m/s
down 0.0702 m/s 0.0806 m/s

relative
state

estimate

time

image
capture

odometry
message

previous
keyframe

new
keyframe

reset

re-propagation

Fig. 13. Keyframe reset with delayed visual odometry
measurements. The relative state may appear to not reset
all the way to zero as a result of the handling of the
delayed measurements as described in Section 4.3. Only the
solid portions of the estimate line are published.

resets with each keyframe, but roll and pitch are
continuous. The velocity estimates in Figure 12c are
continuous. The RMS errors in each of the state
estimates over the duration of the 90-second flight are
summarized in Table 1.

The performance of the estimator using body-fixed
dynamics (bRN) was very similar to the inertial
dynamics. Plots are not shown for the bRN results,
but the RMS errors for a comparable flight test are
summarized in Table 1.

Looking more closely at Figures 12a and 12b, it
appears as if the relative states do not reset all the way
to zero. The reason for this is the delay in the visual
odometry processing, and is illustrated in Figure 13. On
average, it takes approximately 115 ms from the time an
image is captured (the dashed vertical line in Figure 13)
to the time the visual odometry message is published
(the solid vertical line). However, the estimator uses
the timestamp for when the image was captured when
applying the odometry measurement, as described in
Section 4.3. When a new keyframe image is captured,
during the time window between the image capture and
odometry message the estimator continues operating
with respect to the previous keyframe. Once the
new keyframe odometry message arrives, the estimator
rewinds to the time of the image capture, resets the
state to zero, then re-propagates the IMU and altimeter
messages that were queued up to the visual odometry
message time. As a result, the first message that the
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estimator publishes with respect to the new keyframe
includes the 115 ms of IMU re-propagation and is non-
zero. However, the relative state was actually reset to
zero at the time of the image capture.

9 Conclusions

While the global state of a UAS is not observable
when navigating through GPS-denied environments,
it is possible to maintain observability by subtly
restructuring the problem using the relative navigation
framework. Previous simulation studies show strong
theoretical motivations for the relative navigation
framework, including improved consistency, bounded
covariance, and improved accuracy (Wheeler et al.,
2018). In addition, significant hardware results have
demonstrated the efficacy and practicality of relative
navigation for small UAS when using a relative MEKF
for state estimation (Wheeler et al., 2017). This paper
rigorously derives the RMEKF used in (Wheeler et al.,
2018) and (Wheeler et al., 2017), presenting the
mathematics necessary to apply relative navigation to
the UAS state estimation problem. Its tutorial nature
and step-by-step derivations make this paper a self-
contained resource for extending the approach to other
applications.

By defining the state with respect to a local
coordinate frame, this paper demonstrates how to
leverage relative measurements from a visual odometry
algorithm to ensure an observable state. New visual
odometry and laser scan-matching measurement models
are proposed, and a unique keyframe reset step is
presented to ensure filter states are fully observable even
when global information is not available.

The RMEKF is demonstrated in simulation and
hardware to work effectively for both inertially-
defined and body-fixed vehicle dynamics to produce
accurate state estimates with bounded uncertainty.
While the inertial and body-fixed definitions yield
similar results, this paper explicitly outlines the
differences that arise in the state estimator, including
differences in the error state definition, measurement
models, quaternion integration procedure, and keyframe
reset step. Additional contributions of this paper
include a tutorial introduction to indirect multiplicative
extended Kalman filtering, an exposition of Hamilton
quaternions, and the derivation of several novel
properties of error quaternions necessary for partially
updating a quaternion and its covariance.
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Appendix A Euler Decomposition
Jacobians

In this section we explore the relationship between errors
in the Euler-angle decomposition of a quaternion (ψ −

ψ̂, θ − θ̂, and φ− φ̂) and the minimal representation for
the error in that quaternion, δθ. Specifically, defining

∆ ,





φ− φ̂

θ − θ̂

ψ − ψ̂



 ,

we wish to derive an expression for the Jacobian

N∆ ,
∂∆

∂δθ
.

The derivation and expressions that follow show some
similarity to those presented by Barfoot et al. (2011),
but are derived in the context of an error-state
formulation.

We begin by deriving expressions for the error
quaternions for the yaw, pitch, and roll quaternions of
equations (38) and (39). For example, with the iRN
definition of the error quaternion, we can compute δqψ
from (30a) and (39) as

δqψ = q̂ψ
−1 ⊗ qψ

=









0
0

− sin( 1
2 ψ̂)

cos( 1
2 ψ̂)









⊗









0
0

sin( 1
2ψ)

cos( 1
2ψ)









=









0
0

sin( 1
2ψ) cos( 1

2 ψ̂)− cos( 1
2ψ) sin( 1

2 ψ̂)

cos( 1
2ψ) cos( 1

2 ψ̂) + sin( 1
2ψ) sin( 1

2 ψ̂)









=













0
0

sin( 1
2

(

ψ − ψ̂
)

)

cos( 1
2

(

ψ − ψ̂
)

)













, (94)

where the final step uses the standard angle-difference
trigonometric identities. Following a similar analysis, we
see that (94) also holds for bRN using (30b). We likewise
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see that

δqφ =









sin( 1
2 (φ− φ̂))

0
0

cos( 1
2 (φ− φ̂))









, δqθ =









0

sin( 1
2 (θ − θ̂))

0

cos( 1
2 (θ − θ̂))









(95)

for both the iRN and bRN attitude error definitions.
Because these errors are all expressed in different
intermediate frames of the Euler rotation sequence,
δq 6= δqψ ⊗ δqθ ⊗ δqφ in general.

Assuming small attitude errors, we approximate (94)
and (95) with the first-order Taylor series as

δqφ ≈









φ−φ̂
2
0
0
1









, δqθ ≈









0
θ−θ̂

2
0
1









, δqψ ≈









0
0

ψ−ψ̂
2
1









.

These error states are represented minimally according
to (19) as

δθφ =





φ− φ̂
0
0



 , δθθ =





0

θ − θ̂
0



 , δθψ =





0
0

ψ − ψ̂



 .

(96)
We then define

∆ , δθφ + δθθ + δθψ

=





φ− φ̂

θ − θ̂

ψ − ψ̂



 .

Again, it should be noted that δθ 6= ∆ in general.
We now wish to solve for δθ in terms δθψ, δθθ, and

δθφ. For the iRN case, starting with (30a) and using
(38), we see that

δq = q̂−1 ⊗ q

= q̂−1
φ ⊗ q̂−1

θ ⊗ q̂−1
ψ ⊗

⊗ q̂ψ ⊗ δqψ ⊗ q̂θ ⊗ δqθ ⊗ q̂φ ⊗ δqφ

=
(

q̂−1
φ ⊗

(

q̂−1
θ ⊗ δqψ ⊗ q̂θ

)

⊗ δqθ ⊗ q̂φ

)

⊗ δqφ ,

which from (42) implies

δθ = Rφ̂Rθ̂δθψ + Rφ̂δθθ + δθφ . (97)

We can expand (97) using (36) and (96) to express δθ
in terms of ∆ as

δθ =





(φ− φ̂)− (ψ − ψ̂) sin θ̂

(θ − θ̂) cos φ̂+ (ψ − ψ̂) sin φ̂ cos θ̂

−(θ − θ̂) sin φ̂+ (ψ − ψ̂) cos φ̂ cos θ̂





=





1 0 − sin θ̂

0 cos φ̂ sin φ̂ cos θ̂

0 − sin φ̂ cos φ̂ cos θ̂



 ∆ . (98)

The determinant of the matrix in (98) equals cos θ̂.

Therefore, assuming that θ̂ 6= ±π2 , we solve (98) for ∆

as

∆ =





1 sin φ̂ tan θ̂ cos φ̂ tan θ̂

0 cos φ̂ − sin φ̂

0 sin φ̂ sec θ̂ cos φ̂ sec θ̂



 δθ , (99)

from which we obtain

N∆ ,
∂∆

∂δθ
=





1 sin φ̂ tan θ̂ cos φ̂ tan θ̂

0 cos φ̂ − sin φ̂

0 sin φ̂ sec θ̂ cos φ̂ sec θ̂



 . (100)

A similar procedure could be used to derive the
Jacobian N∆ for the bRN case. However, the definition
and interpretation of roll, pitch, and yaw are less obvious
for the bRN case, so we will omit the derivation of N∆

here and instead derive the relevant expressions in the
text as they arise.

Appendix B Zero-Mean Error State

In this appendix we show that the expected error
state remains zero mean. Specifically, we show that the
expected value of the error state is zero, as indicated in
(45), and that the error-state dynamics are trivial when
the estimation error and input noise are both zero.

B.1 Expected Value of Error State

Property (45) stems from the linearity of the
expectation and quaternion multiplication, inverse, and
∨ operations. For the following derivations, recall that x

is modeled as a random variable, while x̂ is a constant
value for a given timestep. Given (44a) and x̂ = E [x],
for vector portions of the state we have

E [δxv] = E [xv − x̂v]

= E [xv]− x̂v

= 0

Using (30a) as the attitude error definition for (44b), for
quaternion portions of the state we have

E [δxθ] = E
[

(

x̂q ⊗ xq
−1

)∨
]

=
(

x̂q ⊗ E [xq] −1
)∨

=
(

x̂q ⊗ x̂q
−1

)∨

=

[

0

1

]∨

= 0 .

A similar derivation is also possible for the attitude error
definition in (30b).

B.2 Error-State Dynamics

For vector portions of the state, from (44a), (47), and
(50) we have

δẋv = ẋv − ˙̂xv

= fv(x,u + υ) + ηv − fv(x̂,u)

, f̄v(δx,υ, x̂,u) + ηv .
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We note that x can be rewritten in terms of δx and
x̂ using (29) and by rearranging (44a), and that x =
x̂ when δx = 0. Evaluating f̄v at (E[δx], E[υ], x̂,u),
where E[δx] = E[υ] = 0, then gives

f̄v(E[δx], E[υ], x̂,u) = fv(x̂,u)− fv(x̂,u)

= 0 .

For quaternion portions of the state, for iRN we start
with (29a):

xq = x̂q ⊗ (δxθ)∧

=⇒ ẋq = ˙̂xq ⊗ (δxθ)∧ + x̂q ⊗ (δẋθ)∧ .

Multiplying on the left by (x̂q)−1 gives

(x̂q)−1 ⊗ ẋq = (x̂q)−1 ⊗ ˙̂xq ⊗ (δxθ)∧ + (δẋθ)∧

=⇒ δẋθ =
(

(x̂q)−1 ⊗ ẋq − (x̂q)−1 ⊗ ˙̂xq ⊗ (δxθ)∧
)∨

=
(

(x̂q)−1 ⊗ fq(x,u + υ)

− (x̂q)−1 ⊗ fq(x̂,u)⊗ (δxθ)∧
)∨

, f̄q(δx,υ, x̂,u) ,

where again x can be rewritten in terms of δx and
x̂ using (29a) and (44a). Note that we have omitted
the process noise η since the quaternion propagation
dynamics in this paper are exact kinematic expressions.
Evaluating f̄q at (E[δx], E[υ], x̂,u) gives

f̄q(E[δx], E[υ], x̂,u) =
(

(x̂q)−1 ⊗ fq(x̂,u)

− (x̂q)−1 ⊗ fq(x̂,u)⊗ 0∧
)∨

= 0 .

A similar analysis can be carried out with the bRN
attitude error definition in (29b).

Appendix C Inertial Dynamics

This appendix derives the error-state dynamics for an
inertially-defined state.

C.1 Position

We begin from (44a):

δṗbn = ṗbn − ˙̂pbn

= RT(qbn)v−RT(q̂bn)v̂ .

We then use (31a), (34), (44a), and (4) to obtain

δṗ
b
n=R

T(q̂b
n)RT(δq

b
n) (v̂+δv)−R

T(q̂b
n)v̂

≈R
T(q̂b

n)
(

I+
⌊

δθ
b
n

⌋)

(v̂+δv)−R
T(q̂b

n)v̂

=R
T(q̂b

n)v̂+R
T(q̂b

n)
⌊

δθ
b
n

⌋

v̂+R
T(q̂b

n)δv

+R
T(q̂b

n)
⌊

δθ
b
n

⌋

δv−R
T(q̂b

n)v̂

=R
T(q̂b

n)
⌊

δθ
b
n

⌋

v̂+R
T(q̂b

n)δv+R
T(q̂b

n)
⌊

δθ
b
n

⌋

δv

=−R
T(q̂b

n) ⌊v̂⌋ δθ
b
n+R

T(q̂b
n)δv+R

T(q̂b
n)

⌊

δθ
b
n

⌋

δv

≈−R
T(q̂b

n) ⌊v̂⌋ δθ
b
n+R

T(q̂b
n)δv,

where the second-order terms have been dropped.

C.2 Attitude

We begin with (29a) and differentiate with respect to
time:

qbn = q̂bn ⊗ δq
b
n

=⇒ q̇bn = ˙̂qbn ⊗ δq
b
n + q̂bn ⊗ δq̇

b
n .

Multiplying on the left by (q̂bn)−1 gives

(q̂bn)−1 ⊗ q̇bn = (q̂bn)−1 ⊗ ˙̂qbn ⊗ δq
b
n + δq̇bn

=⇒ δq̇bn = (q̂bn)−1 ⊗ q̇bn − (q̂bn)−1 ⊗ ˙̂qbn ⊗ δq
b
n .

Using (80b), (81a), (30a) and simplifying yields

δq̇bn=
1

2
(q̂bn)−1⊗qbn⊗

[

ω

0

]

−
1

2
(q̂bn)−1⊗q̂bn⊗

[

ω̂

0

]

⊗δqbn

=
1

2
δqbn⊗

[

ω

0

]

−
1

2

[

ω̂

0

]

⊗δqbn. (101)

Using (72a) and (73), let

δω , ω − ω̂ (102a)

= (ω̃ − βω − υω)−
(

ω̃ − β̂ω

)

= −
(

β̂ω + δβω

)

− υω + β̂ω

= −δβω − υω . (102b)

Applying (3) and (102a) to (101) yields

δq̇bn =
1

2

[

−⌊ω⌋ ω

−ωT 0

]

δqbn −
1

2

[

⌊ω̂⌋ ω̂

−ω̂T 0

]

δqbn

=
1

2

[

⌊−2ω̂ + δω⌋ δω
−δωT 0

]

δqbn ,

which implies that

[

1
2δθ̇

b

n

1

]

=
1

2

[

⌊−2ω̂ + δω⌋ δω
−δωT 0

] [

1
2δθ

b
n

1

]

.

Dropping the scalar equation and second-order terms
yields

δθ̇
b

n =
1

2
⌊−2ω̂ + δω⌋ δθbn + δω

≈ −⌊ω̂⌋ δθbn + δω

≈ −
⌊

ω̃ − β̂ω

⌋

δθbn − δβω − υω .

C.3 Velocity

We begin by applying (44a) to the dynamics:

δv̇ = ⌊v⌋ω + R(qbn)g + azk− µΠkv + ηv

−
(

⌊v̂⌋ ω̂ + R(q̂bn)g + âzk− µ̂Πkv̂
)

= ⌊v⌋ω − ⌊v̂⌋ ω̂ (103a)

+ R(qbn)g−R(q̂bn)g (103b)

− µΠkv + µ̂Πkv̂ (103c)

+ azk− âzk (103d)

+ ηv .
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We will simplify (103) one term at a time. We expand
term (103a) using (44a) and (102a), drop second-order
terms, then use (4), (73), and (102b) to obtain

⌊v⌋ ω− ⌊v̂⌋ ω̂ ≈ ⌊v̂ + δv⌋ (ω̂ + δω) − ⌊v̂⌋ (ω̂)

= ⌊δv⌋ ω̂ + ⌊v̂⌋ δω

= − ⌊ω̂⌋ δv + ⌊v̂⌋ δω

= −
⌊

ω̃ − β̂ω

⌋

δv+ ⌊v̂⌋ (−δβω − υω)

= −
⌊

ω̃ − β̂ω

⌋

δv− ⌊v̂⌋ δβω− ⌊v̂⌋ υω .

For term (103b) we use (31a) and (33) to obtain

R(qbn)g−R(q̂bn)g = R(δqbn)R(q̂bn)g−R(q̂bn)g

≈
(

I−
⌊

δθbn

⌋)

R(q̂bn)g−R(q̂bn)g

= −
⌊

δθbn

⌋

R(q̂bn)g

=
⌊

R(q̂bn)g
⌋

δθbn .

We use (44a) and drop second-order terms to simplify
term (103c) as

−µΠkv + µ̂Πkv̂ = − (µ̂+ δµ) Πk (v̂ + δv) + µ̂Πkv̂

= −µ̂Πkδv− δµΠkv̂− δµΠkδv

= −µ̂Πkδv− δµΠkv̂ .

Finally term (103d) is simplified using (72b), (74), and
(44a) as

azk− âzk = (ãz − βaz
− ηaz

) k−
(

ãz − β̂az

)

k

= (−δβaz
− ηaz

) k

= −kkTδβa − kηaz
.

Substituting all of these results into (103) and gathering
terms gives

δv̇ =
⌊

R(q̂b
n)g

⌋

δθ
b
n +

(

−
⌊

ω̃ − β̂ω

⌋

− µ̂Πk

)

δv − kk
T
δβa

− ⌊v̂⌋ δβω − Πkv̂δµ − ⌊v̂⌋ υω − kηaz
+ ηv .

Appendix D Body-Fixed Dynamics

This appendix derives the body-fixed state dynamics
from their inertial counterparts, and then derives the
body-fixed error-state dynamics.

D.1 Position

We represent (90) as

[

pnb
0

]

= −(qbn)−1 ⊗

[

pbn
0

]

⊗ qbn .

Left-multiplying by qbn, taking the time derivative,
and left-multiplying by (qbn)−1 results in the following

sequence of equations:

q
b
n⊗

[

pn
b

0

]

=−

[

pb
n

0

]

⊗q
b
n

q̇
b
n⊗

[

pn
b

0

]

+q
b
n⊗

[

ṗn
b

0

]

=−

[

ṗb
n

0

]

⊗q
b
n−

[

pb
n

0

]

⊗q̇
b
n

1

2
q

b
n⊗

[

ω

0

]

⊗

[

pn
b

0

]

+q
b
n⊗

[

ṗn
b

0

]

=−

[

ṗb
n

0

]

⊗q
b
n−

1

2

[

pb
n

0

]

⊗q
b
n⊗

[

ω

0

]

1

2

[

ω

0

]

⊗

[

pn
b

0

]

+

[

ṗn
b

0

]

=−(qb
n)−1⊗

[

ṗb
n

0

]

⊗q
b
n

−
1

2
(qb

n)−1

[

pb
n

0

]

⊗q
b
n⊗

[

ω

0

]

.

Rearranging and using (90), (7), (80a), (3), and (4)
gives

[

ṗn
b

0

]

=−(qb
n)−1⊗

[

ṗb
n

0

]

⊗q
b
n−

1

2
(qb

n)−1

[

pb
n

0

]

⊗q
b
n⊗

[

ω

0

]

−
1

2

[

ω

0

]

⊗

[

pn
b

0

]

=−

[

R(qb
n)ṗb

n

0

]

+
1

2

[

pn
b

0

]

⊗

[

ω

0

]

−
1

2

[

ω

0

]

⊗

[

pn
b

0

]

=−

[

v

0

]

+
1

2

[

⌊pn
b ⌋ ω

−pn
b

Tω

]

−
1

2

[

⌊ω⌋ pn
b

−ωTpn
b

]

=−

[

v

0

]

−
1

2

[

⌊ω⌋ pn
b

pn
b

Tω

]

−
1

2

[

⌊ω⌋ pn
b

−ωTpn
b

]

.

Dropping the scalar equation we see that

ṗnb = −v− ⌊ω⌋pnb .

Letting δω = ω − ω̂, the error-state position dynamics
when using the body frame are

δṗnb = ṗnb − ˙̂pnb

= (−v− ⌊ω⌋pnb )− (−v̂− ⌊ω̂⌋ p̂nb )

= −v̂− δv− ⌊ω̂ + δω⌋ p̂nb − ⌊ω̂ + δω⌋ δpnb
+ v̂ + ⌊ω̂⌋ p̂nb

. = −δv− ⌊δω⌋ p̂nb − ⌊ω̂⌋ δp
n
b

= −δv + ⌊p̂nb ⌋ δω − ⌊ω̂⌋ δp
n
b

= −δv + ⌊p̂nb ⌋ (−δβω − υω)−
⌊

ω̃ − β̂ω

⌋

δpnb

= −
⌊

ω̃ − β̂ω

⌋

δpnb − δv− ⌊p̂
n
b ⌋ δβω − ⌊p̂

n
b ⌋υω .

D.2 Attitude

The body-fixed attitude dynamics are defined by (27).
They can alternately be derived from (91) and (26) as

q̇nb = (q̇bn)−1

=
1

2

(

qbn ⊗

[

ω

0

])−1

=
1

2

[

−ω

0

]

⊗ (qbn)−1

= −
1

2

[

ω

0

]

⊗ qnb .

Using (29b), the body-fixed attitude is decomposed into
an estimate and error state as

qnb = δqnb ⊗ q̂nb .
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Differentiating with respect to time gives

q̇nb = δq̇nb ⊗ q̂nb + δqnb ⊗ ˙̂qnb .

Solving for the attitude error dynamics and using (92a)
(29b), and (3) results in

δq̇nb =
(

q̇nb − δq
n
b ⊗ ˙̂qnb

)

⊗ (q̂nb )−1

= −
1

2

([

ω

0

]

⊗ qnb − δq
n
b ⊗

[

ω̂

0

]

⊗ q̂nb

)

⊗ (q̂nb )−1

= −
1

2

([

ω

0

]

⊗ δqnb − δq
n
b ⊗

[

ω̂

0

])

= −
1

2

([

⌊ω⌋ ω

−ωT 0

]

δqnb −

[

−⌊ω̂⌋ ω̂

−ω̂T 0

]

δqnb

)

= −
1

2

[

⌊2ω̂ + δω⌋ δω
−δωT 0

]

δqnb ,

which given (32) implies that
[

1
2δθ̇

n

b

1

]

= −
1

2

[

⌊2ω̂ + δω⌋ δω
−δωT 0

] [

1
2δθ

n
b

1

]

.

Multiplying both sides by two, dropping the scalar term,
and ignoring higher order terms yields

δθ̇
n

b = −
[

⌊2ω̂ + δω⌋ δω
]

[

1
2δθ

n
b

1

]

= −
1

2
⌊2ω̂ + δω⌋ δθnb − δω

≈ −⌊ω̂⌋ δθnb − δω

= −
⌊

ω̃ − β̂ω

⌋

δθnb + δβω + υω .

D.3 Velocity

The only change in the velocity error dynamics is the
gravity term, so that

δv̇ = RT(qnb )g−RT(q̂nb )g

= RT(δqnb )RT(q̂nb )g−RT(q̂nb )g

≈ (I + ⌊δθnb ⌋) RT(q̂nb )g−RT(q̂nb )g

= ⌊δθnb ⌋RT(q̂nb )g

= −
⌊

RT(q̂nb )g
⌋

δθnb .

Appendix E Keyframe-Reset
Derivation

During the keyframe reset step, introduced in Section 5
and detailed in Sections 6.3 and 7.3, the relative states
and their associated covariance are reset to zero. For the
position states, only the altitude of the vehicle is kept,
while for the attitude states the uncertainty associated
with yaw is removed from the filter while the uncertainty
associated with roll and pitch is maintained. Sections
E.1 and E.2 show that

Nθ ,
∂δθ+

∂δθ
=





1 sin φ̂ tan θ̂ cos φ̂ tan θ̂

0 cos2 φ̂ − cos φ̂ sin φ̂

0 − cos φ̂ sin φ̂ sin2 φ̂





(104)
for both iRN and bRN attitude definitions. Section E.3
derives the position reset and its Jacobian for bRN.

E.1 iRN Attitude Reset

Recall from (99) in Appendix A that the Euler angle
errors ∆ are related to the attitude error state δθ as

∆b
n =





1 sin φ̂ tan θ̂ cos φ̂ tan θ̂

0 cos φ̂ − sin φ̂

0 sin φ̂ sec θ̂ cos φ̂ sec θ̂



 δθbn . (105)

The true and estimated attitude states after the
keyframe reset step consist of the roll and pitch
components of the attitude prior to the reset,

qbn
+

= qθ ⊗ qφ ,

q̂bn
+ = q̂θ ⊗ q̂φ .

The resulting attitude error is obtained from (30a) and
(29a) as

δqbn
+

= (q̂bn
+)−1 ⊗ qbn

+

= q̂−1
φ ⊗ q̂−1

θ ⊗ qθ ⊗ qφ

= q̂−1
φ ⊗ q̂−1

θ ⊗ q̂θ ⊗ δqθ ⊗ q̂φ ⊗ δqφ

=
(

q̂−1
φ ⊗ δqθ ⊗ q̂φ

)

⊗ δqφ ,

which, similar to (42), implies that

δθbn
+

= Rφδθθ + δθφ .

Expanding and factoring out the Euler angle errors, this
becomes

δθbn
+

=





1 0 0

0 cos φ̂ 0

0 − sin φ̂ 0



 ∆b
n , (106)

which differs from (98) by removing the yaw and its
uncertainty. Substituting (105) into (106) we see that

δθbn
+

=





1 sin φ̂ tan θ̂ cos φ̂ tan θ̂

0 cos2 φ̂ − cos φ̂ sin φ̂

0 − cos φ̂ sin φ̂ sin2 φ̂



 δθbn , (107)

verifying (104) for iRN.

E.2 bRN Attitude Reset

Continuing the notation presented in Section 7, we
describe bRN attitude error with δqnb and δθnb . The
typical 3-2-1 Euler angles assume an inertial attitude.
To express a body-fixed attitude while still maintaining
the intuitive roll, pitch, and yaw rotations, the order
and sign of the rotation sequence must be flipped as

qnb =
(

qbn
)

−1

=
(

qψ ⊗ qθ ⊗ qφ
)−1

= qφ
−1 ⊗ qθ

−1 ⊗ qψ
−1 .

Expanding using the error state definition (30b),

qnb = q̂φ
−1 ⊗ δqφ

−1 ⊗ q̂θ
−1 ⊗ δqθ

−1 ⊗ q̂ψ
−1 ⊗ δqψ

−1 ,
(108)
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which is approximated as

q̂nb = q̂φ
−1 ⊗ q̂θ

−1 ⊗ q̂ψ
−1 . (109)

Combining (108) and (109) using (30b) gives

δqnb = qnb ⊗ (q̂nb )−1

= q̂φ
−1 ⊗ δqφ

−1 ⊗ q̂θ
−1 ⊗ δqθ

−1⊗

⊗ q̂ψ
−1 ⊗ δqψ

−1 ⊗ q̂ψ ⊗ q̂θ ⊗ q̂φ

= q̂φ
−1 ⊗

(

δqφ
−1 ⊗ q̂θ

−1 ⊗
(

δqθ
−1⊗

⊗ q̂ψ
−1 ⊗ δqψ

−1 ⊗ q̂ψ
)

⊗ q̂θ

)

⊗ q̂φ ,

which implies that

δθnb = −Rφδθφ −RφRθδθθ −RφRθRψδθψ . (110)

Note that

Rφδθφ =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ









φ− φ̂
0
0





= δθφ .

Similarly, Rθδθθ = δθθ, and Rψδθψ = δθψ. Using these
results to simplify (110) and comparing the resulting
equation to (97) for iRN, we obtain

δθnb = −δθφ −Rφδθθ −RφRθδθψ

= −δθbn . (111)

Again, the reset step keeps only roll and pitch, giving

δθnb
+

= −δθφ −Rφδθθ

= −δθbn
+
. (112)

Substituting (112) and (111) into (107), we see that

(

−δθnb
+

)

=





1 sin φ̂ tan θ̂ cos φ̂ tan θ̂

0 cos2 φ̂ − cos φ̂ sin φ̂

0 − cos φ̂ sin φ̂ sin2 φ̂



 (−δθnb )

=⇒ δθnb
+

= Nθδθ
n
b , (113)

which confirms (104) for bRN. Note that the values of φ̂

and θ̂ used to evaluate Nθ are obtained from the Euler
decomposition of (q̂nb )−1.

E.3 bRN Position Reset

Following (90) we can write

pnb
+ = −R(qbn

+
)pbn

+

= −RT(qnb
+)pbn

+
,

where

pbn
+

= kkTpbn

= −kkTRT(qbn)pnb

= −kkTR(qnb )pnb (114)

by rearranging (90). We note from (91) and (38) that

qnb = qφ
−1 ⊗ qθ

−1 ⊗ qψ
−1

=⇒ R(qnb ) = RT(qψ)RT(qθ)R
T(qφ) ,

so (114) becomes

pbn
+

= −kkTRT(qψ)RT(qθ)R
T(qφ)pnb .

We next observe that

kkTRT(qψ) =





0 0 0
0 0 0
0 0 1









cosψ − sinψ 0
sinψ cosψ 0

0 0 1





= kkT ,

so that

pbn
+

= −kkTRT(qθ)R
T(qφ)pnb .

Noting that

qnb
+ = qφ

−1 ⊗ qθ
−1

=⇒ R(qnb
+) = RT(qθ)R

T(qφ) ,

we have
pbn

+
= −kkTR(qnb

+)pnb

and so
pnb

+ = RT(qnb
+)kkTR(qnb

+)pnb . (115)

We then expand and simplify according to (31b), (33),
and (34) while dropping second-order terms as

p
n
b

+=R
T(δq

n
b

+)RT(q̂n
b

+)kk
T
R(q̂n

b
+)R(δq

n
b

+)pn
b

≈
(

I+
⌊

δθ
n
b

+
⌋)

R
T(q̂n

b
+)kk

T
R(q̂n

b
+)

(

I−
⌊

δθ
n
b

+
⌋) (

p̂
n
b +δp

b
n

)

≈R
T(q̂n

b
+)kk

T
R(q̂n

b
+)p̂n

b

+R
T(q̂n

b
+)kk

T
R(q̂n

b
+)δp

n
b

+
⌊

δθ
n
b

+
⌋

R
T(q̂n

b
+)kk

T
R(q̂n

b
+)p̂n

b

−R
T(q̂n

b
+)kk

T
R(q̂n

b
+)

⌊

δθ
n
b

+
⌋

p̂
n
b .

From (115) the estimated reset is

p̂nb
+ = RT(q̂nb

+)kkTR(q̂nb
+)p̂nb .

Using (4) and (113), the error state reset is then

δpnb
+ = pnb

+ − p̂nb
+

= RT(q̂nb
+)kkTR(q̂nb

+)δpnb

+
⌊

δθnb
+

⌋

RT(q̂nb
+)kkTR(q̂nb

+)p̂nb

−RT(q̂nb
+)kkTR(q̂nb

+)
⌊

δθnb
+

⌋

p̂nb

= RT(q̂nb
+)kkTR(q̂nb

+)δpnb

−
⌊

RT(q̂nb
+)kkTR(q̂nb

+)p̂nb

⌋

δθnb
+

+ RT(q̂nb
+)kkTR(q̂nb

+) ⌊p̂nb ⌋ δθ
n
b

+

= RT(q̂nb
+)kkTR(q̂nb

+)δpnb

−
⌊

RT(q̂nb
+)kkTR(q̂nb

+)p̂nb

⌋

Nθδθ
n
b

+ RT(q̂nb
+)kkTR(q̂nb

+) ⌊p̂nb ⌋Nθδθ
n
b ,
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and the non-zero Jacobian terms are

∂δpnb
+

∂δpnb
= RT(q̂nb

+)kkTR(q̂nb
+)

∂δpnb
+

∂δθnb
=

(

−
⌊

RT(q̂nb
+)kkTR(q̂nb

+)p̂nb

⌋

+ RT(q̂nb
+)kkTR(q̂nb

+) ⌊p̂nb ⌋
)

Nθ .

Appendix F Body-Fixed Laser Scan
Measurement Model

In this section we derive the residual Jacobians
for the body-fixed laser scan measurement model
presented in Section 7.2.5. For the translation portion
of the measurement model, we begin by expanding
equation (93) according to (31b), (33), and (34) then
drop second-order terms and use (4) to obtain

hlt(x)=I2×3R(qo
b)

(

p
n
b −p

c
b+R

T(qn
b )R(qn

k ) (pc
b−p

n
k )

)

+η
lt

=I2×3R(q̂o
b)R(δq

o
b)

(

p̂
n
b +δp

n
b −p

c
b

+R
T(δq

n
b )RT(q̂n

b )R(q̂n
k )R(δq

n
k )

×(pc
b−p̂

n
k −δp

n
k )

)

+η
lt

=I2×3R(q̂o
b) (I−⌊δθ

o
b⌋)

(

p̂
n
b +δp

n
b −p

c
b

+(I+⌊δθ
n
b ⌋) R

T(q̂n
b )R(q̂n

k ) (I−⌊δθ
n
k ⌋)

×(pc
b−p̂

n
k −δp

n
k )

)

+η
lt

=I2×3R(q̂o
b)

(

p̂
n
b −p

c
b+R

T(q̂n
b )R(q̂n

k ) (pc
b−p̂

n
k )

)

+I2×3R(q̂o
b)δp

n
b −I2×3R(q̂o

b)RT(q̂n
b )R(q̂n

k )δp
n
k

−I2×3R(q̂o
b)

⌊

R
T(q̂n

b )R(q̂n
k ) (pc

b−p̂
n
k )

⌋

δθ
n
b

+I2×3R(q̂o
b)RT(q̂n

b )R(q̂n
k ) ⌊p

c
b−p̂

n
k ⌋ δθ

n
k

+I2×3R(q̂o
b)

⌊

p̂
n
b −p

c
b+R

T(q̂n
b )R(q̂n

k ) (pc
b−p̂

n
k )

⌋

δθ
o
b .

Recalling that

hlt(x̂)=I2×3R(q̂o
b)

(

p̂
n
b −p

c
b+R

T(q̂n
b )R(q̂n

k ) (pc
b−p̂

n
k )

)

,

the residual is given by

hlt = zlt − hlt(x̂) ,

which is modeled as

rlt=hlt(x)−hlt(x̂)

=I2×3R(q̂o
b)δp

n
b −I2×3R(q̂o

b)RT(q̂n
b )R(q̂n

k )δp
n
k

−I2×3R(q̂o
b)

⌊

R
T(q̂n

b )R(q̂n
k ) (pc

b−p̂
n
k )

⌋

δθ
n
b

+I2×3R(q̂o
b)RT(q̂n

b )R(q̂n
k ) ⌊p

c
b−p̂

n
k ⌋ δθ

n
k

+I2×3R(q̂o
b)

⌊

p̂
n
b −p

c
b+R

T(q̂n
b )R(q̂n

k ) (pc
b−p̂

n
k )

⌋

δθ
o
b .

Noting that qob is a function of qnb only, we take partial
derivatives and apply the chain rule to obtain the

following non-zero Jacobian terms:

∂rlt

∂δpn
b

=I2×3R(q̂o
b),

∂rlt

∂δθn
b

=−I2×3R(q̂o
b)

⌊

R
T(q̂n

b )R(q̂n
k ) (pc

b−p̂
n
k )

⌋

+I2×3R(q̂o
b)

⌊

p̂
n
b −p

c
b+R

T(q̂n
b )R(q̂n

k ) (pc
b−p̂

n
k )

⌋ ∂δθo
b

∂δθn
b

,

∂rlt

∂δpn
k

=−I2×3R(q̂o
b)RT(q̂n

b )R(q̂n
k ),

∂rlt

∂δθn
k

=I2×3R(q̂o
b)RT(q̂n

b )R(q̂n
k ) ⌊p

c
b−p̂

n
k ⌋ .

To derive an expression for ∂δθob/∂δθ
n
b , we follow

a process similar to that used for the attitude reset
derivation in Sections E.1 and E.2. We expand the
definition of qob according to (29b) as

qob = (qθb
n

⊗ qφb
n

)−1

= (q̂φb
n

)−1 ⊗ (δqφb
n

)−1 ⊗ (q̂θb
n

)−1 ⊗ (δqθb
n

)−1 .

Noting that q̂ob = (q̂θb
n

⊗ q̂φb
n

)−1, the error quaternion
is computed according to (30b) as

δqob = qob ⊗ (q̂ob)
−1

= (q̂φb
n

)−1 ⊗ (δqφb
n

)−1

⊗ (q̂θb
n

)−1 ⊗ (δqθb
n

)−1 ⊗ q̂θb
n

⊗ q̂φb
n

,

from which we use (42) to obtain

δθob = R(q̂φb
n

)
(

−δθφb
n
−R(q̂θb

n

δθθb
n

)

.

Noting, as shown in Section E.2, that R(q̂φb
n

)δθφb
n

=
δθφb

n
and R(q̂φb

n

)δθθb
n

= δθθb
n
, this becomes

δθob = −δθφb
n
−R(q̂φb

n

)δθθb
n
.

Expanding R(q̂φb
n

) according to (36) and combining
terms, this can be written as

δθob =





−1 0 0

0 − cos φ̂bn 0

0 sin φ̂bn 0



 ∆b
n ,

where

∆ =





φbn − φ̂
b
n

θbn − θ̂
b
n

ψbn − ψ̂
b
n





as in Appendix A. We then use the chain rule to obtain

∂δθob
∂δθnb

=
∂δθob
∂∆n

b

∂∆n
b

∂δθbn

∂δθbn
∂δθnb

=





−1 0 0

0 − cos φ̂bn 0

0 sin φ̂bn 0



 N∆b

n

(−I)

=





1 0 0

0 cos φ̂bn 0

0 − sin φ̂bn 0



 N∆b

n

,

where N∆b

n

is given by equation (100) in Appendix A.
We then substitute this result above to obtain the
complete expression for ∂rlt/∂δθ

n
b .
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For the rotation portion of the measurement model,
we begin by expanding the expression for qlr according
to (29b) as

qlr = (qob)
−1 ⊗ qnb ⊗ (qnk )−1 ⊗ qob

= (q̂ob)
−1 ⊗ (δqob)

−1 ⊗ δqnb

⊗ q̂nb ⊗ (q̂nk )−1 ⊗ (δqnk )−1 ⊗ δqob ⊗ q̂ob .

Recalling that q̂lr = (q̂ob)
−1 ⊗ q̂nb ⊗ (q̂nk )−1 ⊗ q̂ob , the

error quaternion is computed according to (30b) as

δqlr = qlr ⊗ (q̂lr)
−1

= (q̂ob)
−1 ⊗ (δqob)

−1 ⊗ δqnb ⊗ q̂nb ⊗ (q̂nk )−1

⊗ (δqnk )−1 ⊗ δqob ⊗ q̂nb ⊗ (q̂nk )−1 ⊗ q̂ob ,

from which we use (42) to obtain

δθlr = R(q̂ob)
(

− δθob + δθnb+

RT(q̂nb )R(q̂nk ) (−δθnk + δθob)
)

= R(q̂ob)δθ
n
b −R(q̂ob)R

T(q̂nb )R(q̂nk )δθnk

+ R(q̂ob)
(

RT(q̂nb )R(q̂nk )− I
)

δθob .

The measurement model is the yaw portion of qlr,

hlr(x) = ψ(qlr) + ηlr

, ψlr + ηlr ,

and the estimated measurement is

hlr(x̂) = ψ(q̂lr)

, ψ̂lr .

The residual is given by

rlr = zlr − hlr(x̂) ,

which is modeled as

rlr = hlr(x)− hlr(x̂)

= ψlr − ψ̂lr

= kT∆lr .

We then use the chain rule to compute the Jacobian of
rlr as

∂rlr

∂δx
=

∂rlr

∂∆lr

∂∆lr

∂δθlr

∂δθlr

∂δx

=
(

kT

)

(N∆lr
)
∂δθlr

∂δx
,

which has non-zero terms

∂rlr

∂δθnb
= kTN∆lr

R(q̂ob)

×

(

I +
(

RT(q̂nb )R(q̂nk )− I
) ∂δθob
∂δθnb

)

,

∂rlr

∂δθnk
= −kTN∆lr

R(q̂ob)R
T(q̂nb )R(q̂nk ) ,

into which we substitute the expression for ∂δθob/∂δθ
n
b

derived above.

Appendix G Converting from bRN to
iRN

When estimating in the body frame (bRN), it is
often useful to transform the estimated state into an
inertial frame (iRN) for visualization or path planning
and control. This section describes how to accomplish
this transformation, and derives the Jacobians for
transforming the bRN covariance into the iRN frame.

The velocity and bias states (v, βω, and βa) are
expressed in the body frame for both iRN and bRN, and
so require no transformation. The drag coefficient term
µ likewise requires no transformation since it is a scalar
term. The states that require transformation are the
relative pose of the vehicle (pnb ,q

n
b ) and the keyframe

pose (pnk ,q
n
k ).

The vehicle position pnb is transformed using (90) as

pbn = −R(qnb )pnb .

Expanding according to (31b), (44a), and (33), and then
using (4), this becomes

pbn = R(q̂nb )R(δqnb ) (p̂nb + δpnb )

≈ R(q̂nb ) (I− ⌊δθnb ⌋) (p̂nb + δpnb )

≈ R(q̂nb )p̂nb + R(q̂nb )δpnb −R(q̂nb ) ⌊δθnb ⌋ p̂nb

= R(q̂nb )p̂nb + R(q̂nb )δpnb + R(q̂nb ) ⌊p̂nb ⌋ δθ
n
b .

The estimated state is transformed as

p̂bn = −R(q̂nb )p̂nb ,

and the resulting error state is

δpbn = pbn − p̂bn

= R(q̂nb )δpnb + R(q̂nb ) ⌊p̂nb ⌋ δθ
n
b .

The non-zero Jacobian terms are then

∂δpbn
∂δpnb

= R(q̂nb ) ,

∂δpbn
∂δθnb

= R(q̂nb ) ⌊p̂nb ⌋ .

The vehicle attitude qnb is transformed as

qbn = (qnb )−1 ,

which is expanded according to (29b) as

qbn = (δqnb ⊗ q̂nb )−1

= (q̂nb )−1 ⊗ (δqnb )−1 .

The estimated attitude is transformed as

q̂bn = (q̂nb )−1 ,

and from (30a) the resulting error state is

δqbn = (q̂bn)−1 ⊗ qbn

= ((q̂nb )−1)−1 ⊗ (q̂nb )−1 ⊗ (δqnb )−1

= (δqnb )−1 ,
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which implies that

δθbn = −δθnb .

The non-zero Jacobian term is

∂δθbn
∂δθnb

= −I .

The keyframe pose (pnk ,q
n
k ) is transformed similarly,

yielding

p̂kn = −R(q̂nk )p̂nk ,

q̂kn = (q̂nk )−1 ,

and

∂δpkn
∂δpnk

= R(q̂nk ) ,

∂δpkn
∂δθnk

= R(q̂nk ) ⌊p̂nk⌋ ,

∂δθkn
∂δθnk

= −I .

The covariance is transformed as

PiRN = JPbRNJT ,

where

J =
∂δxiRN

∂δxbRN

=























R(q̂nb ) R(q̂nb ) ⌊p̂nb ⌋ 0 0 0 0 0 0
0 −I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 R(q̂nk ) R(q̂nk ) ⌊p̂nk⌋ 0

0 0 0 0 0 0 −I 0

0 0 0 0 0 0 0 1























.
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