
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Faculty Publications 

2014-4 

Relative Navigation Approach for Vision-based Aerial GPS-denied Relative Navigation Approach for Vision-based Aerial GPS-denied 

Navigation Navigation 

Timothy McLain 
Mechanical Engineering Department, Brigham Young University, mclain@byu.edu 

Randal W. Beard 
Department of Electrical and Computer Engineering, Brigham Young University, beard@ee.byu.edu 

Robert C. Leishman 
US AFRL Sensors Directorate, Wright-Patterson AFB 

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub 

 Part of the Mechanical Engineering Commons 

Original Publication Citation Original Publication Citation 
Leishman, R., McLain, T., and Beard, R. Relative Navigation Approach for Vision-based Aerial 

GPS-denied Navigation, Journal of Intelligent and Robotic Systems, vol. 74, no. 1-2, pp. 97-111, 

April 2014. 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
McLain, Timothy; Beard, Randal W.; and Leishman, Robert C., "Relative Navigation Approach for Vision-
based Aerial GPS-denied Navigation" (2014). Faculty Publications. 1945. 
https://scholarsarchive.byu.edu/facpub/1945 

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1945?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1945&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Relative Navigation Approach for Vision-Based Aerial GPS-Denied
Navigation

Robert C. Leishman, Timothy W. McLain, Randal W. Beard

Abstract— GPS-denied aerial flight is a challenging
research problem and requires knowledge of complex
elements from several distinct disciplines. Additionally,
aerial vehicles can present challenging constraints such
as stringent payload limits and fast vehicle dynamics.
In this paper we propose a new architecture to sim-
plify some of the challenges that constrain GPS-denied
aerial flight. At the core, the approach combines visual
graph-SLAM with a multiplicative extended Kalman
filter. More importantly, for the front end we depart
from the common practice of estimating global states
and instead keep the position and yaw states of the
MEKF relative to the current node in the map. This
relative navigation approach provides simple application
of sensor measurement updates, intuitive definition of
map edges and covariances, and the flexibility of using
a globally consistent map when desired. We verify the
approach with hardware flight-test results.

I. INTRODUCTION

Finding solutions to enable GPS-denied aerial flight
in a priori unknown environments is an important
research focus. Solutions are critical in applications
that require inspecting and surveying areas that are
difficult to access and that present a great amount of
risk, such as search and rescue operations in dam-
aged buildings after disasters, in underground areas
or in urban canyons. The problem is challenging as
the robot must discover its own location using only
onboard sensors and computational resources. This task
requires knowledge of complex elements from sevaral
distinct disciplines. Additionally, the aerial vehicles
that are used in this type of research also present
difficult constraints like limited payload capacities and
fast vehicle dynamics; constraints that are complicated

R. Leishman is a Research Engineer, US AFRL
Sensors Directorate, Wright-Patterson AFB, OH 45431
rleish@gmail.com

T. McLain is a Professor and Department Chair, Dept. of Me-
chanical Engineering, Brigham Young University, Provo, UT 84604
mclain@byu.edu

R. Beard is a Professor, Dept. of Electrical Engineering, Brigham
Young University, Provo, UT 84604 beard@byu.edu

further by using onboard generated state estimates in
feedback control. Unlike ground robots, these vehicles
cannot afford to pause in one place until complex
algorithms converge and estimates are sufficiently sta-
ble to continue. Only a few researchers have been
able to achieve successful flying implementations for
autonomous goal-directed flight.

Planar laser scanner-based implementations such as
those discussed in [1], [2] require strict assumptions
regarding the nature of the environment. Six-degree-
of-freedom (6DoF) motion estimation using vision is
desirable due to a camera sensor’s low cost, low power
requirements and light weight. Furthermore, machine
vision approaches are more flexible in that they require
fewer assumptions about the environment.

Some of the earliest examples of vision-based esti-
mation for quadrotor vehicles are [3], [4], [5]. Among
the first to use vision-based estimates in the control
loop was [6]. A few others utilize vision-based esti-
mates in the control loop but must use other aids, such
as off-board processing [7], [8], simulated vision using
motion capture data [9] or artificial markers [7], [10],
[11] to enable their approaches.

Huang et al. [12] combine work from [1] and [13]
to enable a quadrotor that uses an RGB-D sensor
for visual odometry (VO) and mapping. They present
results for 3D maps in small environments with es-
timates in the control loop. However their approach
requires feedback into the estimation from loop closure
and global optimization algorithms due to the use of
globally referenced states. They are unable to complete
these two tasks onboard.

Weiss et al. [14] describe a system where parrallel
tracking and mapping (PTAM) [15] is merged with
an optical-flow algorithm for a down-pointed camera
in an EKF framework. The optical-flow algorithm is
necessary to maintain stability of the vehicle when the
global navigation fails and needs to be reinitialized.
They provide results demonstrating the accuracy of the
optical-flow algorithm compared to truth and results for



an autonomous hover. However, as the camera points
downward, they are unable to do motion planning with
obstacle avoidance.

Tomic et al. [16] introduce a quadrotor which utilizes
navigation based on either stereo VO or laser scan
matching, a combination which provides robustness.
They report autonomous flight results moving from
indoor to outdoor environments. The authors discuss
the difficulties in dealing with relative measurements
from the VO and jumps that occur in global posi-
tion with the recognition of landmarks. The approach
does not maintain a metric map but it does keep a
topological one containing known landmarks in the
environment. The system utilizes constraints set by the
IMAV competition1 for map initialization and landmark
recognition which excludes it from use in general
unknown environments.

Fraundorfer et al. [17] present a quadrotor capable
of autonomous flight and exploration using stereo VO
from forward-looking cameras and optical flow from a
downward looking camera. Most of the computation is
completed onboard. Graph-based global optimization
and loop closure are required for global states and
these algorithims are computed offboard. The authors
present results for exploration and mapping in unknown
environments and also localization within a known
map. They emphasize that the optical flow of the
downward-pointing camera is essential for the system
to function.

In this paper we propose a new architecture to
simplify some of the challenges that constrain GPS-
denied aerial flight. In the proposed approach, visual
graph-SLAM is combined with a multiplicative ex-
tended Kalman filter (MEKF), using only a front-
facing RGB-D camera, IMU, and sonar altimeter, as
shown in Figure 1, to produce filter outputs. The
unique aspect about the proposed approach is that the
position and yaw estimates of the MEKF are kept
relative to the current node in the map, rather than
to the global reference frame. Requiring global states
incurs difficulties like the need for additional states to
incorporate relative position measurements [14], [16],
waiting periods for global consistency [6], inclusion
of place recognition and map optimization algorithms
in the time-critical path [1], [12], [17] and additional
logic to accommodate large jumps in pose when loop
closures are applied [16].

1www.imav2011.org

Fig. 1. The Mikrokopter hexacopter that is used to carry out the
experiments. The only sensors utilized are an altimeter (not visible),
IMU, and front-facing RGB-D camera.

We demonstrate in this paper that by maintaining
relative information in the state estimates, vision-based
measurements can be utilized directly, feedback to the
filter from computationally expensive loop closure or
SLAM algorithms is not required, and processes that
are not essential for real-time estimation and control
can be completed in the background. Additionally, the
basis for the approach has been shown to scale well
to large environments [18] and the images from the
RGB-D camera represent a rich source of information
for path planning and other high-level tasks.

The remainder of the article is outlined as follows.
We explain the approach and advantages to relative
navigation in Section II. The main result of the paper is
in Section III, where the software architecture described
in detail. Information is provided on each of the impor-
tant algorithms that make up this architecture. Next,
the results from several different flights of a hardware
prototype are detailed in Section IV. These results
demonstrate the potential of the proposed approach to
provide a vehicle the abilityto navigate in GPS-denied
environments. Finally in Section V, we summarize the
paper.

II. RELATIVE NAVIGATION APPROACH

Relative navigation refers to navigation with respect
to a local reference frame. We propose that the local
frame change as the vehicle moves through the envi-
ronment, establishing a topological representation of
the world using a pose graph [19]. The changes in
the local frame occur based on the needs of the VO
algorithm. The algorithm is keyframe based. Instead
of comparing consecutive images, each current image
is compared to a reference image, called a keyframe,
to obtain the 6DoF change in pose. New keyframes



are declared when the vehicle has moved further than
a predetermined distance threshold from the previous
keyframe and the overlap between images becomes
too small for reliable matching. The local coordinate
frames with respect to which the vehicle navigates are
derived from the keyframes.

1 n̅ 

e̅ 

xinertial 

x 

2 3 

4 

d̅ 

Fig. 2. Relative navigation using nodes and edges. As the vehicle
flies through the environment, nodes are created using the VO
keyframes and the edges are defined between them using the relative
states of the MEKF. The vehicle state is relative to node four in
this illustration.

The map in Figure 2 illustrates the relative topologi-
cal approach. The VO algorithm initializes a keyframe
at node 1 and an edge is added between the global
frame and the node frame once this information is
known. The filter estimates the position and yaw states
of the vehicle with respect to the local coordinate
frame at node 1 as the vehicle travels. When the VO
algorithm requires a new keyframe to maintain good
performance, a new keyframe and node are declared at
pose 2. An edge is added to the map using the relative
states and covariance in the MEKF. The navigation then
continues with respect to node 2 by marginalizing out
the old relative states and augmenting the state vector
with new ones. This process continues as the vehicle
moves through the environment, with new keyframes
and nodes being declared as necessary and the MEKF
changing the relative states each time a new keyframe
is declared. As current images are compared to a
keyframe, the position estimates will not drift when the
vehicle is in hover. A vector chain of edges connects
the hexacopter to the global reference frame. Global
position and yaw for the vehicle can be estimated
by first expressing all of the constraints in the same
coordinate frame and then summing all of the edges
and the current state.

This relative navigation approach has several key
advantages: straightforward use of sensor information
for state updates, easy creation of map edges using the
filter state and covariance, and flexible use of global
information.

Exteroceptive sensors provide relative information.
In particular, the VO provides the change in 6DoF
pose between the current and keyframe images. By
expressing the VO result in the node coordinate frame,
the position and attitude are updated directly in the
filter. This simplification eliminates needing additional
states in the filter or requiring VO measurements to
update the velocity states.

Defining edges between consecutive nodes is a sim-
ple matter of saving the relative portions of the state
and covariance just before a new node is created.
The covariance can be used to compute a confidence
measure of the current global position. For example,
a path planning algorithm might use the combined
covariances of the edges to indicate when estimates
have drifted sufficiently to warrant a planned loop
closure.

The proposed relative approach offers more flexibil-
ity than a globally-based method. The system can fly
reliably both with and without loop closure constraints
that constrain drift and with and without global opti-
mization. This is possible as the local navigation and
control take place regardless of global changes within
the map. Without loop closure it is clear that the map
will drift and not remain globally consistent. How-
ever, the relative relationships between nodes maintain
locally consistent topological and metric relationships
between saved locations. Therefore, the map could be
traversed, even back to the start location, by using the
relative relationships. This is also true when loop clo-
sure constraints are available and global optimization is
not; we could then pursue a consistent but purely rela-
tive topological approach similar to that of [20]. Finally,
by enabling both loop closure and global optimization
we would be able to mimic the typical SLAM approach
that provides globally consistent metric information of
the environment.

III. SOFTWARE ARCHITECTURE

Figure 3 show the architecture of the proposed rela-
tive navigation system. The system is divided into the
front end and back end. The whole system is intended
to be run onboard a hexacopter, like the one shown in
Figure 1.



Map

Optimization

High-Level 

Planner

Visual 

Odometry

Place 

Recognition

Relative

Sensor Fusion

Low-Level

Planning/

Obstacle 

Avoidance

Position 

Controller

Hexacopter 
with

Onboard Attitude

ControllerRGB-D 

Camera

IMU and

Altimeter

Global 

Back End

Relative

Front End

Fig. 3. Software architecture for the proposed system. The front
end provides relative navigation based on keyframes from the VO
algorithm. The back end provides a globally-consistent navigation
solution. Notice that the only flow of information from the back
end to the front end is provided by the high-level planner. Most
proposed architectures require feedback from the costly optimiza-
tion and place recognition algorithms to the estimation and control.
ROS provides the functionality represented by the arrows between
components.

The front-end subsystem provides the critical pro-
cesses to keep the hexacopter flying, including the
VO, sensor fusion, control, and obstacle avoidance.
Consequently, this system is given priority over the
back end. All of the components in the front end are
based in the relative coordinate frame as explained
above.

The back-end subsystem maintains globally consis-
tent information, including a global map and high-level,
global objectives when desired. Notice how the only
flow of information from the back end to the front end
is from the high-level planner. This is in stark contrast
to other proposed architectures that have been devel-
oped, which require feedback from the computationally
expensive recognition and optimization components.
The relationship, illustrated in Figure 3, between the
front and back ends is what allows the flexibility of
the proposed approach.

The separation between the front and back ends
provides an added level of robustness to any changes in
the pose graph. For example, when loops are closed and
global optimization is employed, it is possible for large
jumps in the global location to occur. These large jumps
can cause problems with the real-time control of an air
vehicle that employs globally-referenced states. As our
vehicle navigates with respect to a local node, global
optimization can continually make changes without
causing harm to the real-time estimation and control.

Another advantage is the potential to utilize other types
of constraints in the map between nodes, also without
effecting the real-time essential processes. Possibilities
include any measurement constraints which aid in the
understanding of the global or relative vehicle location,
such as intermittent GPS measurements or semantic
information [16].

The system is implemented using the Robot Oper-
ating System (ROS) [21]. In fact, messages within the
ROS framework make up all the arrows in Figure 3 and
each block is written as a ROS node/package. Below we
briefly describe each block that makes up the proposed
relative navigation approach.

A. Visual Odometry

As we discussed above, VO is the process of com-
paring two images to find the relative change in pose
between them. We utilize keyframes in these compar-
isons, rather than consecutive images, to reduce the
amount of drift. Good tutorials on implementing VO
are found in [22], [23].

We utilize a VO algorithm we developed that utilizes
the 3D information from an RGB-D camera [24]. We
provide a quick summary of the algorithm below.

1) 3D VO: Sets of color and depth images are sent
to the algorithm. The first image pair is designated as
the keyframe image pair and all following image pairs
are compared to this set until a new keyframe image is
assigned. A new keyframe is selected when the camera
has moved 0.25 meters or 10 degrees in yaw from the
location where the previous keyframe image was taken.

For each image FAST features [25] and BRIEF
descriptors [26] are extracted and the feature positions
are corrected using the distortion information of the
camera. The 3D point location p = (X Y Z)> for the
2D image feature p̄ = (x y)> is found by looking up
the depth Z in the depth image and using the projection
equations

X =
(x� c

x

)Z

f

x

(1)

Y =
(y � c

y

)Z

f

y

, (2)

where c

x

, c

y

, f

x

, and f

y

are the intrinsic camera
calibration parameters for the image center and focal
points.

Next, correspondence between the current image
features and the keyframe features are estimated using
forward and backward constrained brute-force searches



in a mutual consistency check [22]. The correspond-
ing features are passed into RANSAC [27], which is
then employed to find a pose motion estimate while
eliminating outliers. We use a three point singular
value decomposition (SVD) algorithm based on [28] as
the motion model in RANSAC. The solution estimate
provides the 6DoF rotation and translation between the
keyframe and the current coordinate frames and is of
the form

p

c = R

c

key

p

key +T

c

. (3)

Where p

c and p

key are the current and keyframe 3D
feature position vectors, Rc

key

rotates points expressed
in the keyframe coordinate frame into the current
image coordinate frame, and T

c is the origin of the
keyframe coordinate frame expressed in the current
image coordinate frame.

Inliers are found by re-projecting the 3D keyframe
features onto the current image plane using the sample
solution and the intrinsic calibration parameters. To
be considered a valid inlier, the pixel error distance
between the locations of the current image feature and
the reprojected keyframe feature must be smaller than
a threshold. Checking the error on the image provides
improved results over solutions evaluated by error in
3D positions. The solution estimate with the highest
inlier count is returned by the RANSAC algorithm.

20 40 60 80 100 120 140 160 180

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Camera Z Translations

Time (sec)

P
o
si

tio
n
(m

)

 

 
Truth
Estimate

Fig. 4. Relative camera ~z (out of plane) position comparison
between truth and estimates. The discontinuities in the plots are due
to new nodes being created, causing the truth and the estimates to
jump to the new relative position. We express the global truth from
the motion capture system in the relative node coordinate frame
for easy comparison. Results for the camera ~x and ~y positions are
similar.

2) 3D VO Results: Figure 4 presents the camera
~z axis portion of the relative transformations between

20 40 60 80 100 120 140 160 180

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Theta (really Yaw)

Time (sec)

A
n
g
le

 (
ra

d
)

 

 

Truth

Estimate

Fig. 5. Comparison between truth and estimates for the rotation
about the camera ~y axis, which is equivalent to the vehicle yaw
angle because of the change in axes. Again, the discontinuities in
the plots are due to new nodes being created, causing the truth and
the estimates to jump to the new relative position. Results for the
camera roll and yaw positions are similar.

the current and keyframe images. The discontinuities
are due to changing keyframes. Figure 5 presents the
results for the rotation about the camera ~y axis. This
angle corresponds to the vehicle yaw angle because
of the change in axes. The algorithm actually outputs
the change in rotation as a unit quaternion, which we
have converted to Euler angles in this figure for ease
of comparison.

Table I provides the RMS error in the relative trans-
formations over the flight. These values are representa-
tive of results that we routinely achieve in the motion
capture environment.

TABLE I
RMS ERROR OF THE VISUAL ODOMETRY ESTIMATES.

RMS Error in Motion Estimates
Transformation RMS Error
Camera ~x position 0.033 (m)
Camera ~y position 0.041 (m)
Camera ~z position 0.041 (m)
Rotation about camera ~x 0.020 (rad)
Rotation about camera ~y 0.017 (rad)
Rotation about camera ~z 0.013 (rad)

B. MEKF Sensor Fusion

The sensor fusion is provided by a multaplicative
extended Kalman filter (MEKF) that has been designed



specifically to function with the relative navigation
approach [29]. The MEKF is an indirect EKF, which
means that the error in the state �x and the covariance
of the error are maintained in the filter rather than the
best estimate x̂ and error covariance.

The true states x of the rotorcraft are defined as

x =
h
p

n

>
q

b

n

>
v

b

>
�

>
↵

>
q

b

c

>
p

b

>
i>
. (4)

The position vector p

n, relative to the current node,
is the displacement of the body in the front f

j

, right
r

j

, and down d

j

directions with respect to node j. The
quaternion q

b

n

expresses the attitude of the body-fixed
frame with respect to the node frame. The component
of the quaternion for yaw is relative to the current node.
v

b is the body frame velocity vector. The gyroscope
bias vector is �. Accelerometer biases in the body x

and y directions are represented by ↵. The last two
parameters in (4) represent the transformation from the
body-fixed coordinate frame to the camera coordinate
frame and can be optionally included in the state. Once
refinements to the transformation are obtained, these
estimates can be saved as constants and then removed.

The inputs to the model are the gyroscope measure-
ments and the z accelerometer

u =
⇥
p

gyro

q

gyro

r

gyro

z

accel

⇤>
. (5)

When just the subscript (i:j) is used below, only ele-
ments i through j of u are considered.

The nonlinear equations of motion for the states (4)
are

ṗ

n =R>(qb

n

)vb

, (6)

q̇

b

n

=
1

2
⌦
�
u(1:3) � � � ⌘

!

�
q

b

n

, (7)

v̇

b =v

b ⇥
�
u(1:3) � � � ⌘

!

�
+R(qb

n

)g

� 1

m

Mv

b + u(4)
~

d

j

, (8)

�̇ =⌘

�

(9)
↵̇ =⌘

↵

(10)

q̇

b

c

=⌘

cq

(11)

ṗ

b =⌘

cp

. (12)

A rotation matrix R(qb

a

) from a quaternion q

b

a

rotates
the vector v, expressed in the frame a, into frame b.

The operator

⌦ (!) =

2

664

0 !3 �!2 !1

�!3 0 !1 !2

!2 �!1 0 !3

�!1 �!2 �!3 0

3

775

assumes that the order of a quaternion it multiplies is
of the form

⇥
q

x

q

y

q

z

q

w

⇤>. The noise ⌘

!

is the
zero-mean Gaussian noise in the measured gyroscopes
from the inputs u. The constant matrix M is

M =

2

4
µ 0 0
0 µ 0
0 0 0

3

5
,

and the constants g and µ are the gravity and drag
coefficient respectively. An improved model of the
hexacopter dynamics, contained in (8), which accounts
for the rotor drag with coefficient µ, provides the
ability to fully utilize the information contained in the
accelerometer measurements [30]. As a consequence,
estimation accuracy improves and the requirements for
VO or any other exteroceptive measurement updates
are reduced [31].

1) Error Dynamics: The error dynamics are used
to propagate the error covariance matrix P and are
derived from the nonlinear dynamics (6) through (12).
The length of the error state is reduced by one for each
quaternion when compared to the length of the true
state. The 20-element relative-error state is

�x =
h
�p

n

>
�✓

b

n

>
�v

b

>
��

>
�↵

>
�✓

b

c

>
�p

b

>
i>
. (13)

The error dynamics can be linearized and result in
the following linear model

�̇x = A�x+B�u, (14)

where A is the Jacobian of the error dynamics with
respect to the error state �x and B is the Jacobian of
the error dynamics with respect to the input �u.

2) Prediction: We do not maintain a true indirect
filter as we require the estimated states for control
feedback. Instead, we keep track of the estimated state
x̂ and the covariance P̂ of the error state �x̂; a detailed
derivation is found in [29]. During the prediction step,
the estimated covariance is propagated forward by
numerically integrating the equation

˙

ˆ

P = AP̂+ P̂A

> + �

⇣
BGB

> +Q

⌘
, (15)



where the matrices A and B are defined in (14), �

is a tuning parameter, G is a diagonal matrix of the
measured covariance on the inputs (5) and Q is the
process noise covariance which represents modeling
error and disturbances. The estimated states are propa-
gated forward by numerically integrating the nonlinear
equations of motion, (6) through (12).

3) Measurement Updates: The filter is updated us-
ing altimeter, accelerometer, vision-based position, and
motion-estimation orientation measurements, from the
3D VO. In this implementation we treat the position and
orientation motion estimation measurements updates
separately. This is possible because we account for the
contribution of the rotational uncertainty in the position
covariance when the covariances of the measurements
are generated.

4) Delayed View-Matching Updates: An additional
challenge with the motion estimation measurement
updates is that they are delayed. The stochastic delay
is due to the requisite image-processing time. Thus,
computing the measurement updates requires a few
additional steps. The state and covariance must first
be restored to the time the image was taken; then the
measurement updates are applied; finally, the state and
covariance must be repropagated back to the current
time by re-applying the prediction and measurement
updates at their respective timesteps. The state, covari-
ance, IMU, and altimeter information are saved at each
timestep to accommodate this requirement.

5) Augment and Marginalize the Relative State:
When a new node is created by the view-matching algo-
rithm, the relative portions of the state and covariance
must change. The states that change are the positions
in p̂

n and the yaw contained in q̂

b

n

. The positions are
simply replaced with zeros. The quaternion in the state
must maintain the same pitch and roll but the yaw
must be zeroed out. We use the relationship between
quaternions and Euler angles [32] to adjust the state
and covariance appropriately.

C. Relative Planning/Obstacle Avoidance

The low-level planner provides paths for the hexa-
copter to follow through the environment in the relative
frame. The plans are recomputed frequently enough for
the vehicle to avoid static and slow-moving obstacles,
like a person walking at a casual pace. Point cloud
data from the RGB-D sensor is used to create a cost
map [33] of the 3D environment that is then projected
onto the node f

j

-r
j

plane, as shown in Figure 6.

The cost map is expressed in the relative node frame
explained above. Given a goal location in the relative
coordinate system, a path through the environment is
computed using Dijkstra’s algorithm [34]. The goal
location is the only information received by the front
end from the back-end subsystem, as shown in Figure 3.
The path is expressed in the relative coordinate system.

Fig. 6. Visualization of the cost map and path planner. Point cloud
information was provided to the relative path planner as the camera
was moved around a room. The red objects are detected obstacles,
the yellow areas are inflated costs around the obstacles, and the
green line is the computed path, based on a goal location chosen
by a user.

D. Position Control

We have modified the position controller detailed
in [35] to provide control based on waypoints in the
relative node coordinate frame and to include integral
control for more robustness. The control algorithm
utilizes a change of variables on the inputs of the
model to eliminate nonlinearities and a linear quadratic
regulator (LQR) provides the feedback control. The
approach to follow waypoints is based on the procedure
outlined in [36], adapted for rotorcraft. The waypoints
are expressed in the current node frame when sent by
the planning algorithm.

One challenge for the control is the change of
coordinate systems when a new node is created. The
sensor fusion algorithm changes the coordinate system
of the relative states as soon as the keyframe image is



received. The path planner, however, does not instantly
generate a new path for the new reference frame. Con-
sequently the control algorithm must apply the relative
transformation provided by the map edge to the old
path. Each waypoint wp[i] in the path is transformed
using

wp

new

[i] = R
⇣
q

j+1
j

⌘ �
wp[i]� p

j+1
�
, (16)

where p

j+1 is the translation to the (j + 1)-th node
from the j-th node, expressed in the j-th node frame.

E. Map
The map used in this work is a collection of nodes

and edges in a relative topological pose graph, illus-
trated in Figure 2. The map is flexible as it can be glob-
ally referenced through optimization but it is originally
based on the relative transformations provided by the
motion estimation. New nodes are created with each
new keyframe. Edges are added between temporally
and spatially consecutive keyframes.

A node is described, ultimately, by a keyframe RGB
and depth image pair. Attached to the keyframe pair are
the estimates of relative and global position and orien-
tation, yet the image encodes the true instantaneous
location of the vehicle. A relative local coordinate
frame is defined as part of the node, based on the
position and heading of the vehicle when the keyframe
is taken, to enable navigation relative to the node.

Edges in the graph represent the estimated relative
transformations between nodes. We currently only con-
sider edges from the odometry but we are working to
include other constraints, such as those from visual
recognition loop closures and intermittent GPS mea-
surements. The odometry edges are created using the
MEKF, based on the measurements from the robust
motion estimation algorithm. When a new node is
received by the estimator, the old relative portions of
the state and covariance are marginalized out and saved
as the edge between the old and new nodes.

F. Place Recognition
Place recognition provides the capability to recog-

nize when the current keyframe is already part of
the map. Once the algorithm recognizes a match, a
loop-closure constraint can be added to the map using
one of the motion-estimation algorithms. Loop-closure
constraints are essential to providing a topological
consistent map as they constrain the drift in the map
caused by odometry errors.

Place recognition is completed by comparing images
to one another to find close matches [37], [38]. Each
keyframe image in the map is assigned visual words,
from a previously calculated visual vocabulary, based
on the feature information in the image. Then the
map is searched using the words to find images that
contain the same information. Once several images are
suggested by the algorithm as having a high probability
of being the same location, a geometric consistency
check is made to eliminate any false positive matches.
The 6DOF loop-closure constraint is created by com-
paring the matching images using a motion estimation
algorithm. This algorithm is an item of current work
and it not yet fully implemented in the system.

G. Back-end Optimization
The role of nonlinear optimization is to iteratively

refine the edges in the map to produce a globally
consistent map when it is desired. Because of the flex-
ibility of the relative navigation approach, this can be
completed either offline after a flight, or in real time as
a background process. In most navigation approaches,
the sensor fusion relies on the revised global estimates,
causing the computationally heavy optimization to be
a part of the time-critical path that enables flight.

In [39], a new optimization approach is introduced,
which focuses on the relative transformations between
nodes rather than only on the global pose estimates, as
is typically done. As a result, the algorithm provides
improved estimates of the global poses and relative
transformations in less computational time than other
the state-of-the-art algorithms [40].

H. High-level Planner
The role of the high-level planner is to provide

capabilities such as exploration, target following, or
other higher-level tasks for the hexacopter system. The
algorithm is provided an estimate of the map and the
location of the hexacopter, as well as the current relative
coordinate system in use by the front-end subsystem.
Directions are then provided to the low-level planner in
the form of goal locations in the current relative coordi-
nate system. This setup allows the front-end subsystem
flexibility. It does not need global information and it is
allowed to create its own paths so that obstacles can be
avoided.

IV. EXPERIMENTAL SETUP AND RESULTS

We utilize the Mikrokopter hexacopter vehicle shown
in Figure 1, and the hardware specified in Table II



for the experimental results. The computer is running
Ubuntu 12.04 Linux and all the applications are imple-
mented in C++ and connected using ROS. Truth data
from a motion-capture system is only used to initialize
the global position of the vehicle and in the compar-
isons made in the figures below. The relative MEKF
runs at 100 Hz, the update rate of the IMU. Measure-
ment updates for the altimeter and the visual odometry
algorithm are applied at 40 Hz and 15 Hz, respectively.
All of the processing is performed onboard. During the
experiments presented below, the CPU usage averaged
at about 40%. From these measurements, we believe
that there is sufficient room for the place recognition
and optimization algorithms to also run on the onboard
computer.

TABLE II
HARDWARE DETAILS

Component Description
Vehicle Mikrokopter Hexacopter XL
Autopilot Flight-Ctrl V2.1 ME
Sonar Altimeter LV-MaxSonar R�-EZ3
RGB-D Camera ASUS Xtion Pro Live
IMU MicroStrain R� 3DM-GX3 R�-15
Motion Capture Motion Analysis
Processor Intel Core i7-2710QE

We present results for an autonomous hover which
demonstrate the performance of the estimator and con-
trol algorithms. The estimates are compared to truth
and the control maintains the vehicle in a hover about
a fixed global location. We also show the true and
estimated 3D positions of the vehicle while following a
path in three different circumstances: the first is a short
path in the motion capture room, the second is down
a long, straight hallway, and the third is a path down
three hallways.

A. Hover Results

Table III provides the standard deviations of the
hover error during a typical flight. The vehicle was
commanded to hover 1 m above the take-off location.
Twelve nodes were created during this flight, but only
three occurred during the hover, the others were created
during takeoff and landing. Notice that even though
the vehicle is navigating using relative states, it can
stabilize quite well around a global location.

TABLE III
THE STANDARD DEVIATIONS IN THE GLOBAL DIRECTIONS OF

THE HOVER ERROR.

Standard Deviation of Hover Error
Direction Standard Deviation (m)
global north (n) 0.083
global east (e) 0.071
global down (d) 0.02

B. Path Results
The next flight was an autonomous, goal-directed

flight in a small room equipped with a motion capture
system. The vehicle is performing all of the tasks of the
front-end sub-system described in Figure 3, with all of
the computation being completed onboard. Figures 7
through 9 demonstrate the performance of some of the
state estimates of the filter compared to truth during a
flight with the state estimates in the control loop.

10 15 20 25 30 35 40 45 50

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Relative Right Measurements

Time (sec)

P
o

si
tio

n
 (

m
)

 

 

truth
estimate

Fig. 7. Relative right position r truth and estimates comparison.
This data is from the estimates-in-the-loop autonomous, goal-
directed flight. The discontinuities in the plots are due to new nodes
being created, causing the truth and the estimates to “jump” to the
new relative position. We express the global truth from the motion
capture in the relative node coordinate frame for the comparison of
these results. Results for the relative front and down positions are
similar.

In Figure 7 we see the results for the relative right
position r, with respect to the current node. There were
many new nodes created during this autonomous flight.
We note that all of the state estimates transition between
these coordinate-frame changes without difficulty. The
body-fixed frame side velocity v results are depicted
in Figure 8. The estimates track the truth, even though
the magnitude of the speed is small. The y component



10 15 20 25 30 35 40 45 50

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Side Velocity v: truth vs. estimate

Time (sec)

V
e

lo
ci

ty
 (

m
/s

)

 

 

truth
estimate

Fig. 8. Body-fixed frame side velocity v truth and estimate
comparison. Notice that there are no discontinuities, as the body-
frame velocity is not relative. Results for the front and down body-
fixed velocities are similar.

22 24 26 28 30 32 34 36 38 40 42

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

qy: truth vs. estimate

Time (sec)

Q
u

a
te

rn
io

n

 

 

truth
estimate

Fig. 9. The y component of the quaternion qb
n, which is approxi-

mately the pitch angle of the hexacopter for this flight, comparison
for a portion of the flight. There are not any discontinuities, as this
part of the quaternion is not relative.

of the quaternion q

b

n

is shown in Figure 9. The y

quaternion roughly corresponds to the pitch angle of
the hexacopter for this flight.

Figures 10 and 11 show the global, dead-reckoning
results for the autonomous, goal-directed flight. The
goal locations that were commanded are shown in the
figures. Recall that the state estimates, control, path
planning, and goal locations are all originally relative
to the current node in the graph. We have converted
them into global estimates for display and comparison.
The estimated global node locations are shown as green
points along the estimated path. There is drift in the
global locations as we are only conducting relative

Fig. 10. The 3D path of a flight within the motion capture
environment. We show the true path, the global estimate computed
by summing the relative edges and the current state at each timestep,
the node locations estimates, and the global positions of the relative
goal points. Notice that even though the estimates drift globally, the
vehicle arrives at each of the goal locations. This is possible since
all the front end functionality is based on the relative system.

Fig. 11. The top view of the 3D path of a flight within the motion
capture environment. Notice that even though the estimates drift
globally, the vehicle arrives at each of the goal locations. This is
possible since all the front end functionality is based on the relative
system.

flights.

C. Long Hallway Results

In this section we describe results of flying the
hexacopter down the main hallway of the third floor
of the Crabtree building on the BYU campus,2 see
Figure 12. A long, large hallway is a challenging

2A video of this flight can be seen on the MAGICC Lab YouTube
channel: http://youtu.be/PMYwPihUKIM



Fig. 12. The main hallway in the Crabtree building on BYU
campus.

Fig. 13. The 3D point cloud produced by the RGB-D camera while
the hexacopter was moving down the hallway. The valid information
for use in the VO is only on the periphery of the image.

environment for the VO, as 3D information is only
available on the periphery of the sensor: on the floor,
walls and ceiling. Figure 13 shows a typical point cloud
obtained while the hexacopter was moving down the
hallway.

Figure 14 shows a top view of the global estimates
of the path of the vehicle. The original reference frame
was closely aligned with the hallway, so the vehicle
drifted between 1 to 2 m laterally. This drift is not
concerning since the vehicle navigates relative to the
keyframes.

D. Flight Down Three Hallways

The final demonstration was to test how well the
system could maneuver down hallways that require
turns. Results for a flight on the third floor of the

−5 0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

2

2.5
3D Plot of Path Truth and Estimates

Global North (m)

G
lo

b
a

l W
e

st
 (

m
)

Fig. 14. The top view of the global position estimates. Note
the difference in scale between the axes. These are dead-reckoning
results, as optimization and loop closure are not enabled. Lateral
drift is between one and two meters. The green dots denote the
keyframe images created along the way.

−5

0

5

10

15

20

25

−30−25−20−15−10−505

Global West (m)

3D Plot of Path Truth and Estimates

G
lo

b
a

l N
o

rt
h

 (
m

)

Fig. 15. The top view of the global position estimates for the
flight down three hallways in BYU’s Wilkinson Student Center.
These are dead-reckoning results, as optimization and loop closure
are not enabled. From this figure, we estimate the drift in north
and west to be between one and two meters in each direction. The
green dots denote the keyframe images created along the way.

Wilkinson Student Center on BYU campus are shown
in Figure 15. In black, we show the basic dimensions of
the hallways. We set goal locations near the center of
the hallways. Notice that there is very little drift in the
global yaw, otherwise, the path would not be as square.
Recall that again, these are dead-reckoning results.

These larger path results demonstrate further evi-
dence for the potential functionality of the proposed
approach. The vehicle is able to autonomously fly
through larger environments and transition through
many different local coordinate frames, while simul-
taneously maintaining good dead-reckoning global es-
timates. However, the back-end algorithms mentioned
above must be in place to demonstrate the system in a
more practical environment.

V. SUMMARY

A relative, vision-based framework, like the ap-
proach described here, is an important step in furthering



the capabilities of indoor aerial navigation. Alternative
approaches that require globally-referenced states often
suffer deficiencies from the need for additional state
elements to incorporate relative measurements, waiting
periods to process global consistency, inclusion of place
recognition and map optimization algorithms in the
time-critical path, or schemes to accommodate large
jumps in pose when loop closures are applied.

Utilizing a relative approach allows more flexibility
as the critical, real-time processes of localization and
control do not depend on computationally-demanding
optimization and loop-closure processes. Relative exte-
roceptive measurement updates are supported natively
in the proposed MEKF and front-facing keyframes
provide a rich source of information for path planning.
The graph map also provides potential support for a
variety of constraints, such as intermittent GPS and
semantic information.

ACKNOWLEDGMENTS

This work was supported through the DoD SMART
Scholarship program.

REFERENCES

[1] A. Bachrach, R. He, and N. Roy, “Autonomous Flight in
Unstructured and Unknown Indoor Environments,” in Proc.
of the EMAV Conference. European Micro Air Vechicle,
Sept. 2009, pp. 2–9.

[2] S. Shen, N. Michael, and V. Kumar, “Autonomous multi-floor
indoor navigation with a computationally constrained MAV,”
in IEEE Intl. Conf. on Robotics and Automation, May 2011,
pp. 20–25.

[3] E. Altug, J. P. Ostrowski, and C. J. Taylor, “Control of a
Quadrotor Helicopter Using Dual Camera Visual Feedback,”
The International Journal of Robotics Research, vol. 24, no. 5,
pp. 329–341, May 2005.

[4] G. P. Tournier, M. Valenti, J. P. How, and E. Feron, “Es-
timation and control of a quadrotor vehicle using monocular
vision and moire patterns,” in AIAA Guidance, Navigation and
Control Conference, no. August, 2006, pp. 21–24.

[5] S. Ahrens, D. Levine, G. Andrews, and J. P. How, “Vision-
based guidance and control of a hovering vehicle in unknown,
GPS-denied environments,” in IEEE Intl. Conf. on Robotics
and Automation, May 2009, pp. 2643–2648.

[6] M. Blosch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision
based MAV navigation in unknown and unstructured environ-
ments,” in Proc. IEEE Int. Conf. on Robotics and Automation,
2010, pp. 21–28.

[7] F. Bourgeois, L. Kneip, S. Weiss, and R. Siegwart, “Delay
and Dropout Tolerant State Estimation for MAVs,” in Proc.
Intl. Symposium on Experimental Robotics, Berlin, 2010, pp.
1–14.

[8] L. R. Garcı́a Carrillo, A. E. Dzul López, R. Lozano, and
C. Pégard, “Combining Stereo Vision and Inertial Navigation
System for a Quad-Rotor UAV,” Journal of Intelligent &
Robotic Systems, vol. 65, no. 1-4, pp. 1–15, Aug. 2011.

[9] R. Leishman, J. Macdonald, R. W. Beard, and T. McLain,
“Relative navigation and control of a hexacopter,” in IEEE
Intl. Conf. on Robotics and Automation, St. Paul, MN, USA,
May 2012, pp. 4937–4942.

[10] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys,
“PIXHAWK: A system for autonomous flight using onboard
computer vision,” in EEE Int. Conf. on Robotics and Automa-
tion, May 2011, pp. 2992–2997.

[11] D. Bohdanov and H. Liu, “Vision-based Quadrotor Micro-
UAV Position and Yaw Estimation and Control,” in Proc.
AIAA Conf. on Guidance, Navigation, and Control, 2012.

[12] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Matu-
rana, D. Fox, and N. Roy, “Visual Odometry and Mapping
for Autonomous Flight Using an RGB-D Camera,” in Int.
Symposium on Robotics Research, Flagstaff, Arizona, USA,
2011.

[13] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-
D Mapping: Using Depth Cameras for Dense 3D Modeling
of Indoor Environments,” in Int. Symposium on Experimental
Robotics, 2010.

[14] S. Weiss, M. Achtelik, S. Lynen, M. Chli, and R. Siegwert,
“Real-time onboard visual-inertial state estimation and self-
calibration of MAVs in unknown environments,” in IEEE Intl.
Conf. Robotics and Automation, 2012.

[15] G. Klein and D. Murray, “Parallel tracking and mapping for
small AR workspaces,” in IEEE and ACM Int. Symposium on
Mixed and Augmented Reality, Washington, DC, USA, 2007,
pp. 1–10.

[16] T. Tomic, K. Schmid, P. Lutz, M. Kassecker, E. Mair,
I. Grixa, F. Ruess, M. Suppa, and D. Burshka, “Toward a
Fully Autonomous UAV: Research Platform for Indoor and
Outdoor Urban Search and Rescue,” Robotics and Automation
Magazine, no. September, 2012.

[17] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, P. Tanska-
nen, and M. Pollefeys, “Vision-Based Autonomous Mapping
and Exploration Using a Quadrotor MAV,” in IEEE Intl. Conf.
on Intelligent Robots and Systems, 2012.

[18] K. Konolige, J. Bowman, J. D. Chen, P. Mihelich, M. Calon-
der, V. Lepetit, and P. Fua, “View-based Maps,” in Proc. of
Robotics: Science and Systems, vol. 29, no. 8, Seattle, USA,
June 2009.

[19] B. Kuipers and Y. Byun, “A robust, qualitative method for
robot spatial learning,” Proc. of the AAAI, 1988.

[20] G. Sibley, C. Mei, I. Reid, and P. Newman, “Planes, trains and
automobiles: autonomy for the modern robot,” in IEEE Int.
Conf. on Robotics and Automation, May 2010, pp. 285–292.

[21] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS : an open-source
Robot Operating System,” in IEEE Intl. Conf. on Robotics
and Automation Workshop on Open Source Robotics, Kobe,
Japan, 2009.

[22] B. D. Scaramuzza and F. Fraundorfer, “Visual Odometry
Part I: The First 30 Years and Fundamentals,” Robotics and
Automation Magazine, no. December, pp. 80—-92, 2011.

[23] F. Fraundorfer and D. Scaramuzza, “Visual odometry Part
2: Matching, Robustness, Optimization, and Applications,”
Robotics and Automation Magazine, no. June, pp. 78—-90,
2012.

[24] R. C. Leishman, D. Koch, and T. W. McLain, “Robust Motion
Estimation Using an RBG-D Camera,” in AIAA Infotech @
Aerospace Conference, Boston, MA, USA, 2013.

[25] T. D. Edward Rosten, “Machine learning for high-speed cor-



ner detection,” in European Conference on Computer Vision,
2006, pp. 430—-443.

[26] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Bi-
nary Robust Independent Elementary Features,” in Computer
Vision ECCV 2010, ser. Lecture Notes in Computer Science,
K. Daniilidis, P. Maragos, and N. Paragios, Eds. Springer
Berlin Heidelberg, 2010, vol. 6314, pp. 778–792.

[27] M. A. Fischler and R. C. Bolles, “Random sample consensus:
a paradigm for model fitting with applications to image
analysis and automated cartography,” Communications of the
ACM, vol. 24, no. 6, pp. 381–395, 1981.

[28] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares
fitting of two 3-D point sets,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 9, no. 5, pp. 698–700, May
1987.

[29] R. C. Leishman, “A Vision-based Relative Navigation Ap-
proach for Autonomous Multirotor Aircraft,” Ph.D. disserta-
tion, Brigham Young University, 2013.

[30] R. C. Leishman, J. Macdonald, R. W. Beard, and T. W.
McLain, “Quadrotors & Accelerometers State Estimation with
an Improved Dynamic Model,” Control Systems Magazine, to
Appear, 2013.

[31] J. Macdonald, R. C. Leishman, R. W. Beard, and T. W.
McLain, “Analysis of an Improved IMU-Based Observer
for Multirotor Helicopters,” Journal of Intelligent & Robotic
Systems, to Appear, 2013.

[32] J. Kuipers, Quaternions and Rotation Sequences. Princeton
University Press, 1999.

[33] E. Marder-Eppstein, “costmap 2d,” 2013. [Online]. Available:
http://www.ros.org/wiki/costmap\ 2d

[34] K. Konolige and E. Marder-Eppstein, “navfn,” 2013. [Online].
Available: www.ros.org/wiki/navfn

[35] J. Ferrin, R. Leishman, R. Beard, and T. McLain, “Differential
Flatness Based Control of a Rotorcraft For Aggressive Ma-
neuvers,” in IEEE Int. Conf. Intelligent Robots and Systems,
2011.

[36] R. W. Beard and T. W. McLain, Small Unmanned Aircraft.
Princeton University Press, 2012.

[37] M. Cummins and P. Newman, “FAB-MAP: Probabilistic Lo-
calization and Mapping in the Space of Appearance,” The
International Journal of Robotics Research, vol. 27, no. 6,
pp. 647–665, June 2008.

[38] ——, “Highly scalable appearance-only SLAM - FAB-MAP
2.0,” in Proc. of Robotics: Science and Systems, Seattle, USA,
June 2009, pp. 1–8.

[39] J. Macdonald, “Efficient Estimation for Autonomous Multi-
Rotor Helicopters Operating in Unknown, Indoor Environ-
ments,” Ph.D. dissertation, Brigham Young University, Nov.
2012.

[40] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and
W. Burgard, “g2o: A General Framework for Graph Opti-
mization,” in IEEE Int. Conf. on Robotics and Automation,
Shanghai, May 2011, pp. 3607–3613.


	Relative Navigation Approach for Vision-based Aerial GPS-denied Navigation
	Original Publication Citation
	BYU ScholarsArchive Citation

	tmp.1501093400.pdf.aCVgL

